godot/thirdparty/icu4c/i18n/uspoof.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

926 lines
30 KiB
C++
Raw Permalink Normal View History

// © 2016 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html
/*
***************************************************************************
* Copyright (C) 2008-2015, International Business Machines Corporation
* and others. All Rights Reserved.
***************************************************************************
* file name: uspoof.cpp
* encoding: UTF-8
* tab size: 8 (not used)
* indentation:4
*
* created on: 2008Feb13
* created by: Andy Heninger
*
* Unicode Spoof Detection
*/
2023-11-01 06:56:12 +00:00
#include "unicode/ubidi.h"
#include "unicode/utypes.h"
#include "unicode/normalizer2.h"
#include "unicode/uspoof.h"
#include "unicode/ustring.h"
#include "unicode/utf16.h"
#include "cmemory.h"
#include "cstring.h"
#include "mutex.h"
#include "scriptset.h"
#include "uassert.h"
#include "ucln_in.h"
#include "uspoof_impl.h"
#include "umutex.h"
#if !UCONFIG_NO_NORMALIZATION
U_NAMESPACE_USE
//
// Static Objects used by the spoof impl, their thread safe initialization and their cleanup.
//
static UnicodeSet *gInclusionSet = nullptr;
static UnicodeSet *gRecommendedSet = nullptr;
static const Normalizer2 *gNfdNormalizer = nullptr;
2022-10-28 06:11:55 +00:00
static UInitOnce gSpoofInitStaticsOnce {};
namespace {
UBool U_CALLCONV
uspoof_cleanup() {
delete gInclusionSet;
gInclusionSet = nullptr;
delete gRecommendedSet;
gRecommendedSet = nullptr;
gNfdNormalizer = nullptr;
gSpoofInitStaticsOnce.reset();
2022-10-28 06:11:55 +00:00
return true;
}
void U_CALLCONV initializeStatics(UErrorCode &status) {
2024-05-14 08:41:19 +00:00
gInclusionSet = new UnicodeSet();
gRecommendedSet = new UnicodeSet();
if (gInclusionSet == nullptr || gRecommendedSet == nullptr) {
status = U_MEMORY_ALLOCATION_ERROR;
2024-05-14 08:41:19 +00:00
delete gInclusionSet;
gInclusionSet = nullptr;
delete gRecommendedSet;
gRecommendedSet = nullptr;
return;
}
2024-05-14 08:41:19 +00:00
gInclusionSet->applyIntPropertyValue(UCHAR_IDENTIFIER_TYPE, U_ID_TYPE_INCLUSION, status);
gRecommendedSet->applyIntPropertyValue(UCHAR_IDENTIFIER_TYPE, U_ID_TYPE_RECOMMENDED, status);
if (U_FAILURE(status)) {
delete gInclusionSet;
2024-05-14 08:41:19 +00:00
gInclusionSet = nullptr;
delete gRecommendedSet;
gRecommendedSet = nullptr;
return;
}
2024-05-14 08:41:19 +00:00
gInclusionSet->freeze();
gRecommendedSet->freeze();
gNfdNormalizer = Normalizer2::getNFDInstance(status);
ucln_i18n_registerCleanup(UCLN_I18N_SPOOF, uspoof_cleanup);
}
} // namespace
U_CFUNC void uspoof_internalInitStatics(UErrorCode *status) {
umtx_initOnce(gSpoofInitStaticsOnce, &initializeStatics, *status);
}
U_CAPI USpoofChecker * U_EXPORT2
uspoof_open(UErrorCode *status) {
umtx_initOnce(gSpoofInitStaticsOnce, &initializeStatics, *status);
if (U_FAILURE(*status)) {
return nullptr;
}
SpoofImpl *si = new SpoofImpl(*status);
if (si == nullptr) {
*status = U_MEMORY_ALLOCATION_ERROR;
return nullptr;
}
if (U_FAILURE(*status)) {
delete si;
return nullptr;
}
return si->asUSpoofChecker();
}
U_CAPI USpoofChecker * U_EXPORT2
uspoof_openFromSerialized(const void *data, int32_t length, int32_t *pActualLength,
UErrorCode *status) {
if (U_FAILURE(*status)) {
return nullptr;
}
if (data == nullptr) {
*status = U_ILLEGAL_ARGUMENT_ERROR;
return nullptr;
}
umtx_initOnce(gSpoofInitStaticsOnce, &initializeStatics, *status);
if (U_FAILURE(*status))
{
return nullptr;
}
SpoofData *sd = new SpoofData(data, length, *status);
if (sd == nullptr) {
*status = U_MEMORY_ALLOCATION_ERROR;
return nullptr;
}
if (U_FAILURE(*status)) {
delete sd;
return nullptr;
}
SpoofImpl *si = new SpoofImpl(sd, *status);
if (si == nullptr) {
*status = U_MEMORY_ALLOCATION_ERROR;
delete sd; // explicit delete as the destructor for si won't be called.
return nullptr;
}
if (U_FAILURE(*status)) {
delete si; // no delete for sd, as the si destructor will delete it.
return nullptr;
}
if (pActualLength != nullptr) {
*pActualLength = sd->size();
}
return si->asUSpoofChecker();
}
U_CAPI USpoofChecker * U_EXPORT2
uspoof_clone(const USpoofChecker *sc, UErrorCode *status) {
const SpoofImpl *src = SpoofImpl::validateThis(sc, *status);
if (src == nullptr) {
return nullptr;
}
SpoofImpl *result = new SpoofImpl(*src, *status); // copy constructor
if (result == nullptr) {
*status = U_MEMORY_ALLOCATION_ERROR;
return nullptr;
}
if (U_FAILURE(*status)) {
delete result;
result = nullptr;
}
return result->asUSpoofChecker();
}
U_CAPI void U_EXPORT2
uspoof_close(USpoofChecker *sc) {
UErrorCode status = U_ZERO_ERROR;
SpoofImpl *This = SpoofImpl::validateThis(sc, status);
delete This;
}
U_CAPI void U_EXPORT2
uspoof_setChecks(USpoofChecker *sc, int32_t checks, UErrorCode *status) {
SpoofImpl *This = SpoofImpl::validateThis(sc, *status);
if (This == nullptr) {
return;
}
// Verify that the requested checks are all ones (bits) that
// are acceptable, known values.
if (checks & ~(USPOOF_ALL_CHECKS | USPOOF_AUX_INFO)) {
*status = U_ILLEGAL_ARGUMENT_ERROR;
return;
}
This->fChecks = checks;
}
U_CAPI int32_t U_EXPORT2
uspoof_getChecks(const USpoofChecker *sc, UErrorCode *status) {
const SpoofImpl *This = SpoofImpl::validateThis(sc, *status);
if (This == nullptr) {
return 0;
}
return This->fChecks;
}
U_CAPI void U_EXPORT2
uspoof_setRestrictionLevel(USpoofChecker *sc, URestrictionLevel restrictionLevel) {
UErrorCode status = U_ZERO_ERROR;
SpoofImpl *This = SpoofImpl::validateThis(sc, status);
if (This != nullptr) {
This->fRestrictionLevel = restrictionLevel;
This->fChecks |= USPOOF_RESTRICTION_LEVEL;
}
}
U_CAPI URestrictionLevel U_EXPORT2
uspoof_getRestrictionLevel(const USpoofChecker *sc) {
UErrorCode status = U_ZERO_ERROR;
const SpoofImpl *This = SpoofImpl::validateThis(sc, status);
if (This == nullptr) {
return USPOOF_UNRESTRICTIVE;
}
return This->fRestrictionLevel;
}
U_CAPI void U_EXPORT2
uspoof_setAllowedLocales(USpoofChecker *sc, const char *localesList, UErrorCode *status) {
SpoofImpl *This = SpoofImpl::validateThis(sc, *status);
if (This == nullptr) {
return;
}
This->setAllowedLocales(localesList, *status);
}
U_CAPI const char * U_EXPORT2
uspoof_getAllowedLocales(USpoofChecker *sc, UErrorCode *status) {
SpoofImpl *This = SpoofImpl::validateThis(sc, *status);
if (This == nullptr) {
return nullptr;
}
return This->getAllowedLocales(*status);
}
U_CAPI const USet * U_EXPORT2
uspoof_getAllowedChars(const USpoofChecker *sc, UErrorCode *status) {
const UnicodeSet *result = uspoof_getAllowedUnicodeSet(sc, status);
return result->toUSet();
}
U_CAPI const UnicodeSet * U_EXPORT2
uspoof_getAllowedUnicodeSet(const USpoofChecker *sc, UErrorCode *status) {
const SpoofImpl *This = SpoofImpl::validateThis(sc, *status);
if (This == nullptr) {
return nullptr;
}
return This->fAllowedCharsSet;
}
U_CAPI void U_EXPORT2
uspoof_setAllowedChars(USpoofChecker *sc, const USet *chars, UErrorCode *status) {
const UnicodeSet *set = UnicodeSet::fromUSet(chars);
uspoof_setAllowedUnicodeSet(sc, set, status);
}
U_CAPI void U_EXPORT2
uspoof_setAllowedUnicodeSet(USpoofChecker *sc, const UnicodeSet *chars, UErrorCode *status) {
SpoofImpl *This = SpoofImpl::validateThis(sc, *status);
if (This == nullptr) {
return;
}
if (chars->isBogus()) {
*status = U_ILLEGAL_ARGUMENT_ERROR;
return;
}
UnicodeSet *clonedSet = chars->clone();
if (clonedSet == nullptr || clonedSet->isBogus()) {
*status = U_MEMORY_ALLOCATION_ERROR;
return;
}
clonedSet->freeze();
delete This->fAllowedCharsSet;
This->fAllowedCharsSet = clonedSet;
This->fChecks |= USPOOF_CHAR_LIMIT;
}
U_CAPI int32_t U_EXPORT2
uspoof_check(const USpoofChecker *sc,
const char16_t *id, int32_t length,
int32_t *position,
UErrorCode *status) {
// Backwards compatibility:
if (position != nullptr) {
*position = 0;
}
// Delegate to uspoof_check2
return uspoof_check2(sc, id, length, nullptr, status);
}
U_CAPI int32_t U_EXPORT2
uspoof_check2(const USpoofChecker *sc,
const char16_t* id, int32_t length,
USpoofCheckResult* checkResult,
UErrorCode *status) {
const SpoofImpl *This = SpoofImpl::validateThis(sc, *status);
if (This == nullptr) {
return 0;
}
if (length < -1) {
*status = U_ILLEGAL_ARGUMENT_ERROR;
return 0;
}
UnicodeString idStr((length == -1), id, length); // Aliasing constructor.
int32_t result = uspoof_check2UnicodeString(sc, idStr, checkResult, status);
return result;
}
U_CAPI int32_t U_EXPORT2
uspoof_checkUTF8(const USpoofChecker *sc,
const char *id, int32_t length,
int32_t *position,
UErrorCode *status) {
// Backwards compatibility:
if (position != nullptr) {
*position = 0;
}
// Delegate to uspoof_check2
return uspoof_check2UTF8(sc, id, length, nullptr, status);
}
U_CAPI int32_t U_EXPORT2
uspoof_check2UTF8(const USpoofChecker *sc,
const char *id, int32_t length,
USpoofCheckResult* checkResult,
UErrorCode *status) {
if (U_FAILURE(*status)) {
return 0;
}
UnicodeString idStr = UnicodeString::fromUTF8(StringPiece(id, length>=0 ? length : static_cast<int32_t>(uprv_strlen(id))));
int32_t result = uspoof_check2UnicodeString(sc, idStr, checkResult, status);
return result;
}
U_CAPI int32_t U_EXPORT2
uspoof_areConfusable(const USpoofChecker *sc,
const char16_t *id1, int32_t length1,
const char16_t *id2, int32_t length2,
UErrorCode *status) {
SpoofImpl::validateThis(sc, *status);
if (U_FAILURE(*status)) {
return 0;
}
if (length1 < -1 || length2 < -1) {
*status = U_ILLEGAL_ARGUMENT_ERROR;
return 0;
}
UnicodeString id1Str((length1==-1), id1, length1); // Aliasing constructor
UnicodeString id2Str((length2==-1), id2, length2); // Aliasing constructor
return uspoof_areConfusableUnicodeString(sc, id1Str, id2Str, status);
}
U_CAPI int32_t U_EXPORT2
uspoof_areConfusableUTF8(const USpoofChecker *sc,
const char *id1, int32_t length1,
const char *id2, int32_t length2,
UErrorCode *status) {
SpoofImpl::validateThis(sc, *status);
if (U_FAILURE(*status)) {
return 0;
}
if (length1 < -1 || length2 < -1) {
*status = U_ILLEGAL_ARGUMENT_ERROR;
return 0;
}
UnicodeString id1Str = UnicodeString::fromUTF8(StringPiece(id1, length1>=0? length1 : static_cast<int32_t>(uprv_strlen(id1))));
UnicodeString id2Str = UnicodeString::fromUTF8(StringPiece(id2, length2>=0? length2 : static_cast<int32_t>(uprv_strlen(id2))));
int32_t results = uspoof_areConfusableUnicodeString(sc, id1Str, id2Str, status);
return results;
}
U_CAPI int32_t U_EXPORT2
uspoof_areConfusableUnicodeString(const USpoofChecker *sc,
const icu::UnicodeString &id1,
const icu::UnicodeString &id2,
UErrorCode *status) {
const SpoofImpl *This = SpoofImpl::validateThis(sc, *status);
if (U_FAILURE(*status)) {
return 0;
}
//
// See section 4 of UAX 39 for the algorithm for checking whether two strings are confusable,
// and for definitions of the types (single, whole, mixed-script) of confusables.
// We only care about a few of the check flags. Ignore the others.
// If no tests relevant to this function have been specified, return an error.
// TODO: is this really the right thing to do? It's probably an error on the caller's part,
// but logically we would just return 0 (no error).
if ((This->fChecks & USPOOF_CONFUSABLE) == 0) {
*status = U_INVALID_STATE_ERROR;
return 0;
}
// Compute the skeletons and check for confusability.
UnicodeString id1Skeleton;
uspoof_getSkeletonUnicodeString(sc, 0 /* deprecated */, id1, id1Skeleton, status);
UnicodeString id2Skeleton;
uspoof_getSkeletonUnicodeString(sc, 0 /* deprecated */, id2, id2Skeleton, status);
if (U_FAILURE(*status)) { return 0; }
if (id1Skeleton != id2Skeleton) {
return 0;
}
// If we get here, the strings are confusable. Now we just need to set the flags for the appropriate classes
// of confusables according to UTS 39 section 4.
// Start by computing the resolved script sets of id1 and id2.
ScriptSet id1RSS;
This->getResolvedScriptSet(id1, id1RSS, *status);
ScriptSet id2RSS;
This->getResolvedScriptSet(id2, id2RSS, *status);
// Turn on all applicable flags
int32_t result = 0;
if (id1RSS.intersects(id2RSS)) {
result |= USPOOF_SINGLE_SCRIPT_CONFUSABLE;
} else {
result |= USPOOF_MIXED_SCRIPT_CONFUSABLE;
if (!id1RSS.isEmpty() && !id2RSS.isEmpty()) {
result |= USPOOF_WHOLE_SCRIPT_CONFUSABLE;
}
}
// Turn off flags that the user doesn't want
if ((This->fChecks & USPOOF_SINGLE_SCRIPT_CONFUSABLE) == 0) {
result &= ~USPOOF_SINGLE_SCRIPT_CONFUSABLE;
}
if ((This->fChecks & USPOOF_MIXED_SCRIPT_CONFUSABLE) == 0) {
result &= ~USPOOF_MIXED_SCRIPT_CONFUSABLE;
}
if ((This->fChecks & USPOOF_WHOLE_SCRIPT_CONFUSABLE) == 0) {
result &= ~USPOOF_WHOLE_SCRIPT_CONFUSABLE;
}
return result;
}
2023-11-01 06:56:12 +00:00
U_CAPI uint32_t U_EXPORT2 uspoof_areBidiConfusable(const USpoofChecker *sc, UBiDiDirection direction,
const char16_t *id1, int32_t length1,
const char16_t *id2, int32_t length2,
UErrorCode *status) {
UnicodeString id1Str((length1 == -1), id1, length1); // Aliasing constructor
UnicodeString id2Str((length2 == -1), id2, length2); // Aliasing constructor
if (id1Str.isBogus() || id2Str.isBogus()) {
*status = U_ILLEGAL_ARGUMENT_ERROR;
return 0;
}
return uspoof_areBidiConfusableUnicodeString(sc, direction, id1Str, id2Str, status);
}
U_CAPI uint32_t U_EXPORT2 uspoof_areBidiConfusableUTF8(const USpoofChecker *sc, UBiDiDirection direction,
const char *id1, int32_t length1, const char *id2,
int32_t length2, UErrorCode *status) {
if (length1 < -1 || length2 < -1) {
*status = U_ILLEGAL_ARGUMENT_ERROR;
return 0;
}
UnicodeString id1Str = UnicodeString::fromUTF8(
StringPiece(id1, length1 >= 0 ? length1 : static_cast<int32_t>(uprv_strlen(id1))));
UnicodeString id2Str = UnicodeString::fromUTF8(
StringPiece(id2, length2 >= 0 ? length2 : static_cast<int32_t>(uprv_strlen(id2))));
return uspoof_areBidiConfusableUnicodeString(sc, direction, id1Str, id2Str, status);
}
U_CAPI uint32_t U_EXPORT2 uspoof_areBidiConfusableUnicodeString(const USpoofChecker *sc,
UBiDiDirection direction,
const icu::UnicodeString &id1,
const icu::UnicodeString &id2,
UErrorCode *status) {
const SpoofImpl *This = SpoofImpl::validateThis(sc, *status);
if (U_FAILURE(*status)) {
return 0;
}
//
// See section 4 of UTS 39 for the algorithm for checking whether two strings are confusable,
// and for definitions of the types (single, whole, mixed-script) of confusables.
// We only care about a few of the check flags. Ignore the others.
// If no tests relevant to this function have been specified, return an error.
// TODO: is this really the right thing to do? It's probably an error on the caller's part,
// but logically we would just return 0 (no error).
if ((This->fChecks & USPOOF_CONFUSABLE) == 0) {
*status = U_INVALID_STATE_ERROR;
return 0;
}
// Compute the skeletons and check for confusability.
UnicodeString id1Skeleton;
uspoof_getBidiSkeletonUnicodeString(sc, direction, id1, id1Skeleton, status);
UnicodeString id2Skeleton;
uspoof_getBidiSkeletonUnicodeString(sc, direction, id2, id2Skeleton, status);
if (U_FAILURE(*status)) {
return 0;
}
if (id1Skeleton != id2Skeleton) {
return 0;
}
// If we get here, the strings are confusable. Now we just need to set the flags for the appropriate
// classes of confusables according to UTS 39 section 4. Start by computing the resolved script sets
// of id1 and id2.
ScriptSet id1RSS;
This->getResolvedScriptSet(id1, id1RSS, *status);
ScriptSet id2RSS;
This->getResolvedScriptSet(id2, id2RSS, *status);
// Turn on all applicable flags
uint32_t result = 0;
if (id1RSS.intersects(id2RSS)) {
result |= USPOOF_SINGLE_SCRIPT_CONFUSABLE;
} else {
result |= USPOOF_MIXED_SCRIPT_CONFUSABLE;
if (!id1RSS.isEmpty() && !id2RSS.isEmpty()) {
result |= USPOOF_WHOLE_SCRIPT_CONFUSABLE;
}
}
// Turn off flags that the user doesn't want
return result & This->fChecks;
}
U_CAPI int32_t U_EXPORT2
uspoof_checkUnicodeString(const USpoofChecker *sc,
const icu::UnicodeString &id,
int32_t *position,
UErrorCode *status) {
// Backwards compatibility:
if (position != nullptr) {
*position = 0;
}
// Delegate to uspoof_check2
return uspoof_check2UnicodeString(sc, id, nullptr, status);
}
namespace {
int32_t checkImpl(const SpoofImpl* This, const UnicodeString& id, CheckResult* checkResult, UErrorCode* status) {
U_ASSERT(This != nullptr);
U_ASSERT(checkResult != nullptr);
checkResult->clear();
int32_t result = 0;
if (0 != (This->fChecks & USPOOF_RESTRICTION_LEVEL)) {
URestrictionLevel idRestrictionLevel = This->getRestrictionLevel(id, *status);
if (idRestrictionLevel > This->fRestrictionLevel) {
result |= USPOOF_RESTRICTION_LEVEL;
}
checkResult->fRestrictionLevel = idRestrictionLevel;
}
if (0 != (This->fChecks & USPOOF_MIXED_NUMBERS)) {
UnicodeSet numerics;
This->getNumerics(id, numerics, *status);
if (numerics.size() > 1) {
result |= USPOOF_MIXED_NUMBERS;
}
checkResult->fNumerics = numerics; // UnicodeSet::operator=
}
if (0 != (This->fChecks & USPOOF_HIDDEN_OVERLAY)) {
int32_t index = This->findHiddenOverlay(id, *status);
if (index != -1) {
result |= USPOOF_HIDDEN_OVERLAY;
}
}
if (0 != (This->fChecks & USPOOF_CHAR_LIMIT)) {
int32_t i;
UChar32 c;
int32_t length = id.length();
for (i=0; i<length ;) {
c = id.char32At(i);
i += U16_LENGTH(c);
if (!This->fAllowedCharsSet->contains(c)) {
result |= USPOOF_CHAR_LIMIT;
break;
}
}
}
if (0 != (This->fChecks & USPOOF_INVISIBLE)) {
// This check needs to be done on NFD input
UnicodeString nfdText;
gNfdNormalizer->normalize(id, nfdText, *status);
int32_t nfdLength = nfdText.length();
// scan for more than one occurrence of the same non-spacing mark
// in a sequence of non-spacing marks.
int32_t i;
UChar32 c;
UChar32 firstNonspacingMark = 0;
2022-10-28 06:11:55 +00:00
UBool haveMultipleMarks = false;
UnicodeSet marksSeenSoFar; // Set of combining marks in a single combining sequence.
for (i=0; i<nfdLength ;) {
c = nfdText.char32At(i);
i += U16_LENGTH(c);
if (u_charType(c) != U_NON_SPACING_MARK) {
firstNonspacingMark = 0;
if (haveMultipleMarks) {
marksSeenSoFar.clear();
2022-10-28 06:11:55 +00:00
haveMultipleMarks = false;
}
continue;
}
if (firstNonspacingMark == 0) {
firstNonspacingMark = c;
continue;
}
if (!haveMultipleMarks) {
marksSeenSoFar.add(firstNonspacingMark);
2022-10-28 06:11:55 +00:00
haveMultipleMarks = true;
}
if (marksSeenSoFar.contains(c)) {
// report the error, and stop scanning.
// No need to find more than the first failure.
result |= USPOOF_INVISIBLE;
break;
}
marksSeenSoFar.add(c);
}
}
checkResult->fChecks = result;
return checkResult->toCombinedBitmask(This->fChecks);
}
} // namespace
U_CAPI int32_t U_EXPORT2
uspoof_check2UnicodeString(const USpoofChecker *sc,
const icu::UnicodeString &id,
USpoofCheckResult* checkResult,
UErrorCode *status) {
const SpoofImpl *This = SpoofImpl::validateThis(sc, *status);
if (This == nullptr) {
2022-10-28 06:11:55 +00:00
return false;
}
if (checkResult != nullptr) {
CheckResult* ThisCheckResult = CheckResult::validateThis(checkResult, *status);
if (ThisCheckResult == nullptr) {
2022-10-28 06:11:55 +00:00
return false;
}
return checkImpl(This, id, ThisCheckResult, status);
} else {
// Stack-allocate the checkResult since this method doesn't return it
CheckResult stackCheckResult;
return checkImpl(This, id, &stackCheckResult, status);
}
}
U_CAPI int32_t U_EXPORT2
uspoof_getSkeleton(const USpoofChecker *sc,
uint32_t type,
const char16_t *id, int32_t length,
char16_t *dest, int32_t destCapacity,
UErrorCode *status) {
SpoofImpl::validateThis(sc, *status);
if (U_FAILURE(*status)) {
return 0;
}
if (length<-1 || destCapacity<0 || (destCapacity==0 && dest!=nullptr)) {
*status = U_ILLEGAL_ARGUMENT_ERROR;
return 0;
}
UnicodeString idStr((length==-1), id, length); // Aliasing constructor
UnicodeString destStr;
uspoof_getSkeletonUnicodeString(sc, type, idStr, destStr, status);
destStr.extract(dest, destCapacity, *status);
return destStr.length();
}
2023-11-01 06:56:12 +00:00
U_CAPI int32_t U_EXPORT2 uspoof_getBidiSkeleton(const USpoofChecker *sc, UBiDiDirection direction,
const UChar *id, int32_t length, UChar *dest,
int32_t destCapacity, UErrorCode *status) {
UnicodeString idStr((length == -1), id, length); // Aliasing constructor
if (idStr.isBogus()) {
*status = U_ILLEGAL_ARGUMENT_ERROR;
return 0;
}
UnicodeString destStr;
uspoof_getBidiSkeletonUnicodeString(sc, direction, idStr, destStr, status);
return destStr.extract(dest, destCapacity, *status);
}
U_I18N_API UnicodeString &U_EXPORT2 uspoof_getBidiSkeletonUnicodeString(const USpoofChecker *sc,
UBiDiDirection direction,
const UnicodeString &id,
UnicodeString &dest,
UErrorCode *status) {
dest.remove();
if (direction != UBIDI_LTR && direction != UBIDI_RTL) {
*status = U_ILLEGAL_ARGUMENT_ERROR;
return dest;
}
UBiDi *bidi = ubidi_open();
ubidi_setPara(bidi, id.getBuffer(), id.length(), direction,
/*embeddingLevels*/ nullptr, status);
if (U_FAILURE(*status)) {
ubidi_close(bidi);
return dest;
}
UnicodeString reordered;
int32_t const size = ubidi_getProcessedLength(bidi);
UChar* const reorderedBuffer = reordered.getBuffer(size);
if (reorderedBuffer == nullptr) {
*status = U_MEMORY_ALLOCATION_ERROR;
ubidi_close(bidi);
return dest;
}
ubidi_writeReordered(bidi, reorderedBuffer, size,
UBIDI_KEEP_BASE_COMBINING | UBIDI_DO_MIRRORING, status);
reordered.releaseBuffer(size);
ubidi_close(bidi);
if (U_FAILURE(*status)) {
return dest;
}
// The type parameter is deprecated since ICU 58; any number may be passed.
constexpr uint32_t deprecatedType = 58;
return uspoof_getSkeletonUnicodeString(sc, deprecatedType, reordered, dest, status);
}
U_I18N_API UnicodeString & U_EXPORT2
uspoof_getSkeletonUnicodeString(const USpoofChecker *sc,
uint32_t /*type*/,
const UnicodeString &id,
UnicodeString &dest,
UErrorCode *status) {
const SpoofImpl *This = SpoofImpl::validateThis(sc, *status);
if (U_FAILURE(*status)) {
return dest;
}
UnicodeString nfdId;
gNfdNormalizer->normalize(id, nfdId, *status);
// Apply the skeleton mapping to the NFD normalized input string
// Accumulate the skeleton, possibly unnormalized, in a UnicodeString.
int32_t inputIndex = 0;
UnicodeString skelStr;
int32_t normalizedLen = nfdId.length();
for (inputIndex=0; inputIndex < normalizedLen; ) {
UChar32 c = nfdId.char32At(inputIndex);
inputIndex += U16_LENGTH(c);
2023-11-01 06:56:12 +00:00
if (!u_hasBinaryProperty(c, UCHAR_DEFAULT_IGNORABLE_CODE_POINT)) {
This->fSpoofData->confusableLookup(c, skelStr);
}
}
gNfdNormalizer->normalize(skelStr, dest, *status);
return dest;
}
2023-11-01 06:56:12 +00:00
U_CAPI int32_t U_EXPORT2 uspoof_getSkeletonUTF8(const USpoofChecker *sc, uint32_t type, const char *id,
int32_t length, char *dest, int32_t destCapacity,
UErrorCode *status) {
SpoofImpl::validateThis(sc, *status);
if (U_FAILURE(*status)) {
return 0;
}
if (length<-1 || destCapacity<0 || (destCapacity==0 && dest!=nullptr)) {
*status = U_ILLEGAL_ARGUMENT_ERROR;
return 0;
}
2023-11-01 06:56:12 +00:00
UnicodeString srcStr = UnicodeString::fromUTF8(
StringPiece(id, length >= 0 ? length : static_cast<int32_t>(uprv_strlen(id))));
UnicodeString destStr;
uspoof_getSkeletonUnicodeString(sc, type, srcStr, destStr, status);
if (U_FAILURE(*status)) {
return 0;
}
int32_t lengthInUTF8 = 0;
2023-11-01 06:56:12 +00:00
u_strToUTF8(dest, destCapacity, &lengthInUTF8, destStr.getBuffer(), destStr.length(), status);
return lengthInUTF8;
}
U_CAPI int32_t U_EXPORT2 uspoof_getBidiSkeletonUTF8(const USpoofChecker *sc, UBiDiDirection direction,
const char *id, int32_t length, char *dest,
int32_t destCapacity, UErrorCode *status) {
if (length < -1) {
*status = U_ILLEGAL_ARGUMENT_ERROR;
return 0;
}
UnicodeString srcStr = UnicodeString::fromUTF8(
StringPiece(id, length >= 0 ? length : static_cast<int32_t>(uprv_strlen(id))));
UnicodeString destStr;
uspoof_getBidiSkeletonUnicodeString(sc, direction, srcStr, destStr, status);
if (U_FAILURE(*status)) {
return 0;
}
int32_t lengthInUTF8 = 0;
u_strToUTF8(dest, destCapacity, &lengthInUTF8, destStr.getBuffer(), destStr.length(), status);
return lengthInUTF8;
}
U_CAPI int32_t U_EXPORT2
uspoof_serialize(USpoofChecker *sc,void *buf, int32_t capacity, UErrorCode *status) {
SpoofImpl *This = SpoofImpl::validateThis(sc, *status);
if (This == nullptr) {
U_ASSERT(U_FAILURE(*status));
return 0;
}
return This->fSpoofData->serialize(buf, capacity, *status);
}
U_CAPI const USet * U_EXPORT2
uspoof_getInclusionSet(UErrorCode *status) {
umtx_initOnce(gSpoofInitStaticsOnce, &initializeStatics, *status);
return gInclusionSet->toUSet();
}
U_CAPI const USet * U_EXPORT2
uspoof_getRecommendedSet(UErrorCode *status) {
umtx_initOnce(gSpoofInitStaticsOnce, &initializeStatics, *status);
return gRecommendedSet->toUSet();
}
U_I18N_API const UnicodeSet * U_EXPORT2
uspoof_getInclusionUnicodeSet(UErrorCode *status) {
umtx_initOnce(gSpoofInitStaticsOnce, &initializeStatics, *status);
return gInclusionSet;
}
U_I18N_API const UnicodeSet * U_EXPORT2
uspoof_getRecommendedUnicodeSet(UErrorCode *status) {
umtx_initOnce(gSpoofInitStaticsOnce, &initializeStatics, *status);
return gRecommendedSet;
}
//------------------
// CheckResult APIs
//------------------
U_CAPI USpoofCheckResult* U_EXPORT2
uspoof_openCheckResult(UErrorCode *status) {
CheckResult* checkResult = new CheckResult();
if (checkResult == nullptr) {
*status = U_MEMORY_ALLOCATION_ERROR;
return nullptr;
}
return checkResult->asUSpoofCheckResult();
}
U_CAPI void U_EXPORT2
uspoof_closeCheckResult(USpoofCheckResult* checkResult) {
UErrorCode status = U_ZERO_ERROR;
CheckResult* This = CheckResult::validateThis(checkResult, status);
delete This;
}
U_CAPI int32_t U_EXPORT2
uspoof_getCheckResultChecks(const USpoofCheckResult *checkResult, UErrorCode *status) {
const CheckResult* This = CheckResult::validateThis(checkResult, *status);
if (U_FAILURE(*status)) { return 0; }
return This->fChecks;
}
U_CAPI URestrictionLevel U_EXPORT2
uspoof_getCheckResultRestrictionLevel(const USpoofCheckResult *checkResult, UErrorCode *status) {
const CheckResult* This = CheckResult::validateThis(checkResult, *status);
if (U_FAILURE(*status)) { return USPOOF_UNRESTRICTIVE; }
return This->fRestrictionLevel;
}
U_CAPI const USet* U_EXPORT2
uspoof_getCheckResultNumerics(const USpoofCheckResult *checkResult, UErrorCode *status) {
const CheckResult* This = CheckResult::validateThis(checkResult, *status);
if (U_FAILURE(*status)) { return nullptr; }
return This->fNumerics.toUSet();
}
#endif // !UCONFIG_NO_NORMALIZATION