godot/doc/classes/Quat.xml

208 lines
7.4 KiB
XML
Raw Normal View History

<?xml version="1.0" encoding="UTF-8" ?>
<class name="Quat" version="3.2">
<brief_description>
Quaternion.
</brief_description>
<description>
A unit quaternion used for representing 3D rotations. Quaternions need to be normalized to be used for rotation.
It is similar to Basis, which implements matrix representation of rotations, and can be parametrized using both an axis-angle pair or Euler angles. Basis stores rotation, scale, and shearing, while Quat only stores rotation.
Due to its compactness and the way it is stored in memory, certain operations (obtaining axis-angle and performing SLERP, in particular) are more efficient and robust against floating-point errors.
</description>
<tutorials>
<link title="Using 3D transforms">https://docs.godotengine.org/en/latest/tutorials/3d/using_transforms.html#interpolating-with-quaternions</link>
<link title="Third Person Shooter Demo">https://godotengine.org/asset-library/asset/678</link>
</tutorials>
<methods>
<method name="Quat">
<return type="Quat">
</return>
<argument index="0" name="from" type="Basis">
</argument>
<description>
Constructs a quaternion from the given [Basis].
</description>
</method>
<method name="Quat">
<return type="Quat">
</return>
<argument index="0" name="euler" type="Vector3">
</argument>
<description>
Constructs a quaternion that will perform a rotation specified by Euler angles (in the YXZ convention: when decomposing, first Z, then X, and Y last), given in the vector format as (X angle, Y angle, Z angle).
</description>
</method>
<method name="Quat">
<return type="Quat">
</return>
<argument index="0" name="axis" type="Vector3">
</argument>
<argument index="1" name="angle" type="float">
</argument>
<description>
Constructs a quaternion that will rotate around the given axis by the specified angle. The axis must be a normalized vector.
</description>
</method>
<method name="Quat">
<return type="Quat">
</return>
<argument index="0" name="x" type="float">
</argument>
<argument index="1" name="y" type="float">
</argument>
<argument index="2" name="z" type="float">
</argument>
<argument index="3" name="w" type="float">
</argument>
<description>
Constructs a quaternion defined by the given values.
</description>
</method>
<method name="cubic_slerp">
<return type="Quat">
</return>
<argument index="0" name="b" type="Quat">
</argument>
<argument index="1" name="pre_a" type="Quat">
</argument>
<argument index="2" name="post_b" type="Quat">
</argument>
<argument index="3" name="t" type="float">
</argument>
<description>
Performs a cubic spherical interpolation between quaternions [code]preA[/code], this vector, [code]b[/code], and [code]postB[/code], by the given amount [code]t[/code].
</description>
</method>
<method name="dot">
<return type="float">
</return>
<argument index="0" name="b" type="Quat">
</argument>
<description>
Returns the dot product of two quaternions.
</description>
</method>
<method name="get_euler">
<return type="Vector3">
</return>
<description>
Returns Euler angles (in the YXZ convention: when decomposing, first Z, then X, and Y last) corresponding to the rotation represented by the unit quaternion. Returned vector contains the rotation angles in the format (X angle, Y angle, Z angle).
</description>
</method>
<method name="inverse">
<return type="Quat">
</return>
<description>
Returns the inverse of the quaternion.
</description>
</method>
2019-11-08 07:33:48 +00:00
<method name="is_equal_approx">
<return type="bool">
</return>
<argument index="0" name="quat" type="Quat">
</argument>
<description>
Returns [code]true[/code] if this quaterion and [code]quat[/code] are approximately equal, by running [method @GDScript.is_equal_approx] on each component.
2019-11-08 07:33:48 +00:00
</description>
</method>
<method name="is_normalized">
<return type="bool">
</return>
<description>
Returns whether the quaternion is normalized or not.
</description>
</method>
<method name="length">
<return type="float">
</return>
<description>
Returns the length of the quaternion.
</description>
</method>
<method name="length_squared">
<return type="float">
</return>
<description>
Returns the length of the quaternion, squared.
</description>
</method>
<method name="normalized">
<return type="Quat">
</return>
<description>
Returns a copy of the quaternion, normalized to unit length.
</description>
</method>
<method name="set_axis_angle">
<argument index="0" name="axis" type="Vector3">
</argument>
<argument index="1" name="angle" type="float">
</argument>
<description>
Sets the quaternion to a rotation which rotates around axis by the specified angle, in radians. The axis must be a normalized vector.
</description>
</method>
<method name="set_euler">
<argument index="0" name="euler" type="Vector3">
</argument>
<description>
Sets the quaternion to a rotation specified by Euler angles (in the YXZ convention: when decomposing, first Z, then X, and Y last), given in the vector format as (X angle, Y angle, Z angle).
</description>
</method>
<method name="slerp">
<return type="Quat">
</return>
<argument index="0" name="b" type="Quat">
</argument>
<argument index="1" name="t" type="float">
</argument>
<description>
Returns the result of the spherical linear interpolation between this quaternion and [code]to[/code] by amount [code]weight[/code].
[b]Note:[/b] Both quaternions must be normalized.
</description>
</method>
<method name="slerpni">
<return type="Quat">
</return>
<argument index="0" name="b" type="Quat">
</argument>
<argument index="1" name="t" type="float">
</argument>
<description>
Returns the result of the spherical linear interpolation between this quaternion and [code]to[/code] by amount [code]weight[/code], but without checking if the rotation path is not bigger than 90 degrees.
</description>
</method>
<method name="xform">
<return type="Vector3">
</return>
<argument index="0" name="v" type="Vector3">
</argument>
<description>
Returns a vector transformed (multiplied) by this quaternion.
</description>
</method>
</methods>
<members>
<member name="w" type="float" setter="" getter="" default="1.0">
W component of the quaternion (real part).
Quaternion components should usually not be manipulated directly.
</member>
<member name="x" type="float" setter="" getter="" default="0.0">
X component of the quaternion (imaginary [code]i[/code] axis part).
Quaternion components should usually not be manipulated directly.
</member>
<member name="y" type="float" setter="" getter="" default="0.0">
Y component of the quaternion (imaginary [code]j[/code] axis part).
Quaternion components should usually not be manipulated directly.
</member>
<member name="z" type="float" setter="" getter="" default="0.0">
Z component of the quaternion (imaginary [code]k[/code] axis part).
Quaternion components should usually not be manipulated directly.
</member>
</members>
<constants>
2018-08-20 22:35:30 +00:00
<constant name="IDENTITY" value="Quat( 0, 0, 0, 1 )">
The identity quaternion, representing no rotation. Equivalent to an identity [Basis] matrix. If a vector is transformed by an identity quaternion, it will not change.
2018-08-20 22:35:30 +00:00
</constant>
</constants>
</class>