120 lines
4.5 KiB
C#
120 lines
4.5 KiB
C#
using System;
|
|
using System.Collections.Generic;
|
|
using System.Diagnostics;
|
|
using System.Linq;
|
|
using System.Runtime.Serialization;
|
|
using System.Threading.Tasks;
|
|
using Newtonsoft.Json;
|
|
|
|
namespace CRD.Utils;
|
|
|
|
public class Helpers{
|
|
/// <summary>
|
|
/// Deserializes a JSON string into a specified .NET type.
|
|
/// </summary>
|
|
/// <typeparam name="T">The type of the object to deserialize to.</typeparam>
|
|
/// <param name="json">The JSON string to deserialize.</param>
|
|
/// <param name="serializerSettings">The settings for deserialization if null default settings will be used</param>
|
|
/// <returns>The deserialized object of type T.</returns>
|
|
public static T? Deserialize<T>(string json, JsonSerializerSettings? serializerSettings){
|
|
try{
|
|
return JsonConvert.DeserializeObject<T>(json, serializerSettings);
|
|
} catch (JsonException ex){
|
|
Console.WriteLine($"Error deserializing JSON: {ex.Message}");
|
|
throw;
|
|
}
|
|
}
|
|
|
|
public static Locale ConvertStringToLocale(string? value){
|
|
foreach (Locale locale in Enum.GetValues(typeof(Locale))){
|
|
var type = typeof(Locale);
|
|
var memInfo = type.GetMember(locale.ToString());
|
|
var attributes = memInfo[0].GetCustomAttributes(typeof(EnumMemberAttribute), false);
|
|
var description = ((EnumMemberAttribute)attributes[0]).Value;
|
|
|
|
if (description == value){
|
|
return locale;
|
|
}
|
|
}
|
|
|
|
return Locale.DefaulT; // Return default if not found
|
|
}
|
|
|
|
public static string GenerateSessionId(){
|
|
// Get UTC milliseconds
|
|
var utcNow = DateTime.UtcNow;
|
|
var milliseconds = utcNow.Millisecond.ToString().PadLeft(3, '0');
|
|
|
|
// Get a high-resolution timestamp
|
|
long timestamp = Stopwatch.GetTimestamp();
|
|
double timestampToMilliseconds = (double)timestamp / Stopwatch.Frequency * 1000;
|
|
string highResTimestamp = timestampToMilliseconds.ToString("F0").PadLeft(13, '0');
|
|
|
|
return milliseconds + highResTimestamp;
|
|
}
|
|
|
|
public static async Task<(bool IsOk, int ErrorCode)> ExecuteCommandAsync(string type, string bin, string command){
|
|
using (var process = new Process()){
|
|
process.StartInfo.FileName = bin;
|
|
process.StartInfo.Arguments = command;
|
|
process.StartInfo.RedirectStandardOutput = true;
|
|
process.StartInfo.RedirectStandardError = true;
|
|
process.StartInfo.UseShellExecute = false;
|
|
process.StartInfo.CreateNoWindow = true;
|
|
|
|
process.Start();
|
|
|
|
// To log the output or errors, you might use process.StandardOutput.ReadToEndAsync()
|
|
// string output = await process.StandardOutput.ReadToEndAsync();
|
|
string errors = await process.StandardError.ReadToEndAsync();
|
|
|
|
await process.WaitForExitAsync();
|
|
|
|
if (!string.IsNullOrEmpty(errors))
|
|
Console.WriteLine($"Error: {errors}");
|
|
|
|
// Define success condition more appropriately based on the application
|
|
bool isSuccess = process.ExitCode == 0;
|
|
|
|
return (IsOk: isSuccess, ErrorCode: process.ExitCode);
|
|
}
|
|
}
|
|
|
|
public static double CalculateCosineSimilarity(string text1, string text2){
|
|
var vector1 = ComputeWordFrequency(text1);
|
|
var vector2 = ComputeWordFrequency(text2);
|
|
|
|
return CosineSimilarity(vector1, vector2);
|
|
}
|
|
|
|
private static Dictionary<string, double> ComputeWordFrequency(string text){
|
|
var wordFrequency = new Dictionary<string, double>();
|
|
var words = text.Split(new[]{ ' ', ',', '.', ';', ':', '-', '_', '\'' }, StringSplitOptions.RemoveEmptyEntries);
|
|
|
|
foreach (var word in words){
|
|
var lowerWord = word.ToLower();
|
|
if (!wordFrequency.ContainsKey(lowerWord)){
|
|
wordFrequency[lowerWord] = 0;
|
|
}
|
|
|
|
wordFrequency[lowerWord]++;
|
|
}
|
|
|
|
return wordFrequency;
|
|
}
|
|
|
|
private static double CosineSimilarity(Dictionary<string, double> vector1, Dictionary<string, double> vector2){
|
|
var intersection = vector1.Keys.Intersect(vector2.Keys);
|
|
|
|
double dotProduct = intersection.Sum(term => vector1[term] * vector2[term]);
|
|
double normA = Math.Sqrt(vector1.Values.Sum(val => val * val));
|
|
double normB = Math.Sqrt(vector2.Values.Sum(val => val * val));
|
|
|
|
if (normA == 0 || normB == 0){
|
|
// If either vector has zero length, return 0 similarity.
|
|
return 0;
|
|
}
|
|
|
|
return dotProduct / (normA * normB);
|
|
}
|
|
} |