godot/thirdparty/amd-fsr2/ffx_fsr2.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

1374 lines
74 KiB
C++
Raw Permalink Normal View History

// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#include <algorithm> // for max used inside SPD CPU code.
#include <cmath> // for fabs, abs, sinf, sqrt, etc.
#include <string.h> // for memset
#include <cfloat> // for FLT_EPSILON
#include "ffx_fsr2.h"
#define FFX_CPU
#include "shaders/ffx_core.h"
#include "shaders/ffx_fsr1.h"
#include "shaders/ffx_spd.h"
#include "shaders/ffx_fsr2_callbacks_hlsl.h"
#include "ffx_fsr2_maximum_bias.h"
#ifdef __clang__
#pragma clang diagnostic ignored "-Wunused-variable"
#endif
// -- GODOT start --
#ifndef _countof
#define _countof(array) (sizeof(array) / sizeof(array[0]))
#endif
#ifndef _MSC_VER
#include <wchar.h>
#define wcscpy_s wcscpy
#endif
// -- GODOT end --
// max queued frames for descriptor management
static const uint32_t FSR2_MAX_QUEUED_FRAMES = 16;
#include "ffx_fsr2_private.h"
// lists to map shader resource bindpoint name to resource identifier
typedef struct ResourceBinding
{
uint32_t index;
wchar_t name[64];
}ResourceBinding;
static const ResourceBinding srvResourceBindingTable[] =
{
{FFX_FSR2_RESOURCE_IDENTIFIER_INPUT_COLOR, L"r_input_color_jittered"},
{FFX_FSR2_RESOURCE_IDENTIFIER_INPUT_OPAQUE_ONLY, L"r_input_opaque_only"},
{FFX_FSR2_RESOURCE_IDENTIFIER_INPUT_MOTION_VECTORS, L"r_input_motion_vectors"},
{FFX_FSR2_RESOURCE_IDENTIFIER_INPUT_DEPTH, L"r_input_depth" },
{FFX_FSR2_RESOURCE_IDENTIFIER_INPUT_EXPOSURE, L"r_input_exposure"},
{FFX_FSR2_RESOURCE_IDENTIFIER_AUTO_EXPOSURE, L"r_auto_exposure"},
{FFX_FSR2_RESOURCE_IDENTIFIER_INPUT_REACTIVE_MASK, L"r_reactive_mask"},
{FFX_FSR2_RESOURCE_IDENTIFIER_INPUT_TRANSPARENCY_AND_COMPOSITION_MASK, L"r_transparency_and_composition_mask"},
{FFX_FSR2_RESOURCE_IDENTIFIER_RECONSTRUCTED_PREVIOUS_NEAREST_DEPTH, L"r_reconstructed_previous_nearest_depth"},
{FFX_FSR2_RESOURCE_IDENTIFIER_DILATED_MOTION_VECTORS, L"r_dilated_motion_vectors"},
{FFX_FSR2_RESOURCE_IDENTIFIER_PREVIOUS_DILATED_MOTION_VECTORS, L"r_previous_dilated_motion_vectors"},
{FFX_FSR2_RESOURCE_IDENTIFIER_DILATED_DEPTH, L"r_dilatedDepth"},
{FFX_FSR2_RESOURCE_IDENTIFIER_INTERNAL_UPSCALED_COLOR, L"r_internal_upscaled_color"},
{FFX_FSR2_RESOURCE_IDENTIFIER_LOCK_STATUS, L"r_lock_status"},
{FFX_FSR2_RESOURCE_IDENTIFIER_PREPARED_INPUT_COLOR, L"r_prepared_input_color"},
{FFX_FSR2_RESOURCE_IDENTIFIER_LUMA_HISTORY, L"r_luma_history" },
{FFX_FSR2_RESOURCE_IDENTIFIER_RCAS_INPUT, L"r_rcas_input"},
{FFX_FSR2_RESOURCE_IDENTIFIER_LANCZOS_LUT, L"r_lanczos_lut"},
{FFX_FSR2_RESOURCE_IDENTIFIER_SCENE_LUMINANCE, L"r_imgMips"},
{FFX_FSR2_RESOURCE_IDENTIFIER_SCENE_LUMINANCE_MIPMAP_SHADING_CHANGE, L"r_img_mip_shading_change"},
{FFX_FSR2_RESOURCE_IDENTIFIER_SCENE_LUMINANCE_MIPMAP_5, L"r_img_mip_5"},
{FFX_FSR2_RESOURCE_IDENTITIER_UPSAMPLE_MAXIMUM_BIAS_LUT, L"r_upsample_maximum_bias_lut"},
{FFX_FSR2_RESOURCE_IDENTIFIER_DILATED_REACTIVE_MASKS, L"r_dilated_reactive_masks"},
{FFX_FSR2_RESOURCE_IDENTIFIER_NEW_LOCKS, L"r_new_locks"},
{FFX_FSR2_RESOURCE_IDENTIFIER_LOCK_INPUT_LUMA, L"r_lock_input_luma"},
{FFX_FSR2_RESOURCE_IDENTIFIER_PREV_PRE_ALPHA_COLOR, L"r_input_prev_color_pre_alpha"},
{FFX_FSR2_RESOURCE_IDENTIFIER_PREV_POST_ALPHA_COLOR, L"r_input_prev_color_post_alpha"},
};
static const ResourceBinding uavResourceBindingTable[] =
{
{FFX_FSR2_RESOURCE_IDENTIFIER_RECONSTRUCTED_PREVIOUS_NEAREST_DEPTH, L"rw_reconstructed_previous_nearest_depth"},
{FFX_FSR2_RESOURCE_IDENTIFIER_DILATED_MOTION_VECTORS, L"rw_dilated_motion_vectors"},
{FFX_FSR2_RESOURCE_IDENTIFIER_DILATED_DEPTH, L"rw_dilatedDepth"},
{FFX_FSR2_RESOURCE_IDENTIFIER_INTERNAL_UPSCALED_COLOR, L"rw_internal_upscaled_color"},
{FFX_FSR2_RESOURCE_IDENTIFIER_LOCK_STATUS, L"rw_lock_status"},
{FFX_FSR2_RESOURCE_IDENTIFIER_PREPARED_INPUT_COLOR, L"rw_prepared_input_color"},
{FFX_FSR2_RESOURCE_IDENTIFIER_LUMA_HISTORY, L"rw_luma_history"},
{FFX_FSR2_RESOURCE_IDENTIFIER_UPSCALED_OUTPUT, L"rw_upscaled_output"},
{FFX_FSR2_RESOURCE_IDENTIFIER_SCENE_LUMINANCE_MIPMAP_SHADING_CHANGE, L"rw_img_mip_shading_change"},
{FFX_FSR2_RESOURCE_IDENTIFIER_SCENE_LUMINANCE_MIPMAP_5, L"rw_img_mip_5"},
{FFX_FSR2_RESOURCE_IDENTIFIER_DILATED_REACTIVE_MASKS, L"rw_dilated_reactive_masks"},
{FFX_FSR2_RESOURCE_IDENTIFIER_AUTO_EXPOSURE, L"rw_auto_exposure"},
{FFX_FSR2_RESOURCE_IDENTIFIER_SPD_ATOMIC_COUNT, L"rw_spd_global_atomic"},
{FFX_FSR2_RESOURCE_IDENTIFIER_NEW_LOCKS, L"rw_new_locks"},
{FFX_FSR2_RESOURCE_IDENTIFIER_LOCK_INPUT_LUMA, L"rw_lock_input_luma"},
{FFX_FSR2_RESOURCE_IDENTIFIER_AUTOREACTIVE, L"rw_output_autoreactive"},
{FFX_FSR2_RESOURCE_IDENTIFIER_AUTOCOMPOSITION, L"rw_output_autocomposition"},
{FFX_FSR2_RESOURCE_IDENTIFIER_PREV_PRE_ALPHA_COLOR, L"rw_output_prev_color_pre_alpha"},
{FFX_FSR2_RESOURCE_IDENTIFIER_PREV_POST_ALPHA_COLOR, L"rw_output_prev_color_post_alpha"},
};
static const ResourceBinding cbResourceBindingTable[] =
{
{FFX_FSR2_CONSTANTBUFFER_IDENTIFIER_FSR2, L"cbFSR2"},
{FFX_FSR2_CONSTANTBUFFER_IDENTIFIER_SPD, L"cbSPD"},
{FFX_FSR2_CONSTANTBUFFER_IDENTIFIER_RCAS, L"cbRCAS"},
{FFX_FSR2_CONSTANTBUFFER_IDENTIFIER_GENREACTIVE, L"cbGenerateReactive"},
};
// Broad structure of the root signature.
typedef enum Fsr2RootSignatureLayout {
FSR2_ROOT_SIGNATURE_LAYOUT_UAVS,
FSR2_ROOT_SIGNATURE_LAYOUT_SRVS,
FSR2_ROOT_SIGNATURE_LAYOUT_CONSTANTS,
FSR2_ROOT_SIGNATURE_LAYOUT_CONSTANTS_REGISTER_1,
FSR2_ROOT_SIGNATURE_LAYOUT_PARAMETER_COUNT
} Fsr2RootSignatureLayout;
typedef struct Fsr2RcasConstants {
uint32_t rcasConfig[4];
} FfxRcasConstants;
typedef struct Fsr2SpdConstants {
uint32_t mips;
uint32_t numworkGroups;
uint32_t workGroupOffset[2];
uint32_t renderSize[2];
} Fsr2SpdConstants;
typedef struct Fsr2GenerateReactiveConstants
{
float scale;
float threshold;
float binaryValue;
uint32_t flags;
} Fsr2GenerateReactiveConstants;
typedef struct Fsr2GenerateReactiveConstants2
{
float autoTcThreshold;
float autoTcScale;
float autoReactiveScale;
float autoReactiveMax;
} Fsr2GenerateReactiveConstants2;
typedef union Fsr2SecondaryUnion {
Fsr2RcasConstants rcas;
Fsr2SpdConstants spd;
Fsr2GenerateReactiveConstants2 autogenReactive;
} Fsr2SecondaryUnion;
typedef struct Fsr2ResourceDescription {
uint32_t id;
const wchar_t* name;
FfxResourceUsage usage;
FfxSurfaceFormat format;
uint32_t width;
uint32_t height;
uint32_t mipCount;
FfxResourceFlags flags;
uint32_t initDataSize;
void* initData;
} Fsr2ResourceDescription;
FfxConstantBuffer globalFsr2ConstantBuffers[4] = {
{ sizeof(Fsr2Constants) / sizeof(uint32_t) },
{ sizeof(Fsr2SpdConstants) / sizeof(uint32_t) },
{ sizeof(Fsr2RcasConstants) / sizeof(uint32_t) },
{ sizeof(Fsr2GenerateReactiveConstants) / sizeof(uint32_t) }
};
// Lanczos
static float lanczos2(float value)
{
return abs(value) < FFX_EPSILON ? 1.f : (sinf(FFX_PI * value) / (FFX_PI * value)) * (sinf(0.5f * FFX_PI * value) / (0.5f * FFX_PI * value));
}
// Calculate halton number for index and base.
static float halton(int32_t index, int32_t base)
{
float f = 1.0f, result = 0.0f;
for (int32_t currentIndex = index; currentIndex > 0;) {
f /= (float)base;
result = result + f * (float)(currentIndex % base);
currentIndex = (uint32_t)(floorf((float)(currentIndex) / (float)(base)));
}
return result;
}
static void fsr2DebugCheckDispatch(FfxFsr2Context_Private* context, const FfxFsr2DispatchDescription* params)
{
if (params->commandList == nullptr)
{
context->contextDescription.fpMessage(FFX_FSR2_MESSAGE_TYPE_ERROR, L"commandList is null");
}
if (params->color.resource == nullptr)
{
context->contextDescription.fpMessage(FFX_FSR2_MESSAGE_TYPE_ERROR, L"color resource is null");
}
if (params->depth.resource == nullptr)
{
context->contextDescription.fpMessage(FFX_FSR2_MESSAGE_TYPE_ERROR, L"depth resource is null");
}
if (params->motionVectors.resource == nullptr)
{
context->contextDescription.fpMessage(FFX_FSR2_MESSAGE_TYPE_ERROR, L"motionVectors resource is null");
}
if (params->exposure.resource != nullptr)
{
if ((context->contextDescription.flags & FFX_FSR2_ENABLE_AUTO_EXPOSURE) == FFX_FSR2_ENABLE_AUTO_EXPOSURE)
{
context->contextDescription.fpMessage(FFX_FSR2_MESSAGE_TYPE_WARNING, L"exposure resource provided, however auto exposure flag is present");
}
}
if (params->output.resource == nullptr)
{
context->contextDescription.fpMessage(FFX_FSR2_MESSAGE_TYPE_ERROR, L"output resource is null");
}
if (fabs(params->jitterOffset.x) > 1.0f || fabs(params->jitterOffset.y) > 1.0f)
{
context->contextDescription.fpMessage(FFX_FSR2_MESSAGE_TYPE_WARNING, L"jitterOffset contains value outside of expected range [-1.0, 1.0]");
}
if ((params->motionVectorScale.x > (float)context->contextDescription.maxRenderSize.width) ||
(params->motionVectorScale.y > (float)context->contextDescription.maxRenderSize.height))
{
context->contextDescription.fpMessage(FFX_FSR2_MESSAGE_TYPE_WARNING, L"motionVectorScale contains scale value greater than maxRenderSize");
}
if ((params->motionVectorScale.x == 0.0f) ||
(params->motionVectorScale.y == 0.0f))
{
context->contextDescription.fpMessage(FFX_FSR2_MESSAGE_TYPE_WARNING, L"motionVectorScale contains zero scale value");
}
if ((params->renderSize.width > context->contextDescription.maxRenderSize.width) ||
(params->renderSize.height > context->contextDescription.maxRenderSize.height))
{
context->contextDescription.fpMessage(FFX_FSR2_MESSAGE_TYPE_WARNING, L"renderSize is greater than context maxRenderSize");
}
if ((params->renderSize.width == 0) ||
(params->renderSize.height == 0))
{
context->contextDescription.fpMessage(FFX_FSR2_MESSAGE_TYPE_WARNING, L"renderSize contains zero dimension");
}
if (params->sharpness < 0.0f || params->sharpness > 1.0f)
{
context->contextDescription.fpMessage(FFX_FSR2_MESSAGE_TYPE_WARNING, L"sharpness contains value outside of expected range [0.0, 1.0]");
}
if (params->frameTimeDelta < 1.0f)
{
context->contextDescription.fpMessage(FFX_FSR2_MESSAGE_TYPE_WARNING, L"frameTimeDelta is less than 1.0f - this value should be milliseconds (~16.6f for 60fps)");
}
if (params->preExposure == 0.0f)
{
context->contextDescription.fpMessage(FFX_FSR2_MESSAGE_TYPE_ERROR, L"preExposure provided as 0.0f which is invalid");
}
bool infiniteDepth = (context->contextDescription.flags & FFX_FSR2_ENABLE_DEPTH_INFINITE) == FFX_FSR2_ENABLE_DEPTH_INFINITE;
bool inverseDepth = (context->contextDescription.flags & FFX_FSR2_ENABLE_DEPTH_INVERTED) == FFX_FSR2_ENABLE_DEPTH_INVERTED;
if (inverseDepth)
{
if (params->cameraNear < params->cameraFar)
{
context->contextDescription.fpMessage(FFX_FSR2_MESSAGE_TYPE_WARNING,
L"FFX_FSR2_ENABLE_DEPTH_INVERTED flag is present yet cameraNear is less than cameraFar");
}
if (infiniteDepth)
{
if (params->cameraNear != FLT_MAX)
{
context->contextDescription.fpMessage(FFX_FSR2_MESSAGE_TYPE_WARNING,
L"FFX_FSR2_ENABLE_DEPTH_INFINITE and FFX_FSR2_ENABLE_DEPTH_INVERTED present, yet cameraNear != FLT_MAX");
}
}
if (params->cameraFar < 0.075f)
{
context->contextDescription.fpMessage(FFX_FSR2_MESSAGE_TYPE_WARNING,
L"FFX_FSR2_ENABLE_DEPTH_INFINITE and FFX_FSR2_ENABLE_DEPTH_INVERTED present, cameraFar value is very low which may result in depth separation artefacting");
}
}
else
{
if (params->cameraNear > params->cameraFar)
{
context->contextDescription.fpMessage(FFX_FSR2_MESSAGE_TYPE_WARNING,
L"cameraNear is greater than cameraFar in non-inverted-depth context");
}
if (infiniteDepth)
{
if (params->cameraFar != FLT_MAX)
{
context->contextDescription.fpMessage(FFX_FSR2_MESSAGE_TYPE_WARNING,
L"FFX_FSR2_ENABLE_DEPTH_INFINITE and FFX_FSR2_ENABLE_DEPTH_INVERTED present, yet cameraFar != FLT_MAX");
}
}
if (params->cameraNear < 0.075f)
{
context->contextDescription.fpMessage(FFX_FSR2_MESSAGE_TYPE_WARNING,
L"FFX_FSR2_ENABLE_DEPTH_INFINITE and FFX_FSR2_ENABLE_DEPTH_INVERTED present, cameraNear value is very low which may result in depth separation artefacting");
}
}
if (params->cameraFovAngleVertical <= 0.0f)
{
context->contextDescription.fpMessage(FFX_FSR2_MESSAGE_TYPE_ERROR, L"cameraFovAngleVertical is 0.0f - this value should be > 0.0f");
}
if (params->cameraFovAngleVertical > FFX_PI)
{
context->contextDescription.fpMessage(FFX_FSR2_MESSAGE_TYPE_ERROR, L"cameraFovAngleVertical is greater than 180 degrees/PI");
}
}
static FfxErrorCode patchResourceBindings(FfxPipelineState* inoutPipeline)
{
for (uint32_t srvIndex = 0; srvIndex < inoutPipeline->srvCount; ++srvIndex)
{
int32_t mapIndex = 0;
for (mapIndex = 0; mapIndex < _countof(srvResourceBindingTable); ++mapIndex)
{
if (0 == wcscmp(srvResourceBindingTable[mapIndex].name, inoutPipeline->srvResourceBindings[srvIndex].name))
break;
}
if (mapIndex == _countof(srvResourceBindingTable))
return FFX_ERROR_INVALID_ARGUMENT;
inoutPipeline->srvResourceBindings[srvIndex].resourceIdentifier = srvResourceBindingTable[mapIndex].index;
}
for (uint32_t uavIndex = 0; uavIndex < inoutPipeline->uavCount; ++uavIndex)
{
int32_t mapIndex = 0;
for (mapIndex = 0; mapIndex < _countof(uavResourceBindingTable); ++mapIndex)
{
if (0 == wcscmp(uavResourceBindingTable[mapIndex].name, inoutPipeline->uavResourceBindings[uavIndex].name))
break;
}
if (mapIndex == _countof(uavResourceBindingTable))
return FFX_ERROR_INVALID_ARGUMENT;
inoutPipeline->uavResourceBindings[uavIndex].resourceIdentifier = uavResourceBindingTable[mapIndex].index;
}
for (uint32_t cbIndex = 0; cbIndex < inoutPipeline->constCount; ++cbIndex)
{
int32_t mapIndex = 0;
for (mapIndex = 0; mapIndex < _countof(cbResourceBindingTable); ++mapIndex)
{
if (0 == wcscmp(cbResourceBindingTable[mapIndex].name, inoutPipeline->cbResourceBindings[cbIndex].name))
break;
}
if (mapIndex == _countof(cbResourceBindingTable))
return FFX_ERROR_INVALID_ARGUMENT;
inoutPipeline->cbResourceBindings[cbIndex].resourceIdentifier = cbResourceBindingTable[mapIndex].index;
}
return FFX_OK;
}
static FfxErrorCode createPipelineStates(FfxFsr2Context_Private* context)
{
FFX_ASSERT(context);
const size_t samplerCount = 2;
FfxFilterType samplers[samplerCount];
samplers[0] = FFX_FILTER_TYPE_POINT;
samplers[1] = FFX_FILTER_TYPE_LINEAR;
const size_t rootConstantCount = 2;
uint32_t rootConstants[rootConstantCount];
rootConstants[0] = sizeof(Fsr2Constants) / sizeof(uint32_t);
rootConstants[1] = sizeof(Fsr2SecondaryUnion) / sizeof(uint32_t);
FfxPipelineDescription pipelineDescription;
pipelineDescription.contextFlags = context->contextDescription.flags;
pipelineDescription.samplerCount = samplerCount;
pipelineDescription.samplers = samplers;
pipelineDescription.rootConstantBufferCount = rootConstantCount;
pipelineDescription.rootConstantBufferSizes = rootConstants;
// New interface: will handle RootSignature in backend
// set up pipeline descriptor (basically RootSignature and binding)
FFX_VALIDATE(context->contextDescription.callbacks.fpCreatePipeline(&context->contextDescription.callbacks, FFX_FSR2_PASS_COMPUTE_LUMINANCE_PYRAMID, &pipelineDescription, &context->pipelineComputeLuminancePyramid));
FFX_VALIDATE(context->contextDescription.callbacks.fpCreatePipeline(&context->contextDescription.callbacks, FFX_FSR2_PASS_RCAS, &pipelineDescription, &context->pipelineRCAS));
FFX_VALIDATE(context->contextDescription.callbacks.fpCreatePipeline(&context->contextDescription.callbacks, FFX_FSR2_PASS_GENERATE_REACTIVE, &pipelineDescription, &context->pipelineGenerateReactive));
FFX_VALIDATE(context->contextDescription.callbacks.fpCreatePipeline(&context->contextDescription.callbacks, FFX_FSR2_PASS_TCR_AUTOGENERATE, &pipelineDescription, &context->pipelineTcrAutogenerate));
pipelineDescription.rootConstantBufferCount = 1;
FFX_VALIDATE(context->contextDescription.callbacks.fpCreatePipeline(&context->contextDescription.callbacks, FFX_FSR2_PASS_DEPTH_CLIP, &pipelineDescription, &context->pipelineDepthClip));
FFX_VALIDATE(context->contextDescription.callbacks.fpCreatePipeline(&context->contextDescription.callbacks, FFX_FSR2_PASS_RECONSTRUCT_PREVIOUS_DEPTH, &pipelineDescription, &context->pipelineReconstructPreviousDepth));
FFX_VALIDATE(context->contextDescription.callbacks.fpCreatePipeline(&context->contextDescription.callbacks, FFX_FSR2_PASS_LOCK, &pipelineDescription, &context->pipelineLock));
FFX_VALIDATE(context->contextDescription.callbacks.fpCreatePipeline(&context->contextDescription.callbacks, FFX_FSR2_PASS_ACCUMULATE, &pipelineDescription, &context->pipelineAccumulate));
FFX_VALIDATE(context->contextDescription.callbacks.fpCreatePipeline(&context->contextDescription.callbacks, FFX_FSR2_PASS_ACCUMULATE_SHARPEN, &pipelineDescription, &context->pipelineAccumulateSharpen));
// for each pipeline: re-route/fix-up IDs based on names
patchResourceBindings(&context->pipelineDepthClip);
patchResourceBindings(&context->pipelineReconstructPreviousDepth);
patchResourceBindings(&context->pipelineLock);
patchResourceBindings(&context->pipelineAccumulate);
patchResourceBindings(&context->pipelineComputeLuminancePyramid);
patchResourceBindings(&context->pipelineAccumulateSharpen);
patchResourceBindings(&context->pipelineRCAS);
patchResourceBindings(&context->pipelineGenerateReactive);
patchResourceBindings(&context->pipelineTcrAutogenerate);
return FFX_OK;
}
static FfxErrorCode generateReactiveMaskInternal(FfxFsr2Context_Private* contextPrivate, const FfxFsr2DispatchDescription* params);
static FfxErrorCode fsr2Create(FfxFsr2Context_Private* context, const FfxFsr2ContextDescription* contextDescription)
{
FFX_ASSERT(context);
FFX_ASSERT(contextDescription);
// Setup the data for implementation.
memset(context, 0, sizeof(FfxFsr2Context_Private));
context->device = contextDescription->device;
memcpy(&context->contextDescription, contextDescription, sizeof(FfxFsr2ContextDescription));
if ((context->contextDescription.flags & FFX_FSR2_ENABLE_DEBUG_CHECKING) == FFX_FSR2_ENABLE_DEBUG_CHECKING)
{
if (context->contextDescription.fpMessage == nullptr)
{
FFX_ASSERT(context->contextDescription.fpMessage != nullptr);
// remove the debug checking flag - we have no message function
context->contextDescription.flags &= ~FFX_FSR2_ENABLE_DEBUG_CHECKING;
}
}
// Create the device.
FfxErrorCode errorCode = context->contextDescription.callbacks.fpCreateBackendContext(&context->contextDescription.callbacks, context->device);
FFX_RETURN_ON_ERROR(errorCode == FFX_OK, errorCode);
// call out for device caps.
errorCode = context->contextDescription.callbacks.fpGetDeviceCapabilities(&context->contextDescription.callbacks, &context->deviceCapabilities, context->device);
FFX_RETURN_ON_ERROR(errorCode == FFX_OK, errorCode);
// set defaults
context->firstExecution = true;
context->resourceFrameIndex = 0;
context->constants.displaySize[0] = contextDescription->displaySize.width;
context->constants.displaySize[1] = contextDescription->displaySize.height;
// generate the data for the LUT.
const uint32_t lanczos2LutWidth = 128;
int16_t lanczos2Weights[lanczos2LutWidth] = { };
for (uint32_t currentLanczosWidthIndex = 0; currentLanczosWidthIndex < lanczos2LutWidth; currentLanczosWidthIndex++) {
const float x = 2.0f * currentLanczosWidthIndex / float(lanczos2LutWidth - 1);
const float y = lanczos2(x);
lanczos2Weights[currentLanczosWidthIndex] = int16_t(roundf(y * 32767.0f));
}
// upload path only supports R16_SNORM, let's go and convert
int16_t maximumBias[FFX_FSR2_MAXIMUM_BIAS_TEXTURE_WIDTH * FFX_FSR2_MAXIMUM_BIAS_TEXTURE_HEIGHT];
for (uint32_t i = 0; i < FFX_FSR2_MAXIMUM_BIAS_TEXTURE_WIDTH * FFX_FSR2_MAXIMUM_BIAS_TEXTURE_HEIGHT; ++i) {
maximumBias[i] = int16_t(roundf(ffxFsr2MaximumBias[i] / 2.0f * 32767.0f));
}
uint8_t defaultReactiveMaskData = 0U;
uint32_t atomicInitData = 0U;
float defaultExposure[] = { 0.0f, 0.0f };
const FfxResourceType texture1dResourceType = (context->contextDescription.flags & FFX_FSR2_ENABLE_TEXTURE1D_USAGE) ? FFX_RESOURCE_TYPE_TEXTURE1D : FFX_RESOURCE_TYPE_TEXTURE2D;
// declare internal resources needed
const Fsr2ResourceDescription internalSurfaceDesc[] = {
{ FFX_FSR2_RESOURCE_IDENTIFIER_PREPARED_INPUT_COLOR, L"FSR2_PreparedInputColor", FFX_RESOURCE_USAGE_UAV,
FFX_SURFACE_FORMAT_R16G16B16A16_FLOAT, contextDescription->maxRenderSize.width, contextDescription->maxRenderSize.height, 1, FFX_RESOURCE_FLAGS_ALIASABLE },
{ FFX_FSR2_RESOURCE_IDENTIFIER_RECONSTRUCTED_PREVIOUS_NEAREST_DEPTH, L"FSR2_ReconstructedPrevNearestDepth", FFX_RESOURCE_USAGE_UAV,
FFX_SURFACE_FORMAT_R32_UINT, contextDescription->maxRenderSize.width, contextDescription->maxRenderSize.height, 1, FFX_RESOURCE_FLAGS_ALIASABLE },
{ FFX_FSR2_RESOURCE_IDENTIFIER_INTERNAL_DILATED_MOTION_VECTORS_1, L"FSR2_InternalDilatedVelocity1", (FfxResourceUsage)(FFX_RESOURCE_USAGE_RENDERTARGET | FFX_RESOURCE_USAGE_UAV),
FFX_SURFACE_FORMAT_R16G16_FLOAT, contextDescription->maxRenderSize.width, contextDescription->maxRenderSize.height, 1, FFX_RESOURCE_FLAGS_NONE },
{ FFX_FSR2_RESOURCE_IDENTIFIER_INTERNAL_DILATED_MOTION_VECTORS_2, L"FSR2_InternalDilatedVelocity2", (FfxResourceUsage)(FFX_RESOURCE_USAGE_RENDERTARGET | FFX_RESOURCE_USAGE_UAV),
FFX_SURFACE_FORMAT_R16G16_FLOAT, contextDescription->maxRenderSize.width, contextDescription->maxRenderSize.height, 1, FFX_RESOURCE_FLAGS_NONE },
{ FFX_FSR2_RESOURCE_IDENTIFIER_DILATED_DEPTH, L"FSR2_DilatedDepth", (FfxResourceUsage)(FFX_RESOURCE_USAGE_RENDERTARGET | FFX_RESOURCE_USAGE_UAV),
FFX_SURFACE_FORMAT_R32_FLOAT, contextDescription->maxRenderSize.width, contextDescription->maxRenderSize.height, 1, FFX_RESOURCE_FLAGS_ALIASABLE },
{ FFX_FSR2_RESOURCE_IDENTIFIER_LOCK_STATUS_1, L"FSR2_LockStatus1", (FfxResourceUsage)(FFX_RESOURCE_USAGE_RENDERTARGET | FFX_RESOURCE_USAGE_UAV),
FFX_SURFACE_FORMAT_R16G16_FLOAT, contextDescription->displaySize.width, contextDescription->displaySize.height, 1, FFX_RESOURCE_FLAGS_NONE },
{ FFX_FSR2_RESOURCE_IDENTIFIER_LOCK_STATUS_2, L"FSR2_LockStatus2", (FfxResourceUsage)(FFX_RESOURCE_USAGE_RENDERTARGET | FFX_RESOURCE_USAGE_UAV),
FFX_SURFACE_FORMAT_R16G16_FLOAT, contextDescription->displaySize.width, contextDescription->displaySize.height, 1, FFX_RESOURCE_FLAGS_NONE },
{ FFX_FSR2_RESOURCE_IDENTIFIER_LOCK_INPUT_LUMA, L"FSR2_LockInputLuma", (FfxResourceUsage)(FFX_RESOURCE_USAGE_UAV),
FFX_SURFACE_FORMAT_R16_FLOAT, contextDescription->maxRenderSize.width, contextDescription->maxRenderSize.height, 1, FFX_RESOURCE_FLAGS_ALIASABLE },
{ FFX_FSR2_RESOURCE_IDENTIFIER_NEW_LOCKS, L"FSR2_NewLocks", (FfxResourceUsage)(FFX_RESOURCE_USAGE_UAV),
FFX_SURFACE_FORMAT_R8_UNORM, contextDescription->displaySize.width, contextDescription->displaySize.height, 1, FFX_RESOURCE_FLAGS_ALIASABLE },
{ FFX_FSR2_RESOURCE_IDENTIFIER_INTERNAL_UPSCALED_COLOR_1, L"FSR2_InternalUpscaled1", (FfxResourceUsage)(FFX_RESOURCE_USAGE_RENDERTARGET | FFX_RESOURCE_USAGE_UAV),
FFX_SURFACE_FORMAT_R16G16B16A16_FLOAT, contextDescription->displaySize.width, contextDescription->displaySize.height, 1, FFX_RESOURCE_FLAGS_NONE },
{ FFX_FSR2_RESOURCE_IDENTIFIER_INTERNAL_UPSCALED_COLOR_2, L"FSR2_InternalUpscaled2", (FfxResourceUsage)(FFX_RESOURCE_USAGE_RENDERTARGET | FFX_RESOURCE_USAGE_UAV),
FFX_SURFACE_FORMAT_R16G16B16A16_FLOAT, contextDescription->displaySize.width, contextDescription->displaySize.height, 1, FFX_RESOURCE_FLAGS_NONE },
{ FFX_FSR2_RESOURCE_IDENTIFIER_SCENE_LUMINANCE, L"FSR2_ExposureMips", FFX_RESOURCE_USAGE_UAV,
FFX_SURFACE_FORMAT_R16_FLOAT, contextDescription->maxRenderSize.width / 2, contextDescription->maxRenderSize.height / 2, 0, FFX_RESOURCE_FLAGS_ALIASABLE },
{ FFX_FSR2_RESOURCE_IDENTIFIER_LUMA_HISTORY_1, L"FSR2_LumaHistory1", (FfxResourceUsage)(FFX_RESOURCE_USAGE_RENDERTARGET | FFX_RESOURCE_USAGE_UAV),
FFX_SURFACE_FORMAT_R8G8B8A8_UNORM, contextDescription->displaySize.width, contextDescription->displaySize.height, 1, FFX_RESOURCE_FLAGS_NONE },
{ FFX_FSR2_RESOURCE_IDENTIFIER_LUMA_HISTORY_2, L"FSR2_LumaHistory2", (FfxResourceUsage)(FFX_RESOURCE_USAGE_RENDERTARGET | FFX_RESOURCE_USAGE_UAV),
FFX_SURFACE_FORMAT_R8G8B8A8_UNORM, contextDescription->displaySize.width, contextDescription->displaySize.height, 1, FFX_RESOURCE_FLAGS_NONE },
{ FFX_FSR2_RESOURCE_IDENTIFIER_SPD_ATOMIC_COUNT, L"FSR2_SpdAtomicCounter", (FfxResourceUsage)(FFX_RESOURCE_USAGE_UAV),
FFX_SURFACE_FORMAT_R32_UINT, 1, 1, 1, FFX_RESOURCE_FLAGS_ALIASABLE, sizeof(atomicInitData), &atomicInitData },
{ FFX_FSR2_RESOURCE_IDENTIFIER_DILATED_REACTIVE_MASKS, L"FSR2_DilatedReactiveMasks", FFX_RESOURCE_USAGE_UAV,
FFX_SURFACE_FORMAT_R8G8_UNORM, contextDescription->maxRenderSize.width, contextDescription->maxRenderSize.height, 1, FFX_RESOURCE_FLAGS_ALIASABLE },
{ FFX_FSR2_RESOURCE_IDENTIFIER_LANCZOS_LUT, L"FSR2_LanczosLutData", FFX_RESOURCE_USAGE_READ_ONLY,
FFX_SURFACE_FORMAT_R16_SNORM, lanczos2LutWidth, 1, 1, FFX_RESOURCE_FLAGS_NONE, sizeof(lanczos2Weights), lanczos2Weights },
{ FFX_FSR2_RESOURCE_IDENTIFIER_INTERNAL_DEFAULT_REACTIVITY, L"FSR2_DefaultReactiviyMask", FFX_RESOURCE_USAGE_READ_ONLY,
FFX_SURFACE_FORMAT_R8_UNORM, 1, 1, 1, FFX_RESOURCE_FLAGS_NONE, sizeof(defaultReactiveMaskData), &defaultReactiveMaskData },
{ FFX_FSR2_RESOURCE_IDENTITIER_UPSAMPLE_MAXIMUM_BIAS_LUT, L"FSR2_MaximumUpsampleBias", FFX_RESOURCE_USAGE_READ_ONLY,
FFX_SURFACE_FORMAT_R16_SNORM, FFX_FSR2_MAXIMUM_BIAS_TEXTURE_WIDTH, FFX_FSR2_MAXIMUM_BIAS_TEXTURE_HEIGHT, 1, FFX_RESOURCE_FLAGS_NONE, sizeof(maximumBias), maximumBias },
{ FFX_FSR2_RESOURCE_IDENTIFIER_INTERNAL_DEFAULT_EXPOSURE, L"FSR2_DefaultExposure", FFX_RESOURCE_USAGE_READ_ONLY,
FFX_SURFACE_FORMAT_R32G32_FLOAT, 1, 1, 1, FFX_RESOURCE_FLAGS_NONE, sizeof(defaultExposure), defaultExposure },
{ FFX_FSR2_RESOURCE_IDENTIFIER_AUTO_EXPOSURE, L"FSR2_AutoExposure", FFX_RESOURCE_USAGE_UAV,
FFX_SURFACE_FORMAT_R32G32_FLOAT, 1, 1, 1, FFX_RESOURCE_FLAGS_NONE },
// only one for now, will need pingpont to respect the motion vectors
{ FFX_FSR2_RESOURCE_IDENTIFIER_AUTOREACTIVE, L"FSR2_AutoReactive", FFX_RESOURCE_USAGE_UAV,
FFX_SURFACE_FORMAT_R8_UNORM, contextDescription->maxRenderSize.width, contextDescription->maxRenderSize.height, 1, FFX_RESOURCE_FLAGS_NONE },
{ FFX_FSR2_RESOURCE_IDENTIFIER_AUTOCOMPOSITION, L"FSR2_AutoComposition", FFX_RESOURCE_USAGE_UAV,
FFX_SURFACE_FORMAT_R8_UNORM, contextDescription->maxRenderSize.width, contextDescription->maxRenderSize.height, 1, FFX_RESOURCE_FLAGS_NONE },
{ FFX_FSR2_RESOURCE_IDENTIFIER_PREV_PRE_ALPHA_COLOR_1, L"FSR2_PrevPreAlpha0", FFX_RESOURCE_USAGE_UAV,
FFX_SURFACE_FORMAT_R11G11B10_FLOAT, contextDescription->maxRenderSize.width, contextDescription->maxRenderSize.height, 1, FFX_RESOURCE_FLAGS_NONE },
{ FFX_FSR2_RESOURCE_IDENTIFIER_PREV_POST_ALPHA_COLOR_1, L"FSR2_PrevPostAlpha0", FFX_RESOURCE_USAGE_UAV,
FFX_SURFACE_FORMAT_R11G11B10_FLOAT, contextDescription->maxRenderSize.width, contextDescription->maxRenderSize.height, 1, FFX_RESOURCE_FLAGS_NONE },
{ FFX_FSR2_RESOURCE_IDENTIFIER_PREV_PRE_ALPHA_COLOR_2, L"FSR2_PrevPreAlpha1", FFX_RESOURCE_USAGE_UAV,
FFX_SURFACE_FORMAT_R11G11B10_FLOAT, contextDescription->maxRenderSize.width, contextDescription->maxRenderSize.height, 1, FFX_RESOURCE_FLAGS_NONE },
{ FFX_FSR2_RESOURCE_IDENTIFIER_PREV_POST_ALPHA_COLOR_2, L"FSR2_PrevPostAlpha1", FFX_RESOURCE_USAGE_UAV,
FFX_SURFACE_FORMAT_R11G11B10_FLOAT, contextDescription->maxRenderSize.width, contextDescription->maxRenderSize.height, 1, FFX_RESOURCE_FLAGS_NONE },
};
// clear the SRV resources to NULL.
memset(context->srvResources, 0, sizeof(context->srvResources));
for (int32_t currentSurfaceIndex = 0; currentSurfaceIndex < FFX_ARRAY_ELEMENTS(internalSurfaceDesc); ++currentSurfaceIndex) {
const Fsr2ResourceDescription* currentSurfaceDescription = &internalSurfaceDesc[currentSurfaceIndex];
const FfxResourceType resourceType = currentSurfaceDescription->height > 1 ? FFX_RESOURCE_TYPE_TEXTURE2D : texture1dResourceType;
const FfxResourceDescription resourceDescription = { resourceType, currentSurfaceDescription->format, currentSurfaceDescription->width, currentSurfaceDescription->height, 1, currentSurfaceDescription->mipCount };
const FfxResourceStates initialState = (currentSurfaceDescription->usage == FFX_RESOURCE_USAGE_READ_ONLY) ? FFX_RESOURCE_STATE_COMPUTE_READ : FFX_RESOURCE_STATE_UNORDERED_ACCESS;
const FfxCreateResourceDescription createResourceDescription = { FFX_HEAP_TYPE_DEFAULT, resourceDescription, initialState, currentSurfaceDescription->initDataSize, currentSurfaceDescription->initData, currentSurfaceDescription->name, currentSurfaceDescription->usage, currentSurfaceDescription->id };
FFX_VALIDATE(context->contextDescription.callbacks.fpCreateResource(&context->contextDescription.callbacks, &createResourceDescription, &context->srvResources[currentSurfaceDescription->id]));
}
// copy resources to uavResrouces list
memcpy(context->uavResources, context->srvResources, sizeof(context->srvResources));
// avoid compiling pipelines on first render
{
context->refreshPipelineStates = false;
errorCode = createPipelineStates(context);
FFX_RETURN_ON_ERROR(errorCode == FFX_OK, errorCode);
}
return FFX_OK;
}
static void fsr2SafeReleasePipeline(FfxFsr2Context_Private* context, FfxPipelineState* pipeline)
{
FFX_ASSERT(pipeline);
context->contextDescription.callbacks.fpDestroyPipeline(&context->contextDescription.callbacks, pipeline);
}
static void fsr2SafeReleaseResource(FfxFsr2Context_Private* context, FfxResourceInternal resource)
{
context->contextDescription.callbacks.fpDestroyResource(&context->contextDescription.callbacks, resource);
}
static void fsr2SafeReleaseDevice(FfxFsr2Context_Private* context, FfxDevice* device)
{
if (*device == nullptr) {
return;
}
context->contextDescription.callbacks.fpDestroyBackendContext(&context->contextDescription.callbacks);
*device = nullptr;
}
static FfxErrorCode fsr2Release(FfxFsr2Context_Private* context)
{
FFX_ASSERT(context);
fsr2SafeReleasePipeline(context, &context->pipelineDepthClip);
fsr2SafeReleasePipeline(context, &context->pipelineReconstructPreviousDepth);
fsr2SafeReleasePipeline(context, &context->pipelineLock);
fsr2SafeReleasePipeline(context, &context->pipelineAccumulate);
fsr2SafeReleasePipeline(context, &context->pipelineAccumulateSharpen);
fsr2SafeReleasePipeline(context, &context->pipelineRCAS);
fsr2SafeReleasePipeline(context, &context->pipelineComputeLuminancePyramid);
fsr2SafeReleasePipeline(context, &context->pipelineGenerateReactive);
fsr2SafeReleasePipeline(context, &context->pipelineTcrAutogenerate);
// unregister resources not created internally
context->srvResources[FFX_FSR2_RESOURCE_IDENTIFIER_INPUT_OPAQUE_ONLY] = { FFX_FSR2_RESOURCE_IDENTIFIER_NULL };
context->srvResources[FFX_FSR2_RESOURCE_IDENTIFIER_INPUT_COLOR] = { FFX_FSR2_RESOURCE_IDENTIFIER_NULL };
context->srvResources[FFX_FSR2_RESOURCE_IDENTIFIER_INPUT_DEPTH] = { FFX_FSR2_RESOURCE_IDENTIFIER_NULL };
context->srvResources[FFX_FSR2_RESOURCE_IDENTIFIER_INPUT_MOTION_VECTORS] = { FFX_FSR2_RESOURCE_IDENTIFIER_NULL };
context->srvResources[FFX_FSR2_RESOURCE_IDENTIFIER_INPUT_EXPOSURE] = { FFX_FSR2_RESOURCE_IDENTIFIER_NULL };
context->srvResources[FFX_FSR2_RESOURCE_IDENTIFIER_INPUT_REACTIVE_MASK] = { FFX_FSR2_RESOURCE_IDENTIFIER_NULL };
context->srvResources[FFX_FSR2_RESOURCE_IDENTIFIER_INPUT_TRANSPARENCY_AND_COMPOSITION_MASK] = { FFX_FSR2_RESOURCE_IDENTIFIER_NULL };
context->srvResources[FFX_FSR2_RESOURCE_IDENTIFIER_LOCK_STATUS] = { FFX_FSR2_RESOURCE_IDENTIFIER_NULL };
context->srvResources[FFX_FSR2_RESOURCE_IDENTIFIER_INTERNAL_UPSCALED_COLOR] = { FFX_FSR2_RESOURCE_IDENTIFIER_NULL };
context->srvResources[FFX_FSR2_RESOURCE_IDENTIFIER_RCAS_INPUT] = { FFX_FSR2_RESOURCE_IDENTIFIER_NULL };
context->srvResources[FFX_FSR2_RESOURCE_IDENTIFIER_UPSCALED_OUTPUT] = { FFX_FSR2_RESOURCE_IDENTIFIER_NULL };
// release internal resources
for (int32_t currentResourceIndex = 0; currentResourceIndex < FFX_FSR2_RESOURCE_IDENTIFIER_COUNT; ++currentResourceIndex) {
fsr2SafeReleaseResource(context, context->srvResources[currentResourceIndex]);
}
fsr2SafeReleaseDevice(context, &context->device);
return FFX_OK;
}
static void setupDeviceDepthToViewSpaceDepthParams(FfxFsr2Context_Private* context, const FfxFsr2DispatchDescription* params)
{
const bool bInverted = (context->contextDescription.flags & FFX_FSR2_ENABLE_DEPTH_INVERTED) == FFX_FSR2_ENABLE_DEPTH_INVERTED;
const bool bInfinite = (context->contextDescription.flags & FFX_FSR2_ENABLE_DEPTH_INFINITE) == FFX_FSR2_ENABLE_DEPTH_INFINITE;
// make sure it has no impact if near and far plane values are swapped in dispatch params
// the flags "inverted" and "infinite" will decide what transform to use
float fMin = FFX_MINIMUM(params->cameraNear, params->cameraFar);
float fMax = FFX_MAXIMUM(params->cameraNear, params->cameraFar);
if (bInverted) {
float tmp = fMin;
fMin = fMax;
fMax = tmp;
}
// a 0 0 0 x
// 0 b 0 0 y
// 0 0 c d z
// 0 0 e 0 1
const float fQ = fMax / (fMin - fMax);
const float d = -1.0f; // for clarity
const float matrix_elem_c[2][2] = {
fQ, // non reversed, non infinite
-1.0f - FLT_EPSILON, // non reversed, infinite
fQ, // reversed, non infinite
0.0f + FLT_EPSILON // reversed, infinite
};
const float matrix_elem_e[2][2] = {
fQ * fMin, // non reversed, non infinite
-fMin - FLT_EPSILON, // non reversed, infinite
fQ * fMin, // reversed, non infinite
fMax, // reversed, infinite
};
context->constants.deviceToViewDepth[0] = d * matrix_elem_c[bInverted][bInfinite];
context->constants.deviceToViewDepth[1] = matrix_elem_e[bInverted][bInfinite];
// revert x and y coords
const float aspect = params->renderSize.width / float(params->renderSize.height);
const float cotHalfFovY = cosf(0.5f * params->cameraFovAngleVertical) / sinf(0.5f * params->cameraFovAngleVertical);
const float a = cotHalfFovY / aspect;
const float b = cotHalfFovY;
context->constants.deviceToViewDepth[2] = (1.0f / a);
context->constants.deviceToViewDepth[3] = (1.0f / b);
}
static void scheduleDispatch(FfxFsr2Context_Private* context, const FfxFsr2DispatchDescription* params, const FfxPipelineState* pipeline, uint32_t dispatchX, uint32_t dispatchY)
{
FfxComputeJobDescription jobDescriptor = {};
for (uint32_t currentShaderResourceViewIndex = 0; currentShaderResourceViewIndex < pipeline->srvCount; ++currentShaderResourceViewIndex) {
const uint32_t currentResourceId = pipeline->srvResourceBindings[currentShaderResourceViewIndex].resourceIdentifier;
const FfxResourceInternal currentResource = context->srvResources[currentResourceId];
jobDescriptor.srvs[currentShaderResourceViewIndex] = currentResource;
wcscpy_s(jobDescriptor.srvNames[currentShaderResourceViewIndex], pipeline->srvResourceBindings[currentShaderResourceViewIndex].name);
}
for (uint32_t currentUnorderedAccessViewIndex = 0; currentUnorderedAccessViewIndex < pipeline->uavCount; ++currentUnorderedAccessViewIndex) {
const uint32_t currentResourceId = pipeline->uavResourceBindings[currentUnorderedAccessViewIndex].resourceIdentifier;
wcscpy_s(jobDescriptor.uavNames[currentUnorderedAccessViewIndex], pipeline->uavResourceBindings[currentUnorderedAccessViewIndex].name);
if (currentResourceId >= FFX_FSR2_RESOURCE_IDENTIFIER_SCENE_LUMINANCE_MIPMAP_0 && currentResourceId <= FFX_FSR2_RESOURCE_IDENTIFIER_SCENE_LUMINANCE_MIPMAP_12)
{
const FfxResourceInternal currentResource = context->uavResources[FFX_FSR2_RESOURCE_IDENTIFIER_SCENE_LUMINANCE];
jobDescriptor.uavs[currentUnorderedAccessViewIndex] = currentResource;
jobDescriptor.uavMip[currentUnorderedAccessViewIndex] = currentResourceId - FFX_FSR2_RESOURCE_IDENTIFIER_SCENE_LUMINANCE_MIPMAP_0;
}
else
{
const FfxResourceInternal currentResource = context->uavResources[currentResourceId];
jobDescriptor.uavs[currentUnorderedAccessViewIndex] = currentResource;
jobDescriptor.uavMip[currentUnorderedAccessViewIndex] = 0;
}
}
jobDescriptor.dimensions[0] = dispatchX;
jobDescriptor.dimensions[1] = dispatchY;
jobDescriptor.dimensions[2] = 1;
jobDescriptor.pipeline = *pipeline;
for (uint32_t currentRootConstantIndex = 0; currentRootConstantIndex < pipeline->constCount; ++currentRootConstantIndex) {
wcscpy_s( jobDescriptor.cbNames[currentRootConstantIndex], pipeline->cbResourceBindings[currentRootConstantIndex].name);
jobDescriptor.cbs[currentRootConstantIndex] = globalFsr2ConstantBuffers[pipeline->cbResourceBindings[currentRootConstantIndex].resourceIdentifier];
jobDescriptor.cbSlotIndex[currentRootConstantIndex] = pipeline->cbResourceBindings[currentRootConstantIndex].slotIndex;
}
FfxGpuJobDescription dispatchJob = { FFX_GPU_JOB_COMPUTE };
dispatchJob.computeJobDescriptor = jobDescriptor;
context->contextDescription.callbacks.fpScheduleGpuJob(&context->contextDescription.callbacks, &dispatchJob);
}
static FfxErrorCode fsr2Dispatch(FfxFsr2Context_Private* context, const FfxFsr2DispatchDescription* params)
{
if ((context->contextDescription.flags & FFX_FSR2_ENABLE_DEBUG_CHECKING) == FFX_FSR2_ENABLE_DEBUG_CHECKING)
{
fsr2DebugCheckDispatch(context, params);
}
// take a short cut to the command list
FfxCommandList commandList = params->commandList;
// try and refresh shaders first. Early exit in case of error.
if (context->refreshPipelineStates) {
context->refreshPipelineStates = false;
const FfxErrorCode errorCode = createPipelineStates(context);
FFX_RETURN_ON_ERROR(errorCode == FFX_OK, errorCode);
}
if (context->firstExecution)
{
FfxGpuJobDescription clearJob = { FFX_GPU_JOB_CLEAR_FLOAT };
const float clearValuesToZeroFloat[]{ 0.f, 0.f, 0.f, 0.f };
memcpy(clearJob.clearJobDescriptor.color, clearValuesToZeroFloat, 4 * sizeof(float));
clearJob.clearJobDescriptor.target = context->srvResources[FFX_FSR2_RESOURCE_IDENTIFIER_LOCK_STATUS_1];
context->contextDescription.callbacks.fpScheduleGpuJob(&context->contextDescription.callbacks, &clearJob);
clearJob.clearJobDescriptor.target = context->srvResources[FFX_FSR2_RESOURCE_IDENTIFIER_LOCK_STATUS_2];
context->contextDescription.callbacks.fpScheduleGpuJob(&context->contextDescription.callbacks, &clearJob);
clearJob.clearJobDescriptor.target = context->srvResources[FFX_FSR2_RESOURCE_IDENTIFIER_PREPARED_INPUT_COLOR];
context->contextDescription.callbacks.fpScheduleGpuJob(&context->contextDescription.callbacks, &clearJob);
}
// Prepare per frame descriptor tables
const bool isOddFrame = !!(context->resourceFrameIndex & 1);
const uint32_t currentCpuOnlyTableBase = isOddFrame ? FFX_FSR2_RESOURCE_IDENTIFIER_COUNT : 0;
const uint32_t currentGpuTableBase = 2 * FFX_FSR2_RESOURCE_IDENTIFIER_COUNT * context->resourceFrameIndex;
const uint32_t lockStatusSrvResourceIndex = isOddFrame ? FFX_FSR2_RESOURCE_IDENTIFIER_LOCK_STATUS_2 : FFX_FSR2_RESOURCE_IDENTIFIER_LOCK_STATUS_1;
const uint32_t lockStatusUavResourceIndex = isOddFrame ? FFX_FSR2_RESOURCE_IDENTIFIER_LOCK_STATUS_1 : FFX_FSR2_RESOURCE_IDENTIFIER_LOCK_STATUS_2;
const uint32_t upscaledColorSrvResourceIndex = isOddFrame ? FFX_FSR2_RESOURCE_IDENTIFIER_INTERNAL_UPSCALED_COLOR_2 : FFX_FSR2_RESOURCE_IDENTIFIER_INTERNAL_UPSCALED_COLOR_1;
const uint32_t upscaledColorUavResourceIndex = isOddFrame ? FFX_FSR2_RESOURCE_IDENTIFIER_INTERNAL_UPSCALED_COLOR_1 : FFX_FSR2_RESOURCE_IDENTIFIER_INTERNAL_UPSCALED_COLOR_2;
const uint32_t dilatedMotionVectorsResourceIndex = isOddFrame ? FFX_FSR2_RESOURCE_IDENTIFIER_INTERNAL_DILATED_MOTION_VECTORS_2 : FFX_FSR2_RESOURCE_IDENTIFIER_INTERNAL_DILATED_MOTION_VECTORS_1;
const uint32_t previousDilatedMotionVectorsResourceIndex = isOddFrame ? FFX_FSR2_RESOURCE_IDENTIFIER_INTERNAL_DILATED_MOTION_VECTORS_1 : FFX_FSR2_RESOURCE_IDENTIFIER_INTERNAL_DILATED_MOTION_VECTORS_2;
const uint32_t lumaHistorySrvResourceIndex = isOddFrame ? FFX_FSR2_RESOURCE_IDENTIFIER_LUMA_HISTORY_2 : FFX_FSR2_RESOURCE_IDENTIFIER_LUMA_HISTORY_1;
const uint32_t lumaHistoryUavResourceIndex = isOddFrame ? FFX_FSR2_RESOURCE_IDENTIFIER_LUMA_HISTORY_1 : FFX_FSR2_RESOURCE_IDENTIFIER_LUMA_HISTORY_2;
const uint32_t prevPreAlphaColorSrvResourceIndex = isOddFrame ? FFX_FSR2_RESOURCE_IDENTIFIER_PREV_PRE_ALPHA_COLOR_2 : FFX_FSR2_RESOURCE_IDENTIFIER_PREV_PRE_ALPHA_COLOR_1;
const uint32_t prevPreAlphaColorUavResourceIndex = isOddFrame ? FFX_FSR2_RESOURCE_IDENTIFIER_PREV_PRE_ALPHA_COLOR_1 : FFX_FSR2_RESOURCE_IDENTIFIER_PREV_PRE_ALPHA_COLOR_2;
const uint32_t prevPostAlphaColorSrvResourceIndex = isOddFrame ? FFX_FSR2_RESOURCE_IDENTIFIER_PREV_POST_ALPHA_COLOR_2 : FFX_FSR2_RESOURCE_IDENTIFIER_PREV_POST_ALPHA_COLOR_1;
const uint32_t prevPostAlphaColorUavResourceIndex = isOddFrame ? FFX_FSR2_RESOURCE_IDENTIFIER_PREV_POST_ALPHA_COLOR_1 : FFX_FSR2_RESOURCE_IDENTIFIER_PREV_POST_ALPHA_COLOR_2;
const bool resetAccumulation = params->reset || context->firstExecution;
context->firstExecution = false;
context->contextDescription.callbacks.fpRegisterResource(&context->contextDescription.callbacks, &params->color, &context->srvResources[FFX_FSR2_RESOURCE_IDENTIFIER_INPUT_COLOR]);
context->contextDescription.callbacks.fpRegisterResource(&context->contextDescription.callbacks, &params->depth, &context->srvResources[FFX_FSR2_RESOURCE_IDENTIFIER_INPUT_DEPTH]);
context->contextDescription.callbacks.fpRegisterResource(&context->contextDescription.callbacks, &params->motionVectors, &context->srvResources[FFX_FSR2_RESOURCE_IDENTIFIER_INPUT_MOTION_VECTORS]);
// if auto exposure is enabled use the auto exposure SRV, otherwise what the app sends.
if (context->contextDescription.flags & FFX_FSR2_ENABLE_AUTO_EXPOSURE) {
context->srvResources[FFX_FSR2_RESOURCE_IDENTIFIER_INPUT_EXPOSURE] = context->srvResources[FFX_FSR2_RESOURCE_IDENTIFIER_AUTO_EXPOSURE];
} else {
if (ffxFsr2ResourceIsNull(params->exposure)) {
context->srvResources[FFX_FSR2_RESOURCE_IDENTIFIER_INPUT_EXPOSURE] = context->srvResources[FFX_FSR2_RESOURCE_IDENTIFIER_INTERNAL_DEFAULT_EXPOSURE];
} else {
context->contextDescription.callbacks.fpRegisterResource(&context->contextDescription.callbacks, &params->exposure, &context->srvResources[FFX_FSR2_RESOURCE_IDENTIFIER_INPUT_EXPOSURE]);
}
}
if (params->enableAutoReactive)
{
context->contextDescription.callbacks.fpRegisterResource(&context->contextDescription.callbacks, &params->colorOpaqueOnly, &context->srvResources[FFX_FSR2_RESOURCE_IDENTIFIER_PREV_PRE_ALPHA_COLOR]);
}
if (ffxFsr2ResourceIsNull(params->reactive)) {
context->srvResources[FFX_FSR2_RESOURCE_IDENTIFIER_INPUT_REACTIVE_MASK] = context->srvResources[FFX_FSR2_RESOURCE_IDENTIFIER_INTERNAL_DEFAULT_REACTIVITY];
}
else {
context->contextDescription.callbacks.fpRegisterResource(&context->contextDescription.callbacks, &params->reactive, &context->srvResources[FFX_FSR2_RESOURCE_IDENTIFIER_INPUT_REACTIVE_MASK]);
}
if (ffxFsr2ResourceIsNull(params->transparencyAndComposition)) {
context->srvResources[FFX_FSR2_RESOURCE_IDENTIFIER_INPUT_TRANSPARENCY_AND_COMPOSITION_MASK] = context->srvResources[FFX_FSR2_RESOURCE_IDENTIFIER_INTERNAL_DEFAULT_REACTIVITY];
} else {
context->contextDescription.callbacks.fpRegisterResource(&context->contextDescription.callbacks, &params->transparencyAndComposition, &context->srvResources[FFX_FSR2_RESOURCE_IDENTIFIER_INPUT_TRANSPARENCY_AND_COMPOSITION_MASK]);
}
context->contextDescription.callbacks.fpRegisterResource(&context->contextDescription.callbacks, &params->output, &context->uavResources[FFX_FSR2_RESOURCE_IDENTIFIER_UPSCALED_OUTPUT]);
context->srvResources[FFX_FSR2_RESOURCE_IDENTIFIER_LOCK_STATUS] = context->srvResources[lockStatusSrvResourceIndex];
context->srvResources[FFX_FSR2_RESOURCE_IDENTIFIER_INTERNAL_UPSCALED_COLOR] = context->srvResources[upscaledColorSrvResourceIndex];
context->uavResources[FFX_FSR2_RESOURCE_IDENTIFIER_LOCK_STATUS] = context->uavResources[lockStatusUavResourceIndex];
context->uavResources[FFX_FSR2_RESOURCE_IDENTIFIER_INTERNAL_UPSCALED_COLOR] = context->uavResources[upscaledColorUavResourceIndex];
context->srvResources[FFX_FSR2_RESOURCE_IDENTIFIER_RCAS_INPUT] = context->uavResources[upscaledColorUavResourceIndex];
context->srvResources[FFX_FSR2_RESOURCE_IDENTIFIER_DILATED_MOTION_VECTORS] = context->srvResources[dilatedMotionVectorsResourceIndex];
context->uavResources[FFX_FSR2_RESOURCE_IDENTIFIER_DILATED_MOTION_VECTORS] = context->uavResources[dilatedMotionVectorsResourceIndex];
context->srvResources[FFX_FSR2_RESOURCE_IDENTIFIER_PREVIOUS_DILATED_MOTION_VECTORS] = context->srvResources[previousDilatedMotionVectorsResourceIndex];
context->uavResources[FFX_FSR2_RESOURCE_IDENTIFIER_LUMA_HISTORY] = context->uavResources[lumaHistoryUavResourceIndex];
context->srvResources[FFX_FSR2_RESOURCE_IDENTIFIER_LUMA_HISTORY] = context->srvResources[lumaHistorySrvResourceIndex];
context->srvResources[FFX_FSR2_RESOURCE_IDENTIFIER_PREV_PRE_ALPHA_COLOR] = context->srvResources[prevPreAlphaColorSrvResourceIndex];
context->uavResources[FFX_FSR2_RESOURCE_IDENTIFIER_PREV_PRE_ALPHA_COLOR] = context->uavResources[prevPreAlphaColorUavResourceIndex];
context->srvResources[FFX_FSR2_RESOURCE_IDENTIFIER_PREV_POST_ALPHA_COLOR] = context->srvResources[prevPostAlphaColorSrvResourceIndex];
context->uavResources[FFX_FSR2_RESOURCE_IDENTIFIER_PREV_POST_ALPHA_COLOR] = context->uavResources[prevPostAlphaColorUavResourceIndex];
// actual resource size may differ from render/display resolution (e.g. due to Hw/API restrictions), so query the descriptor for UVs adjustment
const FfxResourceDescription resourceDescInputColor = context->contextDescription.callbacks.fpGetResourceDescription(&context->contextDescription.callbacks, context->srvResources[FFX_FSR2_RESOURCE_IDENTIFIER_INPUT_COLOR]);
const FfxResourceDescription resourceDescLockStatus = context->contextDescription.callbacks.fpGetResourceDescription(&context->contextDescription.callbacks, context->srvResources[lockStatusSrvResourceIndex]);
const FfxResourceDescription resourceDescReactiveMask = context->contextDescription.callbacks.fpGetResourceDescription(&context->contextDescription.callbacks, context->srvResources[FFX_FSR2_RESOURCE_IDENTIFIER_INPUT_REACTIVE_MASK]);
FFX_ASSERT(resourceDescInputColor.type == FFX_RESOURCE_TYPE_TEXTURE2D);
FFX_ASSERT(resourceDescLockStatus.type == FFX_RESOURCE_TYPE_TEXTURE2D);
context->constants.jitterOffset[0] = params->jitterOffset.x;
context->constants.jitterOffset[1] = params->jitterOffset.y;
context->constants.renderSize[0] = int32_t(params->renderSize.width ? params->renderSize.width : resourceDescInputColor.width);
context->constants.renderSize[1] = int32_t(params->renderSize.height ? params->renderSize.height : resourceDescInputColor.height);
context->constants.maxRenderSize[0] = int32_t(context->contextDescription.maxRenderSize.width);
context->constants.maxRenderSize[1] = int32_t(context->contextDescription.maxRenderSize.height);
context->constants.inputColorResourceDimensions[0] = resourceDescInputColor.width;
context->constants.inputColorResourceDimensions[1] = resourceDescInputColor.height;
// compute the horizontal FOV for the shader from the vertical one.
const float aspectRatio = (float)params->renderSize.width / (float)params->renderSize.height;
const float cameraAngleHorizontal = atan(tan(params->cameraFovAngleVertical / 2) * aspectRatio) * 2;
context->constants.tanHalfFOV = tanf(cameraAngleHorizontal * 0.5f);
context->constants.viewSpaceToMetersFactor = (params->viewSpaceToMetersFactor > 0.0f) ? params->viewSpaceToMetersFactor : 1.0f;
// compute params to enable device depth to view space depth computation in shader
setupDeviceDepthToViewSpaceDepthParams(context, params);
// To be updated if resource is larger than the actual image size
context->constants.downscaleFactor[0] = float(context->constants.renderSize[0]) / context->contextDescription.displaySize.width;
context->constants.downscaleFactor[1] = float(context->constants.renderSize[1]) / context->contextDescription.displaySize.height;
context->constants.previousFramePreExposure = context->constants.preExposure;
context->constants.preExposure = (params->preExposure != 0) ? params->preExposure : 1.0f;
// motion vector data
const int32_t* motionVectorsTargetSize = (context->contextDescription.flags & FFX_FSR2_ENABLE_DISPLAY_RESOLUTION_MOTION_VECTORS) ? context->constants.displaySize : context->constants.renderSize;
context->constants.motionVectorScale[0] = (params->motionVectorScale.x / motionVectorsTargetSize[0]);
context->constants.motionVectorScale[1] = (params->motionVectorScale.y / motionVectorsTargetSize[1]);
// compute jitter cancellation
if (context->contextDescription.flags & FFX_FSR2_ENABLE_MOTION_VECTORS_JITTER_CANCELLATION) {
context->constants.motionVectorJitterCancellation[0] = (context->previousJitterOffset[0] - context->constants.jitterOffset[0]) / motionVectorsTargetSize[0];
context->constants.motionVectorJitterCancellation[1] = (context->previousJitterOffset[1] - context->constants.jitterOffset[1]) / motionVectorsTargetSize[1];
context->previousJitterOffset[0] = context->constants.jitterOffset[0];
context->previousJitterOffset[1] = context->constants.jitterOffset[1];
}
// lock data, assuming jitter sequence length computation for now
const int32_t jitterPhaseCount = ffxFsr2GetJitterPhaseCount(params->renderSize.width, context->contextDescription.displaySize.width);
// init on first frame
if (resetAccumulation || context->constants.jitterPhaseCount == 0) {
context->constants.jitterPhaseCount = (float)jitterPhaseCount;
} else {
const int32_t jitterPhaseCountDelta = (int32_t)(jitterPhaseCount - context->constants.jitterPhaseCount);
if (jitterPhaseCountDelta > 0) {
context->constants.jitterPhaseCount++;
} else if (jitterPhaseCountDelta < 0) {
context->constants.jitterPhaseCount--;
}
}
// convert delta time to seconds and clamp to [0, 1].
context->constants.deltaTime = FFX_MAXIMUM(0.0f, FFX_MINIMUM(1.0f, params->frameTimeDelta / 1000.0f));
if (resetAccumulation) {
context->constants.frameIndex = 0;
} else {
context->constants.frameIndex++;
}
// shading change usage of the SPD mip levels.
context->constants.lumaMipLevelToUse = uint32_t(FFX_FSR2_SHADING_CHANGE_MIP_LEVEL);
const float mipDiv = float(2 << context->constants.lumaMipLevelToUse);
context->constants.lumaMipDimensions[0] = uint32_t(context->constants.maxRenderSize[0] / mipDiv);
context->constants.lumaMipDimensions[1] = uint32_t(context->constants.maxRenderSize[1] / mipDiv);
// -- GODOT start --
memcpy(context->constants.reprojectionMatrix, params->reprojectionMatrix, sizeof(context->constants.reprojectionMatrix));
// -- GODOT end --
// reactive mask bias
const int32_t threadGroupWorkRegionDim = 8;
const int32_t dispatchSrcX = (context->constants.renderSize[0] + (threadGroupWorkRegionDim - 1)) / threadGroupWorkRegionDim;
const int32_t dispatchSrcY = (context->constants.renderSize[1] + (threadGroupWorkRegionDim - 1)) / threadGroupWorkRegionDim;
const int32_t dispatchDstX = (context->contextDescription.displaySize.width + (threadGroupWorkRegionDim - 1)) / threadGroupWorkRegionDim;
const int32_t dispatchDstY = (context->contextDescription.displaySize.height + (threadGroupWorkRegionDim - 1)) / threadGroupWorkRegionDim;
// Clear reconstructed depth for max depth store.
if (resetAccumulation) {
FfxGpuJobDescription clearJob = { FFX_GPU_JOB_CLEAR_FLOAT };
// LockStatus resource has no sign bit, callback functions are compensating for this.
// Clearing the resource must follow the same logic.
float clearValuesLockStatus[4]{};
clearValuesLockStatus[LOCK_LIFETIME_REMAINING] = 0.0f;
clearValuesLockStatus[LOCK_TEMPORAL_LUMA] = 0.0f;
memcpy(clearJob.clearJobDescriptor.color, clearValuesLockStatus, 4 * sizeof(float));
clearJob.clearJobDescriptor.target = context->srvResources[lockStatusSrvResourceIndex];
context->contextDescription.callbacks.fpScheduleGpuJob(&context->contextDescription.callbacks, &clearJob);
const float clearValuesToZeroFloat[]{ 0.f, 0.f, 0.f, 0.f };
memcpy(clearJob.clearJobDescriptor.color, clearValuesToZeroFloat, 4 * sizeof(float));
clearJob.clearJobDescriptor.target = context->srvResources[upscaledColorSrvResourceIndex];
context->contextDescription.callbacks.fpScheduleGpuJob(&context->contextDescription.callbacks, &clearJob);
clearJob.clearJobDescriptor.target = context->srvResources[FFX_FSR2_RESOURCE_IDENTIFIER_SCENE_LUMINANCE];
context->contextDescription.callbacks.fpScheduleGpuJob(&context->contextDescription.callbacks, &clearJob);
//if (context->contextDescription.flags & FFX_FSR2_ENABLE_AUTO_EXPOSURE)
// Auto exposure always used to track luma changes in locking logic
{
const float clearValuesExposure[]{ -1.f, 1e8f, 0.f, 0.f };
memcpy(clearJob.clearJobDescriptor.color, clearValuesExposure, 4 * sizeof(float));
clearJob.clearJobDescriptor.target = context->srvResources[FFX_FSR2_RESOURCE_IDENTIFIER_AUTO_EXPOSURE];
context->contextDescription.callbacks.fpScheduleGpuJob(&context->contextDescription.callbacks, &clearJob);
}
}
// Auto exposure
uint32_t dispatchThreadGroupCountXY[2];
uint32_t workGroupOffset[2];
uint32_t numWorkGroupsAndMips[2];
uint32_t rectInfo[4] = { 0, 0, params->renderSize.width, params->renderSize.height };
SpdSetup(dispatchThreadGroupCountXY, workGroupOffset, numWorkGroupsAndMips, rectInfo);
// downsample
Fsr2SpdConstants luminancePyramidConstants;
luminancePyramidConstants.numworkGroups = numWorkGroupsAndMips[0];
luminancePyramidConstants.mips = numWorkGroupsAndMips[1];
luminancePyramidConstants.workGroupOffset[0] = workGroupOffset[0];
luminancePyramidConstants.workGroupOffset[1] = workGroupOffset[1];
luminancePyramidConstants.renderSize[0] = params->renderSize.width;
luminancePyramidConstants.renderSize[1] = params->renderSize.height;
// compute the constants.
Fsr2RcasConstants rcasConsts = {};
const float sharpenessRemapped = (-2.0f * params->sharpness) + 2.0f;
FsrRcasCon(rcasConsts.rcasConfig, sharpenessRemapped);
Fsr2GenerateReactiveConstants2 genReactiveConsts = {};
genReactiveConsts.autoTcThreshold = params->autoTcThreshold;
genReactiveConsts.autoTcScale = params->autoTcScale;
genReactiveConsts.autoReactiveScale = params->autoReactiveScale;
genReactiveConsts.autoReactiveMax = params->autoReactiveMax;
// initialize constantBuffers data
memcpy(&globalFsr2ConstantBuffers[FFX_FSR2_CONSTANTBUFFER_IDENTIFIER_FSR2].data, &context->constants, globalFsr2ConstantBuffers[FFX_FSR2_CONSTANTBUFFER_IDENTIFIER_FSR2].uint32Size * sizeof(uint32_t));
memcpy(&globalFsr2ConstantBuffers[FFX_FSR2_CONSTANTBUFFER_IDENTIFIER_SPD].data, &luminancePyramidConstants, globalFsr2ConstantBuffers[FFX_FSR2_CONSTANTBUFFER_IDENTIFIER_SPD].uint32Size * sizeof(uint32_t));
memcpy(&globalFsr2ConstantBuffers[FFX_FSR2_CONSTANTBUFFER_IDENTIFIER_RCAS].data, &rcasConsts, globalFsr2ConstantBuffers[FFX_FSR2_CONSTANTBUFFER_IDENTIFIER_RCAS].uint32Size * sizeof(uint32_t));
memcpy(&globalFsr2ConstantBuffers[FFX_FSR2_CONSTANTBUFFER_IDENTIFIER_GENREACTIVE].data, &genReactiveConsts, globalFsr2ConstantBuffers[FFX_FSR2_CONSTANTBUFFER_IDENTIFIER_GENREACTIVE].uint32Size * sizeof(uint32_t));
// Auto reactive
if (params->enableAutoReactive)
{
generateReactiveMaskInternal(context, params);
context->srvResources[FFX_FSR2_RESOURCE_IDENTIFIER_INPUT_REACTIVE_MASK] = context->srvResources[FFX_FSR2_RESOURCE_IDENTIFIER_AUTOREACTIVE];
context->srvResources[FFX_FSR2_RESOURCE_IDENTIFIER_INPUT_TRANSPARENCY_AND_COMPOSITION_MASK] = context->srvResources[FFX_FSR2_RESOURCE_IDENTIFIER_AUTOCOMPOSITION];
}
scheduleDispatch(context, params, &context->pipelineComputeLuminancePyramid, dispatchThreadGroupCountXY[0], dispatchThreadGroupCountXY[1]);
scheduleDispatch(context, params, &context->pipelineReconstructPreviousDepth, dispatchSrcX, dispatchSrcY);
scheduleDispatch(context, params, &context->pipelineDepthClip, dispatchSrcX, dispatchSrcY);
const bool sharpenEnabled = params->enableSharpening;
scheduleDispatch(context, params, &context->pipelineLock, dispatchSrcX, dispatchSrcY);
scheduleDispatch(context, params, sharpenEnabled ? &context->pipelineAccumulateSharpen : &context->pipelineAccumulate, dispatchDstX, dispatchDstY);
// RCAS
if (sharpenEnabled) {
// dispatch RCAS
const int32_t threadGroupWorkRegionDimRCAS = 16;
const int32_t dispatchX = (context->contextDescription.displaySize.width + (threadGroupWorkRegionDimRCAS - 1)) / threadGroupWorkRegionDimRCAS;
const int32_t dispatchY = (context->contextDescription.displaySize.height + (threadGroupWorkRegionDimRCAS - 1)) / threadGroupWorkRegionDimRCAS;
scheduleDispatch(context, params, &context->pipelineRCAS, dispatchX, dispatchY);
}
context->resourceFrameIndex = (context->resourceFrameIndex + 1) % FSR2_MAX_QUEUED_FRAMES;
// Fsr2MaxQueuedFrames must be an even number.
FFX_STATIC_ASSERT((FSR2_MAX_QUEUED_FRAMES & 1) == 0);
context->contextDescription.callbacks.fpExecuteGpuJobs(&context->contextDescription.callbacks, commandList);
// release dynamic resources
context->contextDescription.callbacks.fpUnregisterResources(&context->contextDescription.callbacks);
return FFX_OK;
}
FfxErrorCode ffxFsr2ContextCreate(FfxFsr2Context* context, const FfxFsr2ContextDescription* contextDescription)
{
// zero context memory
memset(context, 0, sizeof(FfxFsr2Context));
// check pointers are valid.
FFX_RETURN_ON_ERROR(
context,
FFX_ERROR_INVALID_POINTER);
FFX_RETURN_ON_ERROR(
contextDescription,
FFX_ERROR_INVALID_POINTER);
// validate that all callbacks are set for the interface
FFX_RETURN_ON_ERROR(contextDescription->callbacks.fpGetDeviceCapabilities, FFX_ERROR_INCOMPLETE_INTERFACE);
FFX_RETURN_ON_ERROR(contextDescription->callbacks.fpCreateBackendContext, FFX_ERROR_INCOMPLETE_INTERFACE);
FFX_RETURN_ON_ERROR(contextDescription->callbacks.fpDestroyBackendContext, FFX_ERROR_INCOMPLETE_INTERFACE);
// if a scratch buffer is declared, then we must have a size
if (contextDescription->callbacks.scratchBuffer) {
FFX_RETURN_ON_ERROR(contextDescription->callbacks.scratchBufferSize, FFX_ERROR_INCOMPLETE_INTERFACE);
}
// ensure the context is large enough for the internal context.
FFX_STATIC_ASSERT(sizeof(FfxFsr2Context) >= sizeof(FfxFsr2Context_Private));
// create the context.
FfxFsr2Context_Private* contextPrivate = (FfxFsr2Context_Private*)(context);
const FfxErrorCode errorCode = fsr2Create(contextPrivate, contextDescription);
return errorCode;
}
FfxErrorCode ffxFsr2ContextDestroy(FfxFsr2Context* context)
{
FFX_RETURN_ON_ERROR(
context,
FFX_ERROR_INVALID_POINTER);
// destroy the context.
FfxFsr2Context_Private* contextPrivate = (FfxFsr2Context_Private*)(context);
const FfxErrorCode errorCode = fsr2Release(contextPrivate);
return errorCode;
}
FfxErrorCode ffxFsr2ContextDispatch(FfxFsr2Context* context, const FfxFsr2DispatchDescription* dispatchParams)
{
FFX_RETURN_ON_ERROR(
context,
FFX_ERROR_INVALID_POINTER);
FFX_RETURN_ON_ERROR(
dispatchParams,
FFX_ERROR_INVALID_POINTER);
FfxFsr2Context_Private* contextPrivate = (FfxFsr2Context_Private*)(context);
// validate that renderSize is within the maximum.
FFX_RETURN_ON_ERROR(
dispatchParams->renderSize.width <= contextPrivate->contextDescription.maxRenderSize.width,
FFX_ERROR_OUT_OF_RANGE);
FFX_RETURN_ON_ERROR(
dispatchParams->renderSize.height <= contextPrivate->contextDescription.maxRenderSize.height,
FFX_ERROR_OUT_OF_RANGE);
FFX_RETURN_ON_ERROR(
contextPrivate->device,
FFX_ERROR_NULL_DEVICE);
// dispatch the FSR2 passes.
const FfxErrorCode errorCode = fsr2Dispatch(contextPrivate, dispatchParams);
return errorCode;
}
float ffxFsr2GetUpscaleRatioFromQualityMode(FfxFsr2QualityMode qualityMode)
{
switch (qualityMode) {
case FFX_FSR2_QUALITY_MODE_QUALITY:
return 1.5f;
case FFX_FSR2_QUALITY_MODE_BALANCED:
return 1.7f;
case FFX_FSR2_QUALITY_MODE_PERFORMANCE:
return 2.0f;
case FFX_FSR2_QUALITY_MODE_ULTRA_PERFORMANCE:
return 3.0f;
default:
return 0.0f;
}
}
FfxErrorCode ffxFsr2GetRenderResolutionFromQualityMode(
uint32_t* renderWidth,
uint32_t* renderHeight,
uint32_t displayWidth,
uint32_t displayHeight,
FfxFsr2QualityMode qualityMode)
{
FFX_RETURN_ON_ERROR(
renderWidth,
FFX_ERROR_INVALID_POINTER);
FFX_RETURN_ON_ERROR(
renderHeight,
FFX_ERROR_INVALID_POINTER);
FFX_RETURN_ON_ERROR(
FFX_FSR2_QUALITY_MODE_QUALITY <= qualityMode && qualityMode <= FFX_FSR2_QUALITY_MODE_ULTRA_PERFORMANCE,
FFX_ERROR_INVALID_ENUM);
// scale by the predefined ratios in each dimension.
const float ratio = ffxFsr2GetUpscaleRatioFromQualityMode(qualityMode);
const uint32_t scaledDisplayWidth = (uint32_t)((float)displayWidth / ratio);
const uint32_t scaledDisplayHeight = (uint32_t)((float)displayHeight / ratio);
*renderWidth = scaledDisplayWidth;
*renderHeight = scaledDisplayHeight;
return FFX_OK;
}
FfxErrorCode ffxFsr2ContextEnqueueRefreshPipelineRequest(FfxFsr2Context* context)
{
FFX_RETURN_ON_ERROR(
context,
FFX_ERROR_INVALID_POINTER);
FfxFsr2Context_Private* contextPrivate = (FfxFsr2Context_Private*)context;
contextPrivate->refreshPipelineStates = true;
return FFX_OK;
}
int32_t ffxFsr2GetJitterPhaseCount(int32_t renderWidth, int32_t displayWidth)
{
const float basePhaseCount = 8.0f;
const int32_t jitterPhaseCount = int32_t(basePhaseCount * pow((float(displayWidth) / renderWidth), 2.0f));
return jitterPhaseCount;
}
FfxErrorCode ffxFsr2GetJitterOffset(float* outX, float* outY, int32_t index, int32_t phaseCount)
{
FFX_RETURN_ON_ERROR(
outX,
FFX_ERROR_INVALID_POINTER);
FFX_RETURN_ON_ERROR(
outY,
FFX_ERROR_INVALID_POINTER);
FFX_RETURN_ON_ERROR(
phaseCount > 0,
FFX_ERROR_INVALID_ARGUMENT);
const float x = halton((index % phaseCount) + 1, 2) - 0.5f;
const float y = halton((index % phaseCount) + 1, 3) - 0.5f;
*outX = x;
*outY = y;
return FFX_OK;
}
FFX_API bool ffxFsr2ResourceIsNull(FfxResource resource)
{
return resource.resource == NULL;
}
FfxErrorCode ffxFsr2ContextGenerateReactiveMask(FfxFsr2Context* context, const FfxFsr2GenerateReactiveDescription* params)
{
FFX_RETURN_ON_ERROR(
context,
FFX_ERROR_INVALID_POINTER);
FFX_RETURN_ON_ERROR(
params,
FFX_ERROR_INVALID_POINTER);
FFX_RETURN_ON_ERROR(
params->commandList,
FFX_ERROR_INVALID_POINTER);
FfxFsr2Context_Private* contextPrivate = (FfxFsr2Context_Private*)(context);
FFX_RETURN_ON_ERROR(
contextPrivate->device,
FFX_ERROR_NULL_DEVICE);
if (contextPrivate->refreshPipelineStates) {
createPipelineStates(contextPrivate);
contextPrivate->refreshPipelineStates = false;
}
// take a short cut to the command list
FfxCommandList commandList = params->commandList;
FfxPipelineState* pipeline = &contextPrivate->pipelineGenerateReactive;
const int32_t threadGroupWorkRegionDim = 8;
const int32_t dispatchSrcX = (params->renderSize.width + (threadGroupWorkRegionDim - 1)) / threadGroupWorkRegionDim;
const int32_t dispatchSrcY = (params->renderSize.height + (threadGroupWorkRegionDim - 1)) / threadGroupWorkRegionDim;
// save internal reactive resource
FfxResourceInternal internalReactive = contextPrivate->uavResources[FFX_FSR2_RESOURCE_IDENTIFIER_AUTOREACTIVE];
FfxComputeJobDescription jobDescriptor = {};
contextPrivate->contextDescription.callbacks.fpRegisterResource(&contextPrivate->contextDescription.callbacks, &params->colorOpaqueOnly, &contextPrivate->srvResources[FFX_FSR2_RESOURCE_IDENTIFIER_INPUT_OPAQUE_ONLY]);
contextPrivate->contextDescription.callbacks.fpRegisterResource(&contextPrivate->contextDescription.callbacks, &params->colorPreUpscale, &contextPrivate->srvResources[FFX_FSR2_RESOURCE_IDENTIFIER_INPUT_COLOR]);
contextPrivate->contextDescription.callbacks.fpRegisterResource(&contextPrivate->contextDescription.callbacks, &params->outReactive, &contextPrivate->uavResources[FFX_FSR2_RESOURCE_IDENTIFIER_AUTOREACTIVE]);
jobDescriptor.uavs[0] = contextPrivate->uavResources[FFX_FSR2_RESOURCE_IDENTIFIER_AUTOREACTIVE];
wcscpy_s(jobDescriptor.srvNames[0], pipeline->srvResourceBindings[0].name);
wcscpy_s(jobDescriptor.srvNames[1], pipeline->srvResourceBindings[1].name);
wcscpy_s(jobDescriptor.uavNames[0], pipeline->uavResourceBindings[0].name);
jobDescriptor.dimensions[0] = dispatchSrcX;
jobDescriptor.dimensions[1] = dispatchSrcY;
jobDescriptor.dimensions[2] = 1;
jobDescriptor.pipeline = *pipeline;
for (uint32_t currentShaderResourceViewIndex = 0; currentShaderResourceViewIndex < pipeline->srvCount; ++currentShaderResourceViewIndex) {
const uint32_t currentResourceId = pipeline->srvResourceBindings[currentShaderResourceViewIndex].resourceIdentifier;
const FfxResourceInternal currentResource = contextPrivate->srvResources[currentResourceId];
jobDescriptor.srvs[currentShaderResourceViewIndex] = currentResource;
wcscpy_s(jobDescriptor.srvNames[currentShaderResourceViewIndex], pipeline->srvResourceBindings[currentShaderResourceViewIndex].name);
}
Fsr2GenerateReactiveConstants constants = {};
constants.scale = params->scale;
constants.threshold = params->cutoffThreshold;
constants.binaryValue = params->binaryValue;
constants.flags = params->flags;
jobDescriptor.cbs[0].uint32Size = sizeof(constants);
memcpy(&jobDescriptor.cbs[0].data, &constants, sizeof(constants));
wcscpy_s(jobDescriptor.cbNames[0], pipeline->cbResourceBindings[0].name);
FfxGpuJobDescription dispatchJob = { FFX_GPU_JOB_COMPUTE };
dispatchJob.computeJobDescriptor = jobDescriptor;
contextPrivate->contextDescription.callbacks.fpScheduleGpuJob(&contextPrivate->contextDescription.callbacks, &dispatchJob);
contextPrivate->contextDescription.callbacks.fpExecuteGpuJobs(&contextPrivate->contextDescription.callbacks, commandList);
// restore internal reactive
contextPrivate->uavResources[FFX_FSR2_RESOURCE_IDENTIFIER_AUTOREACTIVE] = internalReactive;
return FFX_OK;
}
static FfxErrorCode generateReactiveMaskInternal(FfxFsr2Context_Private* contextPrivate, const FfxFsr2DispatchDescription* params)
{
if (contextPrivate->refreshPipelineStates) {
createPipelineStates(contextPrivate);
contextPrivate->refreshPipelineStates = false;
}
// take a short cut to the command list
FfxCommandList commandList = params->commandList;
FfxPipelineState* pipeline = &contextPrivate->pipelineTcrAutogenerate;
const int32_t threadGroupWorkRegionDim = 8;
const int32_t dispatchSrcX = (params->renderSize.width + (threadGroupWorkRegionDim - 1)) / threadGroupWorkRegionDim;
const int32_t dispatchSrcY = (params->renderSize.height + (threadGroupWorkRegionDim - 1)) / threadGroupWorkRegionDim;
FfxComputeJobDescription jobDescriptor = {};
contextPrivate->contextDescription.callbacks.fpRegisterResource(&contextPrivate->contextDescription.callbacks, &params->colorOpaqueOnly, &contextPrivate->srvResources[FFX_FSR2_RESOURCE_IDENTIFIER_INPUT_OPAQUE_ONLY]);
contextPrivate->contextDescription.callbacks.fpRegisterResource(&contextPrivate->contextDescription.callbacks, &params->color, &contextPrivate->srvResources[FFX_FSR2_RESOURCE_IDENTIFIER_INPUT_COLOR]);
jobDescriptor.uavs[0] = contextPrivate->uavResources[FFX_FSR2_RESOURCE_IDENTIFIER_AUTOREACTIVE];
jobDescriptor.uavs[1] = contextPrivate->uavResources[FFX_FSR2_RESOURCE_IDENTIFIER_AUTOCOMPOSITION];
jobDescriptor.uavs[2] = contextPrivate->uavResources[FFX_FSR2_RESOURCE_IDENTIFIER_PREV_PRE_ALPHA_COLOR];
jobDescriptor.uavs[3] = contextPrivate->uavResources[FFX_FSR2_RESOURCE_IDENTIFIER_PREV_POST_ALPHA_COLOR];
wcscpy_s(jobDescriptor.uavNames[0], pipeline->uavResourceBindings[0].name);
wcscpy_s(jobDescriptor.uavNames[1], pipeline->uavResourceBindings[1].name);
wcscpy_s(jobDescriptor.uavNames[2], pipeline->uavResourceBindings[2].name);
wcscpy_s(jobDescriptor.uavNames[3], pipeline->uavResourceBindings[3].name);
jobDescriptor.dimensions[0] = dispatchSrcX;
jobDescriptor.dimensions[1] = dispatchSrcY;
jobDescriptor.dimensions[2] = 1;
jobDescriptor.pipeline = *pipeline;
for (uint32_t currentShaderResourceViewIndex = 0; currentShaderResourceViewIndex < pipeline->srvCount; ++currentShaderResourceViewIndex) {
const uint32_t currentResourceId = pipeline->srvResourceBindings[currentShaderResourceViewIndex].resourceIdentifier;
const FfxResourceInternal currentResource = contextPrivate->srvResources[currentResourceId];
jobDescriptor.srvs[currentShaderResourceViewIndex] = currentResource;
wcscpy_s(jobDescriptor.srvNames[currentShaderResourceViewIndex], pipeline->srvResourceBindings[currentShaderResourceViewIndex].name);
}
for (uint32_t currentRootConstantIndex = 0; currentRootConstantIndex < pipeline->constCount; ++currentRootConstantIndex) {
wcscpy_s(jobDescriptor.cbNames[currentRootConstantIndex], pipeline->cbResourceBindings[currentRootConstantIndex].name);
jobDescriptor.cbs[currentRootConstantIndex] = globalFsr2ConstantBuffers[pipeline->cbResourceBindings[currentRootConstantIndex].resourceIdentifier];
jobDescriptor.cbSlotIndex[currentRootConstantIndex] = pipeline->cbResourceBindings[currentRootConstantIndex].slotIndex;
}
FfxGpuJobDescription dispatchJob = { FFX_GPU_JOB_COMPUTE };
dispatchJob.computeJobDescriptor = jobDescriptor;
contextPrivate->contextDescription.callbacks.fpScheduleGpuJob(&contextPrivate->contextDescription.callbacks, &dispatchJob);
return FFX_OK;
}