godot/thirdparty/icu4c/common/unistr.cpp

2031 lines
58 KiB
C++
Raw Normal View History

// © 2016 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html
/*
******************************************************************************
* Copyright (C) 1999-2016, International Business Machines Corporation and
* others. All Rights Reserved.
******************************************************************************
*
* File unistr.cpp
*
* Modification History:
*
* Date Name Description
* 09/25/98 stephen Creation.
* 04/20/99 stephen Overhauled per 4/16 code review.
* 07/09/99 stephen Renamed {hi,lo},{byte,word} to icu_X for HP/UX
* 11/18/99 aliu Added handleReplaceBetween() to make inherit from
* Replaceable.
* 06/25/01 grhoten Removed the dependency on iostream
******************************************************************************
*/
#include "unicode/utypes.h"
#include "unicode/appendable.h"
#include "unicode/putil.h"
#include "cstring.h"
#include "cmemory.h"
#include "unicode/ustring.h"
#include "unicode/unistr.h"
#include "unicode/utf.h"
#include "unicode/utf16.h"
#include "uelement.h"
#include "ustr_imp.h"
#include "umutex.h"
#include "uassert.h"
#if 0
#include <iostream>
using namespace std;
//DEBUGGING
void
print(const UnicodeString& s,
const char *name)
{
char16_t c;
cout << name << ":|";
for(int i = 0; i < s.length(); ++i) {
c = s[i];
if(c>= 0x007E || c < 0x0020)
cout << "[0x" << hex << s[i] << "]";
else
cout << (char) s[i];
}
cout << '|' << endl;
}
void
print(const char16_t *s,
int32_t len,
const char *name)
{
char16_t c;
cout << name << ":|";
for(int i = 0; i < len; ++i) {
c = s[i];
if(c>= 0x007E || c < 0x0020)
cout << "[0x" << hex << s[i] << "]";
else
cout << (char) s[i];
}
cout << '|' << endl;
}
// END DEBUGGING
#endif
// Local function definitions for now
// need to copy areas that may overlap
static
inline void
us_arrayCopy(const char16_t *src, int32_t srcStart,
char16_t *dst, int32_t dstStart, int32_t count)
{
if(count>0) {
uprv_memmove(dst+dstStart, src+srcStart, (size_t)count*sizeof(*src));
}
}
// u_unescapeAt() callback to get a char16_t from a UnicodeString
U_CDECL_BEGIN
static char16_t U_CALLCONV
UnicodeString_charAt(int32_t offset, void *context) {
return ((icu::UnicodeString*) context)->charAt(offset);
}
U_CDECL_END
U_NAMESPACE_BEGIN
/* The Replaceable virtual destructor can't be defined in the header
due to how AIX works with multiple definitions of virtual functions.
*/
Replaceable::~Replaceable() {}
UOBJECT_DEFINE_RTTI_IMPLEMENTATION(UnicodeString)
UnicodeString U_EXPORT2
operator+ (const UnicodeString &s1, const UnicodeString &s2) {
return
UnicodeString(s1.length()+s2.length()+1, (UChar32)0, 0).
append(s1).
append(s2);
}
//========================================
// Reference Counting functions, put at top of file so that optimizing compilers
// have a chance to automatically inline.
//========================================
void
UnicodeString::addRef() {
umtx_atomic_inc((u_atomic_int32_t *)fUnion.fFields.fArray - 1);
}
int32_t
UnicodeString::removeRef() {
return umtx_atomic_dec((u_atomic_int32_t *)fUnion.fFields.fArray - 1);
}
int32_t
UnicodeString::refCount() const {
return umtx_loadAcquire(*((u_atomic_int32_t *)fUnion.fFields.fArray - 1));
}
void
UnicodeString::releaseArray() {
if((fUnion.fFields.fLengthAndFlags & kRefCounted) && removeRef() == 0) {
uprv_free((int32_t *)fUnion.fFields.fArray - 1);
}
}
//========================================
// Constructors
//========================================
// The default constructor is inline in unistr.h.
UnicodeString::UnicodeString(int32_t capacity, UChar32 c, int32_t count) {
fUnion.fFields.fLengthAndFlags = 0;
if(count <= 0 || (uint32_t)c > 0x10ffff) {
// just allocate and do not do anything else
allocate(capacity);
} else if(c <= 0xffff) {
int32_t length = count;
if(capacity < length) {
capacity = length;
}
if(allocate(capacity)) {
char16_t *array = getArrayStart();
char16_t unit = (char16_t)c;
for(int32_t i = 0; i < length; ++i) {
array[i] = unit;
}
setLength(length);
}
} else { // supplementary code point, write surrogate pairs
if(count > (INT32_MAX / 2)) {
// We would get more than 2G UChars.
allocate(capacity);
return;
}
int32_t length = count * 2;
if(capacity < length) {
capacity = length;
}
if(allocate(capacity)) {
char16_t *array = getArrayStart();
char16_t lead = U16_LEAD(c);
char16_t trail = U16_TRAIL(c);
for(int32_t i = 0; i < length; i += 2) {
array[i] = lead;
array[i + 1] = trail;
}
setLength(length);
}
}
}
UnicodeString::UnicodeString(char16_t ch) {
fUnion.fFields.fLengthAndFlags = kLength1 | kShortString;
fUnion.fStackFields.fBuffer[0] = ch;
}
UnicodeString::UnicodeString(UChar32 ch) {
fUnion.fFields.fLengthAndFlags = kShortString;
int32_t i = 0;
2022-10-28 06:11:55 +00:00
UBool isError = false;
U16_APPEND(fUnion.fStackFields.fBuffer, i, US_STACKBUF_SIZE, ch, isError);
// We test isError so that the compiler does not complain that we don't.
// If isError then i==0 which is what we want anyway.
if(!isError) {
setShortLength(i);
}
}
UnicodeString::UnicodeString(const char16_t *text) {
fUnion.fFields.fLengthAndFlags = kShortString;
doAppend(text, 0, -1);
}
UnicodeString::UnicodeString(const char16_t *text,
int32_t textLength) {
fUnion.fFields.fLengthAndFlags = kShortString;
doAppend(text, 0, textLength);
}
UnicodeString::UnicodeString(UBool isTerminated,
ConstChar16Ptr textPtr,
int32_t textLength) {
fUnion.fFields.fLengthAndFlags = kReadonlyAlias;
const char16_t *text = textPtr;
if(text == nullptr) {
// treat as an empty string, do not alias
setToEmpty();
} else if(textLength < -1 ||
(textLength == -1 && !isTerminated) ||
(textLength >= 0 && isTerminated && text[textLength] != 0)
) {
setToBogus();
} else {
if(textLength == -1) {
// text is terminated, or else it would have failed the above test
textLength = u_strlen(text);
}
setArray(const_cast<char16_t *>(text), textLength,
isTerminated ? textLength + 1 : textLength);
}
}
UnicodeString::UnicodeString(char16_t *buff,
int32_t buffLength,
int32_t buffCapacity) {
fUnion.fFields.fLengthAndFlags = kWritableAlias;
if(buff == nullptr) {
// treat as an empty string, do not alias
setToEmpty();
} else if(buffLength < -1 || buffCapacity < 0 || buffLength > buffCapacity) {
setToBogus();
} else {
if(buffLength == -1) {
// fLength = u_strlen(buff); but do not look beyond buffCapacity
const char16_t *p = buff, *limit = buff + buffCapacity;
while(p != limit && *p != 0) {
++p;
}
buffLength = (int32_t)(p - buff);
}
setArray(buff, buffLength, buffCapacity);
}
}
UnicodeString::UnicodeString(const char *src, int32_t length, EInvariant) {
fUnion.fFields.fLengthAndFlags = kShortString;
if(src==nullptr) {
// treat as an empty string
} else {
if(length<0) {
length=(int32_t)uprv_strlen(src);
}
2022-10-28 06:11:55 +00:00
if(cloneArrayIfNeeded(length, length, false)) {
u_charsToUChars(src, getArrayStart(), length);
setLength(length);
} else {
setToBogus();
}
}
}
#if U_CHARSET_IS_UTF8
UnicodeString::UnicodeString(const char *codepageData) {
fUnion.fFields.fLengthAndFlags = kShortString;
if(codepageData != 0) {
setToUTF8(codepageData);
}
}
UnicodeString::UnicodeString(const char *codepageData, int32_t dataLength) {
fUnion.fFields.fLengthAndFlags = kShortString;
// if there's nothing to convert, do nothing
if(codepageData == 0 || dataLength == 0 || dataLength < -1) {
return;
}
if(dataLength == -1) {
dataLength = (int32_t)uprv_strlen(codepageData);
}
setToUTF8(StringPiece(codepageData, dataLength));
}
// else see unistr_cnv.cpp
#endif
UnicodeString::UnicodeString(const UnicodeString& that) {
fUnion.fFields.fLengthAndFlags = kShortString;
copyFrom(that);
}
UnicodeString::UnicodeString(UnicodeString &&src) noexcept {
2022-10-28 06:11:55 +00:00
copyFieldsFrom(src, true);
}
UnicodeString::UnicodeString(const UnicodeString& that,
int32_t srcStart) {
fUnion.fFields.fLengthAndFlags = kShortString;
setTo(that, srcStart);
}
UnicodeString::UnicodeString(const UnicodeString& that,
int32_t srcStart,
int32_t srcLength) {
fUnion.fFields.fLengthAndFlags = kShortString;
setTo(that, srcStart, srcLength);
}
// Replaceable base class clone() default implementation, does not clone
Replaceable *
Replaceable::clone() const {
return nullptr;
}
// UnicodeString overrides clone() with a real implementation
UnicodeString *
UnicodeString::clone() const {
LocalPointer<UnicodeString> clonedString(new UnicodeString(*this));
return clonedString.isValid() && !clonedString->isBogus() ? clonedString.orphan() : nullptr;
}
//========================================
// array allocation
//========================================
namespace {
const int32_t kGrowSize = 128;
// The number of bytes for one int32_t reference counter and capacity UChars
// must fit into a 32-bit size_t (at least when on a 32-bit platform).
// We also add one for the NUL terminator, to avoid reallocation in getTerminatedBuffer(),
// and round up to a multiple of 16 bytes.
// This means that capacity must be at most (0xfffffff0 - 4) / 2 - 1 = 0x7ffffff5.
// (With more complicated checks we could go up to 0x7ffffffd without rounding up,
// but that does not seem worth it.)
const int32_t kMaxCapacity = 0x7ffffff5;
int32_t getGrowCapacity(int32_t newLength) {
int32_t growSize = (newLength >> 2) + kGrowSize;
if(growSize <= (kMaxCapacity - newLength)) {
return newLength + growSize;
} else {
return kMaxCapacity;
}
}
} // namespace
UBool
UnicodeString::allocate(int32_t capacity) {
if(capacity <= US_STACKBUF_SIZE) {
fUnion.fFields.fLengthAndFlags = kShortString;
2022-10-28 06:11:55 +00:00
return true;
}
if(capacity <= kMaxCapacity) {
++capacity; // for the NUL
// Switch to size_t which is unsigned so that we can allocate up to 4GB.
// Reference counter + UChars.
size_t numBytes = sizeof(int32_t) + (size_t)capacity * U_SIZEOF_UCHAR;
// Round up to a multiple of 16.
numBytes = (numBytes + 15) & ~15;
int32_t *array = (int32_t *) uprv_malloc(numBytes);
if(array != nullptr) {
// set initial refCount and point behind the refCount
*array++ = 1;
numBytes -= sizeof(int32_t);
// have fArray point to the first char16_t
fUnion.fFields.fArray = (char16_t *)array;
fUnion.fFields.fCapacity = (int32_t)(numBytes / U_SIZEOF_UCHAR);
fUnion.fFields.fLengthAndFlags = kLongString;
2022-10-28 06:11:55 +00:00
return true;
}
}
fUnion.fFields.fLengthAndFlags = kIsBogus;
fUnion.fFields.fArray = 0;
fUnion.fFields.fCapacity = 0;
2022-10-28 06:11:55 +00:00
return false;
}
//========================================
// Destructor
//========================================
#ifdef UNISTR_COUNT_FINAL_STRING_LENGTHS
static u_atomic_int32_t finalLengthCounts[0x400]; // UnicodeString::kMaxShortLength+1
static u_atomic_int32_t beyondCount(0);
U_CAPI void unistr_printLengths() {
int32_t i;
for(i = 0; i <= 59; ++i) {
printf("%2d, %9d\n", i, (int32_t)finalLengthCounts[i]);
}
int32_t beyond = beyondCount;
for(; i < UPRV_LENGTHOF(finalLengthCounts); ++i) {
beyond += finalLengthCounts[i];
}
printf(">59, %9d\n", beyond);
}
#endif
UnicodeString::~UnicodeString()
{
#ifdef UNISTR_COUNT_FINAL_STRING_LENGTHS
// Count lengths of strings at the end of their lifetime.
// Useful for discussion of a desirable stack buffer size.
// Count the contents length, not the optional NUL terminator nor further capacity.
// Ignore open-buffer strings and strings which alias external storage.
if((fUnion.fFields.fLengthAndFlags&(kOpenGetBuffer|kReadonlyAlias|kWritableAlias)) == 0) {
if(hasShortLength()) {
umtx_atomic_inc(finalLengthCounts + getShortLength());
} else {
umtx_atomic_inc(&beyondCount);
}
}
#endif
releaseArray();
}
//========================================
// Factory methods
//========================================
UnicodeString UnicodeString::fromUTF8(StringPiece utf8) {
UnicodeString result;
result.setToUTF8(utf8);
return result;
}
UnicodeString UnicodeString::fromUTF32(const UChar32 *utf32, int32_t length) {
UnicodeString result;
int32_t capacity;
// Most UTF-32 strings will be BMP-only and result in a same-length
// UTF-16 string. We overestimate the capacity just slightly,
// just in case there are a few supplementary characters.
if(length <= US_STACKBUF_SIZE) {
capacity = US_STACKBUF_SIZE;
} else {
capacity = length + (length >> 4) + 4;
}
do {
char16_t *utf16 = result.getBuffer(capacity);
int32_t length16;
UErrorCode errorCode = U_ZERO_ERROR;
u_strFromUTF32WithSub(utf16, result.getCapacity(), &length16,
utf32, length,
0xfffd, // Substitution character.
nullptr, // Don't care about number of substitutions.
&errorCode);
result.releaseBuffer(length16);
if(errorCode == U_BUFFER_OVERFLOW_ERROR) {
capacity = length16 + 1; // +1 for the terminating NUL.
continue;
} else if(U_FAILURE(errorCode)) {
result.setToBogus();
}
break;
2022-10-28 06:11:55 +00:00
} while(true);
return result;
}
//========================================
// Assignment
//========================================
UnicodeString &
UnicodeString::operator=(const UnicodeString &src) {
return copyFrom(src);
}
UnicodeString &
UnicodeString::fastCopyFrom(const UnicodeString &src) {
2022-10-28 06:11:55 +00:00
return copyFrom(src, true);
}
UnicodeString &
UnicodeString::copyFrom(const UnicodeString &src, UBool fastCopy) {
// if assigning to ourselves, do nothing
if(this == &src) {
return *this;
}
// is the right side bogus?
if(src.isBogus()) {
setToBogus();
return *this;
}
// delete the current contents
releaseArray();
if(src.isEmpty()) {
// empty string - use the stack buffer
setToEmpty();
return *this;
}
// fLength>0 and not an "open" src.getBuffer(minCapacity)
fUnion.fFields.fLengthAndFlags = src.fUnion.fFields.fLengthAndFlags;
switch(src.fUnion.fFields.fLengthAndFlags & kAllStorageFlags) {
case kShortString:
// short string using the stack buffer, do the same
uprv_memcpy(fUnion.fStackFields.fBuffer, src.fUnion.fStackFields.fBuffer,
getShortLength() * U_SIZEOF_UCHAR);
break;
case kLongString:
// src uses a refCounted string buffer, use that buffer with refCount
// src is const, use a cast - we don't actually change it
const_cast<UnicodeString &>(src).addRef();
// copy all fields, share the reference-counted buffer
fUnion.fFields.fArray = src.fUnion.fFields.fArray;
fUnion.fFields.fCapacity = src.fUnion.fFields.fCapacity;
if(!hasShortLength()) {
fUnion.fFields.fLength = src.fUnion.fFields.fLength;
}
break;
case kReadonlyAlias:
if(fastCopy) {
// src is a readonly alias, do the same
// -> maintain the readonly alias as such
fUnion.fFields.fArray = src.fUnion.fFields.fArray;
fUnion.fFields.fCapacity = src.fUnion.fFields.fCapacity;
if(!hasShortLength()) {
fUnion.fFields.fLength = src.fUnion.fFields.fLength;
}
break;
}
// else if(!fastCopy) fall through to case kWritableAlias
// -> allocate a new buffer and copy the contents
U_FALLTHROUGH;
case kWritableAlias: {
// src is a writable alias; we make a copy of that instead
int32_t srcLength = src.length();
if(allocate(srcLength)) {
u_memcpy(getArrayStart(), src.getArrayStart(), srcLength);
setLength(srcLength);
break;
}
// if there is not enough memory, then fall through to setting to bogus
U_FALLTHROUGH;
}
default:
// if src is bogus, set ourselves to bogus
// do not call setToBogus() here because fArray and flags are not consistent here
fUnion.fFields.fLengthAndFlags = kIsBogus;
fUnion.fFields.fArray = 0;
fUnion.fFields.fCapacity = 0;
break;
}
return *this;
}
UnicodeString &UnicodeString::operator=(UnicodeString &&src) noexcept {
// No explicit check for self move assignment, consistent with standard library.
// Self move assignment causes no crash nor leak but might make the object bogus.
releaseArray();
2022-10-28 06:11:55 +00:00
copyFieldsFrom(src, true);
return *this;
}
// Same as move assignment except without memory management.
void UnicodeString::copyFieldsFrom(UnicodeString &src, UBool setSrcToBogus) noexcept {
int16_t lengthAndFlags = fUnion.fFields.fLengthAndFlags = src.fUnion.fFields.fLengthAndFlags;
if(lengthAndFlags & kUsingStackBuffer) {
// Short string using the stack buffer, copy the contents.
// Check for self assignment to prevent "overlap in memcpy" warnings,
// although it should be harmless to copy a buffer to itself exactly.
if(this != &src) {
uprv_memcpy(fUnion.fStackFields.fBuffer, src.fUnion.fStackFields.fBuffer,
getShortLength() * U_SIZEOF_UCHAR);
}
} else {
// In all other cases, copy all fields.
fUnion.fFields.fArray = src.fUnion.fFields.fArray;
fUnion.fFields.fCapacity = src.fUnion.fFields.fCapacity;
if(!hasShortLength()) {
fUnion.fFields.fLength = src.fUnion.fFields.fLength;
}
if(setSrcToBogus) {
// Set src to bogus without releasing any memory.
src.fUnion.fFields.fLengthAndFlags = kIsBogus;
src.fUnion.fFields.fArray = nullptr;
src.fUnion.fFields.fCapacity = 0;
}
}
}
void UnicodeString::swap(UnicodeString &other) noexcept {
UnicodeString temp; // Empty short string: Known not to need releaseArray().
// Copy fields without resetting source values in between.
2022-10-28 06:11:55 +00:00
temp.copyFieldsFrom(*this, false);
this->copyFieldsFrom(other, false);
other.copyFieldsFrom(temp, false);
// Set temp to an empty string so that other's memory is not released twice.
temp.fUnion.fFields.fLengthAndFlags = kShortString;
}
//========================================
// Miscellaneous operations
//========================================
UnicodeString UnicodeString::unescape() const {
UnicodeString result(length(), (UChar32)0, (int32_t)0); // construct with capacity
if (result.isBogus()) {
return result;
}
const char16_t *array = getBuffer();
int32_t len = length();
int32_t prev = 0;
for (int32_t i=0;;) {
if (i == len) {
result.append(array, prev, len - prev);
break;
}
if (array[i++] == 0x5C /*'\\'*/) {
result.append(array, prev, (i - 1) - prev);
UChar32 c = unescapeAt(i); // advances i
if (c < 0) {
result.remove(); // return empty string
break; // invalid escape sequence
}
result.append(c);
prev = i;
}
}
return result;
}
UChar32 UnicodeString::unescapeAt(int32_t &offset) const {
return u_unescapeAt(UnicodeString_charAt, &offset, length(), (void*)this);
}
//========================================
// Read-only implementation
//========================================
UBool
UnicodeString::doEquals(const UnicodeString &text, int32_t len) const {
// Requires: this & text not bogus and have same lengths.
// Byte-wise comparison works for equality regardless of endianness.
return uprv_memcmp(getArrayStart(), text.getArrayStart(), len * U_SIZEOF_UCHAR) == 0;
}
UBool
UnicodeString::doEqualsSubstring( int32_t start,
int32_t length,
const char16_t *srcChars,
int32_t srcStart,
int32_t srcLength) const
{
// compare illegal string values
if(isBogus()) {
return false;
}
// pin indices to legal values
pinIndices(start, length);
if(srcChars == nullptr) {
// treat const char16_t *srcChars==nullptr as an empty string
return length == 0 ? true : false;
}
// get the correct pointer
const char16_t *chars = getArrayStart();
chars += start;
srcChars += srcStart;
// get the srcLength if necessary
if(srcLength < 0) {
srcLength = u_strlen(srcChars + srcStart);
}
if (length != srcLength) {
return false;
}
if(length == 0 || chars == srcChars) {
return true;
}
return u_memcmp(chars, srcChars, srcLength) == 0;
}
int8_t
UnicodeString::doCompare( int32_t start,
int32_t length,
const char16_t *srcChars,
int32_t srcStart,
int32_t srcLength) const
{
// compare illegal string values
if(isBogus()) {
return -1;
}
// pin indices to legal values
pinIndices(start, length);
if(srcChars == nullptr) {
// treat const char16_t *srcChars==nullptr as an empty string
return length == 0 ? 0 : 1;
}
// get the correct pointer
const char16_t *chars = getArrayStart();
chars += start;
srcChars += srcStart;
int32_t minLength;
int8_t lengthResult;
// get the srcLength if necessary
if(srcLength < 0) {
srcLength = u_strlen(srcChars + srcStart);
}
// are we comparing different lengths?
if(length != srcLength) {
if(length < srcLength) {
minLength = length;
lengthResult = -1;
} else {
minLength = srcLength;
lengthResult = 1;
}
} else {
minLength = length;
lengthResult = 0;
}
/*
* note that uprv_memcmp() returns an int but we return an int8_t;
* we need to take care not to truncate the result -
* one way to do this is to right-shift the value to
* move the sign bit into the lower 8 bits and making sure that this
* does not become 0 itself
*/
if(minLength > 0 && chars != srcChars) {
int32_t result;
# if U_IS_BIG_ENDIAN
// big-endian: byte comparison works
result = uprv_memcmp(chars, srcChars, minLength * sizeof(char16_t));
if(result != 0) {
return (int8_t)(result >> 15 | 1);
}
# else
// little-endian: compare char16_t units
do {
result = ((int32_t)*(chars++) - (int32_t)*(srcChars++));
if(result != 0) {
return (int8_t)(result >> 15 | 1);
}
} while(--minLength > 0);
# endif
}
return lengthResult;
}
/* String compare in code point order - doCompare() compares in code unit order. */
int8_t
UnicodeString::doCompareCodePointOrder(int32_t start,
int32_t length,
const char16_t *srcChars,
int32_t srcStart,
int32_t srcLength) const
{
// compare illegal string values
// treat const char16_t *srcChars==nullptr as an empty string
if(isBogus()) {
return -1;
}
// pin indices to legal values
pinIndices(start, length);
if(srcChars == nullptr) {
srcStart = srcLength = 0;
}
int32_t diff = uprv_strCompare(getArrayStart() + start, length, (srcChars!=nullptr)?(srcChars + srcStart):nullptr, srcLength, false, true);
/* translate the 32-bit result into an 8-bit one */
if(diff!=0) {
return (int8_t)(diff >> 15 | 1);
} else {
return 0;
}
}
int32_t
UnicodeString::getLength() const {
return length();
}
char16_t
UnicodeString::getCharAt(int32_t offset) const {
return charAt(offset);
}
UChar32
UnicodeString::getChar32At(int32_t offset) const {
return char32At(offset);
}
UChar32
UnicodeString::char32At(int32_t offset) const
{
int32_t len = length();
if((uint32_t)offset < (uint32_t)len) {
const char16_t *array = getArrayStart();
UChar32 c;
U16_GET(array, 0, offset, len, c);
return c;
} else {
return kInvalidUChar;
}
}
int32_t
UnicodeString::getChar32Start(int32_t offset) const {
if((uint32_t)offset < (uint32_t)length()) {
const char16_t *array = getArrayStart();
U16_SET_CP_START(array, 0, offset);
return offset;
} else {
return 0;
}
}
int32_t
UnicodeString::getChar32Limit(int32_t offset) const {
int32_t len = length();
if((uint32_t)offset < (uint32_t)len) {
const char16_t *array = getArrayStart();
U16_SET_CP_LIMIT(array, 0, offset, len);
return offset;
} else {
return len;
}
}
int32_t
UnicodeString::countChar32(int32_t start, int32_t length) const {
pinIndices(start, length);
// if(isBogus()) then fArray==0 and start==0 - u_countChar32() checks for nullptr
return u_countChar32(getArrayStart()+start, length);
}
UBool
UnicodeString::hasMoreChar32Than(int32_t start, int32_t length, int32_t number) const {
pinIndices(start, length);
// if(isBogus()) then fArray==0 and start==0 - u_strHasMoreChar32Than() checks for nullptr
return u_strHasMoreChar32Than(getArrayStart()+start, length, number);
}
int32_t
UnicodeString::moveIndex32(int32_t index, int32_t delta) const {
// pin index
int32_t len = length();
if(index<0) {
index=0;
} else if(index>len) {
index=len;
}
const char16_t *array = getArrayStart();
if(delta>0) {
U16_FWD_N(array, index, len, delta);
} else {
U16_BACK_N(array, 0, index, -delta);
}
return index;
}
void
UnicodeString::doExtract(int32_t start,
int32_t length,
char16_t *dst,
int32_t dstStart) const
{
// pin indices to legal values
pinIndices(start, length);
// do not copy anything if we alias dst itself
const char16_t *array = getArrayStart();
if(array + start != dst + dstStart) {
us_arrayCopy(array, start, dst, dstStart, length);
}
}
int32_t
UnicodeString::extract(Char16Ptr dest, int32_t destCapacity,
UErrorCode &errorCode) const {
int32_t len = length();
if(U_SUCCESS(errorCode)) {
if(isBogus() || destCapacity<0 || (destCapacity>0 && dest==0)) {
errorCode=U_ILLEGAL_ARGUMENT_ERROR;
} else {
const char16_t *array = getArrayStart();
if(len>0 && len<=destCapacity && array!=dest) {
u_memcpy(dest, array, len);
}
return u_terminateUChars(dest, destCapacity, len, &errorCode);
}
}
return len;
}
int32_t
UnicodeString::extract(int32_t start,
int32_t length,
char *target,
int32_t targetCapacity,
enum EInvariant) const
{
// if the arguments are illegal, then do nothing
if(targetCapacity < 0 || (targetCapacity > 0 && target == nullptr)) {
return 0;
}
// pin the indices to legal values
pinIndices(start, length);
if(length <= targetCapacity) {
u_UCharsToChars(getArrayStart() + start, target, length);
}
UErrorCode status = U_ZERO_ERROR;
return u_terminateChars(target, targetCapacity, length, &status);
}
UnicodeString
UnicodeString::tempSubString(int32_t start, int32_t len) const {
pinIndices(start, len);
const char16_t *array = getBuffer(); // not getArrayStart() to check kIsBogus & kOpenGetBuffer
if(array==nullptr) {
array=fUnion.fStackFields.fBuffer; // anything not nullptr because that would make an empty string
len=-2; // bogus result string
}
2022-10-28 06:11:55 +00:00
return UnicodeString(false, array + start, len);
}
int32_t
UnicodeString::toUTF8(int32_t start, int32_t len,
char *target, int32_t capacity) const {
pinIndices(start, len);
int32_t length8;
UErrorCode errorCode = U_ZERO_ERROR;
u_strToUTF8WithSub(target, capacity, &length8,
getBuffer() + start, len,
0xFFFD, // Standard substitution character.
nullptr, // Don't care about number of substitutions.
&errorCode);
return length8;
}
#if U_CHARSET_IS_UTF8
int32_t
UnicodeString::extract(int32_t start, int32_t len,
char *target, uint32_t dstSize) const {
// if the arguments are illegal, then do nothing
if(/*dstSize < 0 || */(dstSize > 0 && target == 0)) {
return 0;
}
return toUTF8(start, len, target, dstSize <= 0x7fffffff ? (int32_t)dstSize : 0x7fffffff);
}
// else see unistr_cnv.cpp
#endif
void
UnicodeString::extractBetween(int32_t start,
int32_t limit,
UnicodeString& target) const {
pinIndex(start);
pinIndex(limit);
doExtract(start, limit - start, target);
}
// When converting from UTF-16 to UTF-8, the result will have at most 3 times
// as many bytes as the source has UChars.
// The "worst cases" are writing systems like Indic, Thai and CJK with
// 3:1 bytes:UChars.
void
UnicodeString::toUTF8(ByteSink &sink) const {
int32_t length16 = length();
if(length16 != 0) {
char stackBuffer[1024];
int32_t capacity = (int32_t)sizeof(stackBuffer);
2022-10-28 06:11:55 +00:00
UBool utf8IsOwned = false;
char *utf8 = sink.GetAppendBuffer(length16 < capacity ? length16 : capacity,
3*length16,
stackBuffer, capacity,
&capacity);
int32_t length8 = 0;
UErrorCode errorCode = U_ZERO_ERROR;
u_strToUTF8WithSub(utf8, capacity, &length8,
getBuffer(), length16,
0xFFFD, // Standard substitution character.
nullptr, // Don't care about number of substitutions.
&errorCode);
if(errorCode == U_BUFFER_OVERFLOW_ERROR) {
utf8 = (char *)uprv_malloc(length8);
if(utf8 != nullptr) {
2022-10-28 06:11:55 +00:00
utf8IsOwned = true;
errorCode = U_ZERO_ERROR;
u_strToUTF8WithSub(utf8, length8, &length8,
getBuffer(), length16,
0xFFFD, // Standard substitution character.
nullptr, // Don't care about number of substitutions.
&errorCode);
} else {
errorCode = U_MEMORY_ALLOCATION_ERROR;
}
}
if(U_SUCCESS(errorCode)) {
sink.Append(utf8, length8);
sink.Flush();
}
if(utf8IsOwned) {
uprv_free(utf8);
}
}
}
int32_t
UnicodeString::toUTF32(UChar32 *utf32, int32_t capacity, UErrorCode &errorCode) const {
int32_t length32=0;
if(U_SUCCESS(errorCode)) {
// getBuffer() and u_strToUTF32WithSub() check for illegal arguments.
u_strToUTF32WithSub(utf32, capacity, &length32,
getBuffer(), length(),
0xfffd, // Substitution character.
nullptr, // Don't care about number of substitutions.
&errorCode);
}
return length32;
}
int32_t
UnicodeString::indexOf(const char16_t *srcChars,
int32_t srcStart,
int32_t srcLength,
int32_t start,
int32_t length) const
{
if(isBogus() || srcChars == 0 || srcStart < 0 || srcLength == 0) {
return -1;
}
// UnicodeString does not find empty substrings
if(srcLength < 0 && srcChars[srcStart] == 0) {
return -1;
}
// get the indices within bounds
pinIndices(start, length);
// find the first occurrence of the substring
const char16_t *array = getArrayStart();
const char16_t *match = u_strFindFirst(array + start, length, srcChars + srcStart, srcLength);
if(match == nullptr) {
return -1;
} else {
return (int32_t)(match - array);
}
}
int32_t
UnicodeString::doIndexOf(char16_t c,
int32_t start,
int32_t length) const
{
// pin indices
pinIndices(start, length);
// find the first occurrence of c
const char16_t *array = getArrayStart();
const char16_t *match = u_memchr(array + start, c, length);
if(match == nullptr) {
return -1;
} else {
return (int32_t)(match - array);
}
}
int32_t
UnicodeString::doIndexOf(UChar32 c,
int32_t start,
int32_t length) const {
// pin indices
pinIndices(start, length);
// find the first occurrence of c
const char16_t *array = getArrayStart();
const char16_t *match = u_memchr32(array + start, c, length);
if(match == nullptr) {
return -1;
} else {
return (int32_t)(match - array);
}
}
int32_t
UnicodeString::lastIndexOf(const char16_t *srcChars,
int32_t srcStart,
int32_t srcLength,
int32_t start,
int32_t length) const
{
if(isBogus() || srcChars == 0 || srcStart < 0 || srcLength == 0) {
return -1;
}
// UnicodeString does not find empty substrings
if(srcLength < 0 && srcChars[srcStart] == 0) {
return -1;
}
// get the indices within bounds
pinIndices(start, length);
// find the last occurrence of the substring
const char16_t *array = getArrayStart();
const char16_t *match = u_strFindLast(array + start, length, srcChars + srcStart, srcLength);
if(match == nullptr) {
return -1;
} else {
return (int32_t)(match - array);
}
}
int32_t
UnicodeString::doLastIndexOf(char16_t c,
int32_t start,
int32_t length) const
{
if(isBogus()) {
return -1;
}
// pin indices
pinIndices(start, length);
// find the last occurrence of c
const char16_t *array = getArrayStart();
const char16_t *match = u_memrchr(array + start, c, length);
if(match == nullptr) {
return -1;
} else {
return (int32_t)(match - array);
}
}
int32_t
UnicodeString::doLastIndexOf(UChar32 c,
int32_t start,
int32_t length) const {
// pin indices
pinIndices(start, length);
// find the last occurrence of c
const char16_t *array = getArrayStart();
const char16_t *match = u_memrchr32(array + start, c, length);
if(match == nullptr) {
return -1;
} else {
return (int32_t)(match - array);
}
}
//========================================
// Write implementation
//========================================
UnicodeString&
UnicodeString::findAndReplace(int32_t start,
int32_t length,
const UnicodeString& oldText,
int32_t oldStart,
int32_t oldLength,
const UnicodeString& newText,
int32_t newStart,
int32_t newLength)
{
if(isBogus() || oldText.isBogus() || newText.isBogus()) {
return *this;
}
pinIndices(start, length);
oldText.pinIndices(oldStart, oldLength);
newText.pinIndices(newStart, newLength);
if(oldLength == 0) {
return *this;
}
while(length > 0 && length >= oldLength) {
int32_t pos = indexOf(oldText, oldStart, oldLength, start, length);
if(pos < 0) {
// no more oldText's here: done
break;
} else {
// we found oldText, replace it by newText and go beyond it
replace(pos, oldLength, newText, newStart, newLength);
length -= pos + oldLength - start;
start = pos + newLength;
}
}
return *this;
}
void
UnicodeString::setToBogus()
{
releaseArray();
fUnion.fFields.fLengthAndFlags = kIsBogus;
fUnion.fFields.fArray = 0;
fUnion.fFields.fCapacity = 0;
}
// turn a bogus string into an empty one
void
UnicodeString::unBogus() {
if(fUnion.fFields.fLengthAndFlags & kIsBogus) {
setToEmpty();
}
}
const char16_t *
UnicodeString::getTerminatedBuffer() {
if(!isWritable()) {
return nullptr;
}
char16_t *array = getArrayStart();
int32_t len = length();
if(len < getCapacity()) {
if(fUnion.fFields.fLengthAndFlags & kBufferIsReadonly) {
// If len<capacity on a read-only alias, then array[len] is
2022-10-28 06:11:55 +00:00
// either the original NUL (if constructed with (true, s, length))
// or one of the original string contents characters (if later truncated),
// therefore we can assume that array[len] is initialized memory.
if(array[len] == 0) {
return array;
}
} else if(((fUnion.fFields.fLengthAndFlags & kRefCounted) == 0 || refCount() == 1)) {
// kRefCounted: Do not write the NUL if the buffer is shared.
// That is mostly safe, except when the length of one copy was modified
// without copy-on-write, e.g., via truncate(newLength) or remove().
// Then the NUL would be written into the middle of another copy's string.
// Otherwise, the buffer is fully writable and it is anyway safe to write the NUL.
// Do not test if there is a NUL already because it might be uninitialized memory.
// (That would be safe, but tools like valgrind & Purify would complain.)
array[len] = 0;
return array;
}
}
if(len<INT32_MAX && cloneArrayIfNeeded(len+1)) {
array = getArrayStart();
array[len] = 0;
return array;
} else {
return nullptr;
}
}
// setTo() analogous to the readonly-aliasing constructor with the same signature
UnicodeString &
UnicodeString::setTo(UBool isTerminated,
ConstChar16Ptr textPtr,
int32_t textLength)
{
if(fUnion.fFields.fLengthAndFlags & kOpenGetBuffer) {
// do not modify a string that has an "open" getBuffer(minCapacity)
return *this;
}
const char16_t *text = textPtr;
if(text == nullptr) {
// treat as an empty string, do not alias
releaseArray();
setToEmpty();
return *this;
}
if( textLength < -1 ||
(textLength == -1 && !isTerminated) ||
(textLength >= 0 && isTerminated && text[textLength] != 0)
) {
setToBogus();
return *this;
}
releaseArray();
if(textLength == -1) {
// text is terminated, or else it would have failed the above test
textLength = u_strlen(text);
}
fUnion.fFields.fLengthAndFlags = kReadonlyAlias;
setArray((char16_t *)text, textLength, isTerminated ? textLength + 1 : textLength);
return *this;
}
// setTo() analogous to the writable-aliasing constructor with the same signature
UnicodeString &
UnicodeString::setTo(char16_t *buffer,
int32_t buffLength,
int32_t buffCapacity) {
if(fUnion.fFields.fLengthAndFlags & kOpenGetBuffer) {
// do not modify a string that has an "open" getBuffer(minCapacity)
return *this;
}
if(buffer == nullptr) {
// treat as an empty string, do not alias
releaseArray();
setToEmpty();
return *this;
}
if(buffLength < -1 || buffCapacity < 0 || buffLength > buffCapacity) {
setToBogus();
return *this;
} else if(buffLength == -1) {
// buffLength = u_strlen(buff); but do not look beyond buffCapacity
const char16_t *p = buffer, *limit = buffer + buffCapacity;
while(p != limit && *p != 0) {
++p;
}
buffLength = (int32_t)(p - buffer);
}
releaseArray();
fUnion.fFields.fLengthAndFlags = kWritableAlias;
setArray(buffer, buffLength, buffCapacity);
return *this;
}
UnicodeString &UnicodeString::setToUTF8(StringPiece utf8) {
unBogus();
int32_t length = utf8.length();
int32_t capacity;
// The UTF-16 string will be at most as long as the UTF-8 string.
if(length <= US_STACKBUF_SIZE) {
capacity = US_STACKBUF_SIZE;
} else {
capacity = length + 1; // +1 for the terminating NUL.
}
char16_t *utf16 = getBuffer(capacity);
int32_t length16;
UErrorCode errorCode = U_ZERO_ERROR;
u_strFromUTF8WithSub(utf16, getCapacity(), &length16,
utf8.data(), length,
0xfffd, // Substitution character.
nullptr, // Don't care about number of substitutions.
&errorCode);
releaseBuffer(length16);
if(U_FAILURE(errorCode)) {
setToBogus();
}
return *this;
}
UnicodeString&
UnicodeString::setCharAt(int32_t offset,
char16_t c)
{
int32_t len = length();
if(cloneArrayIfNeeded() && len > 0) {
if(offset < 0) {
offset = 0;
} else if(offset >= len) {
offset = len - 1;
}
getArrayStart()[offset] = c;
}
return *this;
}
UnicodeString&
UnicodeString::replace(int32_t start,
int32_t _length,
UChar32 srcChar) {
char16_t buffer[U16_MAX_LENGTH];
int32_t count = 0;
2022-10-28 06:11:55 +00:00
UBool isError = false;
U16_APPEND(buffer, count, U16_MAX_LENGTH, srcChar, isError);
// We test isError so that the compiler does not complain that we don't.
// If isError (srcChar is not a valid code point) then count==0 which means
// we remove the source segment rather than replacing it with srcChar.
return doReplace(start, _length, buffer, 0, isError ? 0 : count);
}
UnicodeString&
UnicodeString::append(UChar32 srcChar) {
char16_t buffer[U16_MAX_LENGTH];
int32_t _length = 0;
2022-10-28 06:11:55 +00:00
UBool isError = false;
U16_APPEND(buffer, _length, U16_MAX_LENGTH, srcChar, isError);
// We test isError so that the compiler does not complain that we don't.
// If isError then _length==0 which turns the doAppend() into a no-op anyway.
return isError ? *this : doAppend(buffer, 0, _length);
}
UnicodeString&
UnicodeString::doReplace( int32_t start,
int32_t length,
const UnicodeString& src,
int32_t srcStart,
int32_t srcLength)
{
// pin the indices to legal values
src.pinIndices(srcStart, srcLength);
// get the characters from src
// and replace the range in ourselves with them
return doReplace(start, length, src.getArrayStart(), srcStart, srcLength);
}
UnicodeString&
UnicodeString::doReplace(int32_t start,
int32_t length,
const char16_t *srcChars,
int32_t srcStart,
int32_t srcLength)
{
if(!isWritable()) {
return *this;
}
int32_t oldLength = this->length();
// optimize (read-only alias).remove(0, start) and .remove(start, end)
if((fUnion.fFields.fLengthAndFlags&kBufferIsReadonly) && srcLength == 0) {
if(start == 0) {
// remove prefix by adjusting the array pointer
pinIndex(length);
fUnion.fFields.fArray += length;
fUnion.fFields.fCapacity -= length;
setLength(oldLength - length);
return *this;
} else {
pinIndex(start);
if(length >= (oldLength - start)) {
// remove suffix by reducing the length (like truncate())
setLength(start);
fUnion.fFields.fCapacity = start; // not NUL-terminated any more
return *this;
}
}
}
if(start == oldLength) {
return doAppend(srcChars, srcStart, srcLength);
}
if(srcChars == 0) {
srcLength = 0;
} else {
// Perform all remaining operations relative to srcChars + srcStart.
// From this point forward, do not use srcStart.
srcChars += srcStart;
if (srcLength < 0) {
// get the srcLength if necessary
srcLength = u_strlen(srcChars);
}
}
// pin the indices to legal values
pinIndices(start, length);
// Calculate the size of the string after the replace.
// Avoid int32_t overflow.
int32_t newLength = oldLength - length;
if(srcLength > (INT32_MAX - newLength)) {
setToBogus();
return *this;
}
newLength += srcLength;
// Check for insertion into ourself
const char16_t *oldArray = getArrayStart();
if (isBufferWritable() &&
oldArray < srcChars + srcLength &&
srcChars < oldArray + oldLength) {
// Copy into a new UnicodeString and start over
UnicodeString copy(srcChars, srcLength);
if (copy.isBogus()) {
setToBogus();
return *this;
}
return doReplace(start, length, copy.getArrayStart(), 0, srcLength);
}
2022-10-28 06:11:55 +00:00
// cloneArrayIfNeeded(doCopyArray=false) may change fArray but will not copy the current contents;
// therefore we need to keep the current fArray
char16_t oldStackBuffer[US_STACKBUF_SIZE];
if((fUnion.fFields.fLengthAndFlags&kUsingStackBuffer) && (newLength > US_STACKBUF_SIZE)) {
// copy the stack buffer contents because it will be overwritten with
// fUnion.fFields values
u_memcpy(oldStackBuffer, oldArray, oldLength);
oldArray = oldStackBuffer;
}
// clone our array and allocate a bigger array if needed
int32_t *bufferToDelete = 0;
if(!cloneArrayIfNeeded(newLength, getGrowCapacity(newLength),
2022-10-28 06:11:55 +00:00
false, &bufferToDelete)
) {
return *this;
}
// now do the replace
char16_t *newArray = getArrayStart();
if(newArray != oldArray) {
// if fArray changed, then we need to copy everything except what will change
us_arrayCopy(oldArray, 0, newArray, 0, start);
us_arrayCopy(oldArray, start + length,
newArray, start + srcLength,
oldLength - (start + length));
} else if(length != srcLength) {
// fArray did not change; copy only the portion that isn't changing, leaving a hole
us_arrayCopy(oldArray, start + length,
newArray, start + srcLength,
oldLength - (start + length));
}
// now fill in the hole with the new string
us_arrayCopy(srcChars, 0, newArray, start, srcLength);
setLength(newLength);
// delayed delete in case srcChars == fArray when we started, and
// to keep oldArray alive for the above operations
if (bufferToDelete) {
uprv_free(bufferToDelete);
}
return *this;
}
// Versions of doReplace() only for append() variants.
// doReplace() and doAppend() optimize for different cases.
UnicodeString&
UnicodeString::doAppend(const UnicodeString& src, int32_t srcStart, int32_t srcLength) {
if(srcLength == 0) {
return *this;
}
// pin the indices to legal values
src.pinIndices(srcStart, srcLength);
return doAppend(src.getArrayStart(), srcStart, srcLength);
}
UnicodeString&
UnicodeString::doAppend(const char16_t *srcChars, int32_t srcStart, int32_t srcLength) {
if(!isWritable() || srcLength == 0 || srcChars == nullptr) {
return *this;
}
// Perform all remaining operations relative to srcChars + srcStart.
// From this point forward, do not use srcStart.
srcChars += srcStart;
if(srcLength < 0) {
// get the srcLength if necessary
if((srcLength = u_strlen(srcChars)) == 0) {
return *this;
}
}
int32_t oldLength = length();
int32_t newLength;
if (uprv_add32_overflow(oldLength, srcLength, &newLength)) {
setToBogus();
return *this;
}
// Check for append onto ourself
const char16_t* oldArray = getArrayStart();
if (isBufferWritable() &&
oldArray < srcChars + srcLength &&
srcChars < oldArray + oldLength) {
// Copy into a new UnicodeString and start over
UnicodeString copy(srcChars, srcLength);
if (copy.isBogus()) {
setToBogus();
return *this;
}
return doAppend(copy.getArrayStart(), 0, srcLength);
}
// optimize append() onto a large-enough, owned string
if((newLength <= getCapacity() && isBufferWritable()) ||
cloneArrayIfNeeded(newLength, getGrowCapacity(newLength))) {
char16_t *newArray = getArrayStart();
// Do not copy characters when
// char16_t *buffer=str.getAppendBuffer(...);
// is followed by
// str.append(buffer, length);
// or
// str.appendString(buffer, length)
// or similar.
if(srcChars != newArray + oldLength) {
us_arrayCopy(srcChars, 0, newArray, oldLength, srcLength);
}
setLength(newLength);
}
return *this;
}
/**
* Replaceable API
*/
void
UnicodeString::handleReplaceBetween(int32_t start,
int32_t limit,
const UnicodeString& text) {
replaceBetween(start, limit, text);
}
/**
* Replaceable API
*/
void
UnicodeString::copy(int32_t start, int32_t limit, int32_t dest) {
if (limit <= start) {
return; // Nothing to do; avoid bogus malloc call
}
char16_t* text = (char16_t*) uprv_malloc( sizeof(char16_t) * (limit - start) );
// Check to make sure text is not null.
if (text != nullptr) {
extractBetween(start, limit, text, 0);
insert(dest, text, 0, limit - start);
uprv_free(text);
}
}
/**
* Replaceable API
*
* NOTE: This is for the Replaceable class. There is no rep.cpp,
* so we implement this function here.
*/
UBool Replaceable::hasMetaData() const {
2022-10-28 06:11:55 +00:00
return true;
}
/**
* Replaceable API
*/
UBool UnicodeString::hasMetaData() const {
2022-10-28 06:11:55 +00:00
return false;
}
UnicodeString&
UnicodeString::doReverse(int32_t start, int32_t length) {
if(length <= 1 || !cloneArrayIfNeeded()) {
return *this;
}
// pin the indices to legal values
pinIndices(start, length);
if(length <= 1) { // pinIndices() might have shrunk the length
return *this;
}
char16_t *left = getArrayStart() + start;
char16_t *right = left + length - 1; // -1 for inclusive boundary (length>=2)
char16_t swap;
2022-10-28 06:11:55 +00:00
UBool hasSupplementary = false;
// Before the loop we know left<right because length>=2.
do {
hasSupplementary |= (UBool)U16_IS_LEAD(swap = *left);
hasSupplementary |= (UBool)U16_IS_LEAD(*left++ = *right);
*right-- = swap;
} while(left < right);
// Make sure to test the middle code unit of an odd-length string.
// Redundant if the length is even.
hasSupplementary |= (UBool)U16_IS_LEAD(*left);
/* if there are supplementary code points in the reversed range, then re-swap their surrogates */
if(hasSupplementary) {
char16_t swap2;
left = getArrayStart() + start;
right = left + length - 1; // -1 so that we can look at *(left+1) if left<right
while(left < right) {
if(U16_IS_TRAIL(swap = *left) && U16_IS_LEAD(swap2 = *(left + 1))) {
*left++ = swap2;
*left++ = swap;
} else {
++left;
}
}
}
return *this;
}
UBool
UnicodeString::padLeading(int32_t targetLength,
char16_t padChar)
{
int32_t oldLength = length();
if(oldLength >= targetLength || !cloneArrayIfNeeded(targetLength)) {
2022-10-28 06:11:55 +00:00
return false;
} else {
// move contents up by padding width
char16_t *array = getArrayStart();
int32_t start = targetLength - oldLength;
us_arrayCopy(array, 0, array, start, oldLength);
// fill in padding character
while(--start >= 0) {
array[start] = padChar;
}
setLength(targetLength);
2022-10-28 06:11:55 +00:00
return true;
}
}
UBool
UnicodeString::padTrailing(int32_t targetLength,
char16_t padChar)
{
int32_t oldLength = length();
if(oldLength >= targetLength || !cloneArrayIfNeeded(targetLength)) {
2022-10-28 06:11:55 +00:00
return false;
} else {
// fill in padding character
char16_t *array = getArrayStart();
int32_t length = targetLength;
while(--length >= oldLength) {
array[length] = padChar;
}
setLength(targetLength);
2022-10-28 06:11:55 +00:00
return true;
}
}
//========================================
// Hashing
//========================================
int32_t
UnicodeString::doHashCode() const
{
/* Delegate hash computation to uhash. This makes UnicodeString
* hashing consistent with char16_t* hashing. */
int32_t hashCode = ustr_hashUCharsN(getArrayStart(), length());
if (hashCode == kInvalidHashCode) {
hashCode = kEmptyHashCode;
}
return hashCode;
}
//========================================
// External Buffer
//========================================
char16_t *
UnicodeString::getBuffer(int32_t minCapacity) {
if(minCapacity>=-1 && cloneArrayIfNeeded(minCapacity)) {
fUnion.fFields.fLengthAndFlags|=kOpenGetBuffer;
setZeroLength();
return getArrayStart();
} else {
return nullptr;
}
}
void
UnicodeString::releaseBuffer(int32_t newLength) {
if(fUnion.fFields.fLengthAndFlags&kOpenGetBuffer && newLength>=-1) {
// set the new fLength
int32_t capacity=getCapacity();
if(newLength==-1) {
// the new length is the string length, capped by fCapacity
const char16_t *array=getArrayStart(), *p=array, *limit=array+capacity;
while(p<limit && *p!=0) {
++p;
}
newLength=(int32_t)(p-array);
} else if(newLength>capacity) {
newLength=capacity;
}
setLength(newLength);
fUnion.fFields.fLengthAndFlags&=~kOpenGetBuffer;
}
}
//========================================
// Miscellaneous
//========================================
UBool
UnicodeString::cloneArrayIfNeeded(int32_t newCapacity,
int32_t growCapacity,
UBool doCopyArray,
int32_t **pBufferToDelete,
UBool forceClone) {
// default parameters need to be static, therefore
// the defaults are -1 to have convenience defaults
if(newCapacity == -1) {
newCapacity = getCapacity();
}
// while a getBuffer(minCapacity) is "open",
2022-10-28 06:11:55 +00:00
// prevent any modifications of the string by returning false here
// if the string is bogus, then only an assignment or similar can revive it
if(!isWritable()) {
2022-10-28 06:11:55 +00:00
return false;
}
/*
* We need to make a copy of the array if
* the buffer is read-only, or
* the buffer is refCounted (shared), and refCount>1, or
* the buffer is too small.
2022-10-28 06:11:55 +00:00
* Return false if memory could not be allocated.
*/
if(forceClone ||
fUnion.fFields.fLengthAndFlags & kBufferIsReadonly ||
(fUnion.fFields.fLengthAndFlags & kRefCounted && refCount() > 1) ||
newCapacity > getCapacity()
) {
// check growCapacity for default value and use of the stack buffer
if(growCapacity < 0) {
growCapacity = newCapacity;
} else if(newCapacity <= US_STACKBUF_SIZE && growCapacity > US_STACKBUF_SIZE) {
growCapacity = US_STACKBUF_SIZE;
}
// save old values
char16_t oldStackBuffer[US_STACKBUF_SIZE];
char16_t *oldArray;
int32_t oldLength = length();
int16_t flags = fUnion.fFields.fLengthAndFlags;
if(flags&kUsingStackBuffer) {
U_ASSERT(!(flags&kRefCounted)); /* kRefCounted and kUsingStackBuffer are mutally exclusive */
if(doCopyArray && growCapacity > US_STACKBUF_SIZE) {
// copy the stack buffer contents because it will be overwritten with
// fUnion.fFields values
us_arrayCopy(fUnion.fStackFields.fBuffer, 0, oldStackBuffer, 0, oldLength);
oldArray = oldStackBuffer;
} else {
oldArray = nullptr; // no need to copy from the stack buffer to itself
}
} else {
oldArray = fUnion.fFields.fArray;
U_ASSERT(oldArray!=nullptr); /* when stack buffer is not used, oldArray must have a non-nullptr reference */
}
// allocate a new array
if(allocate(growCapacity) ||
(newCapacity < growCapacity && allocate(newCapacity))
) {
if(doCopyArray) {
// copy the contents
// do not copy more than what fits - it may be smaller than before
int32_t minLength = oldLength;
newCapacity = getCapacity();
if(newCapacity < minLength) {
minLength = newCapacity;
}
if(oldArray != nullptr) {
us_arrayCopy(oldArray, 0, getArrayStart(), 0, minLength);
}
setLength(minLength);
} else {
setZeroLength();
}
// release the old array
if(flags & kRefCounted) {
// the array is refCounted; decrement and release if 0
u_atomic_int32_t *pRefCount = ((u_atomic_int32_t *)oldArray - 1);
if(umtx_atomic_dec(pRefCount) == 0) {
if(pBufferToDelete == 0) {
// Note: cast to (void *) is needed with MSVC, where u_atomic_int32_t
// is defined as volatile. (Volatile has useful non-standard behavior
// with this compiler.)
uprv_free((void *)pRefCount);
} else {
// the caller requested to delete it himself
*pBufferToDelete = (int32_t *)pRefCount;
}
}
}
} else {
// not enough memory for growCapacity and not even for the smaller newCapacity
// reset the old values for setToBogus() to release the array
if(!(flags&kUsingStackBuffer)) {
fUnion.fFields.fArray = oldArray;
}
fUnion.fFields.fLengthAndFlags = flags;
setToBogus();
2022-10-28 06:11:55 +00:00
return false;
}
}
2022-10-28 06:11:55 +00:00
return true;
}
// UnicodeStringAppendable ------------------------------------------------- ***
UnicodeStringAppendable::~UnicodeStringAppendable() {}
UBool
UnicodeStringAppendable::appendCodeUnit(char16_t c) {
return str.doAppend(&c, 0, 1).isWritable();
}
UBool
UnicodeStringAppendable::appendCodePoint(UChar32 c) {
char16_t buffer[U16_MAX_LENGTH];
int32_t cLength = 0;
2022-10-28 06:11:55 +00:00
UBool isError = false;
U16_APPEND(buffer, cLength, U16_MAX_LENGTH, c, isError);
return !isError && str.doAppend(buffer, 0, cLength).isWritable();
}
UBool
UnicodeStringAppendable::appendString(const char16_t *s, int32_t length) {
return str.doAppend(s, 0, length).isWritable();
}
UBool
UnicodeStringAppendable::reserveAppendCapacity(int32_t appendCapacity) {
return str.cloneArrayIfNeeded(str.length() + appendCapacity);
}
char16_t *
UnicodeStringAppendable::getAppendBuffer(int32_t minCapacity,
int32_t desiredCapacityHint,
char16_t *scratch, int32_t scratchCapacity,
int32_t *resultCapacity) {
if(minCapacity < 1 || scratchCapacity < minCapacity) {
*resultCapacity = 0;
return nullptr;
}
int32_t oldLength = str.length();
if(minCapacity <= (kMaxCapacity - oldLength) &&
desiredCapacityHint <= (kMaxCapacity - oldLength) &&
str.cloneArrayIfNeeded(oldLength + minCapacity, oldLength + desiredCapacityHint)) {
*resultCapacity = str.getCapacity() - oldLength;
return str.getArrayStart() + oldLength;
}
*resultCapacity = scratchCapacity;
return scratch;
}
U_NAMESPACE_END
U_NAMESPACE_USE
U_CAPI int32_t U_EXPORT2
uhash_hashUnicodeString(const UElement key) {
const UnicodeString *str = (const UnicodeString*) key.pointer;
return (str == nullptr) ? 0 : str->hashCode();
}
// Moved here from uhash_us.cpp so that using a UVector of UnicodeString*
// does not depend on hashtable code.
U_CAPI UBool U_EXPORT2
uhash_compareUnicodeString(const UElement key1, const UElement key2) {
const UnicodeString *str1 = (const UnicodeString*) key1.pointer;
const UnicodeString *str2 = (const UnicodeString*) key2.pointer;
if (str1 == str2) {
2022-10-28 06:11:55 +00:00
return true;
}
if (str1 == nullptr || str2 == nullptr) {
2022-10-28 06:11:55 +00:00
return false;
}
return *str1 == *str2;
}
#ifdef U_STATIC_IMPLEMENTATION
/*
This should never be called. It is defined here to make sure that the
virtual vector deleting destructor is defined within unistr.cpp.
The vector deleting destructor is already a part of UObject,
but defining it here makes sure that it is included with this object file.
This makes sure that static library dependencies are kept to a minimum.
*/
#if defined(__clang__) || U_GCC_MAJOR_MINOR >= 1100
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-function"
static void uprv_UnicodeStringDummy() {
delete [] (new UnicodeString[2]);
}
#pragma GCC diagnostic pop
#endif
#endif