godot/core/object/message_queue.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

478 lines
14 KiB
C++
Raw Normal View History

/**************************************************************************/
/* message_queue.cpp */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
2014-02-10 01:10:30 +00:00
#include "message_queue.h"
#include "core/config/project_settings.h"
#include "core/core_string_names.h"
#include "core/object/class_db.h"
#include "core/object/script_language.h"
void CallQueue::_add_page() {
if (pages_used == page_messages.size()) {
pages.push_back(allocator->alloc());
page_messages.push_back(0);
2014-02-10 01:10:30 +00:00
}
page_messages[pages_used] = 0;
pages_used++;
page_offset = 0;
2014-02-10 01:10:30 +00:00
}
Error CallQueue::push_callp(ObjectID p_id, const StringName &p_method, const Variant **p_args, int p_argcount, bool p_show_error) {
return push_callablep(Callable(p_id, p_method), p_args, p_argcount, p_show_error);
2014-02-10 01:10:30 +00:00
}
Error CallQueue::push_callp(Object *p_object, const StringName &p_method, const Variant **p_args, int p_argcount, bool p_show_error) {
return push_callp(p_object->get_instance_id(), p_method, p_args, p_argcount, p_show_error);
2014-02-10 01:10:30 +00:00
}
Error CallQueue::push_notification(Object *p_object, int p_notification) {
return push_notification(p_object->get_instance_id(), p_notification);
2014-02-10 01:10:30 +00:00
}
Error CallQueue::push_set(Object *p_object, const StringName &p_prop, const Variant &p_value) {
return push_set(p_object->get_instance_id(), p_prop, p_value);
2014-02-10 01:10:30 +00:00
}
Error CallQueue::push_callablep(const Callable &p_callable, const Variant **p_args, int p_argcount, bool p_show_error) {
uint32_t room_needed = sizeof(Message) + sizeof(Variant) * p_argcount;
ERR_FAIL_COND_V_MSG(room_needed > uint32_t(PAGE_SIZE_BYTES), ERR_INVALID_PARAMETER, "Message is too large to fit on a page (" + itos(PAGE_SIZE_BYTES) + " bytes), consider passing less arguments.");
2023-05-05 10:50:10 +00:00
mutex.lock();
_ensure_first_page();
if ((page_offset + room_needed) > uint32_t(PAGE_SIZE_BYTES)) {
2023-05-05 10:50:10 +00:00
if (pages_used == max_pages) {
ERR_PRINT("Failed method: " + p_callable + ". Message queue out of memory. " + error_text);
statistics();
mutex.unlock();
return ERR_OUT_OF_MEMORY;
}
_add_page();
}
Page *page = pages[pages_used - 1];
uint8_t *buffer_end = &page->data[page_offset];
Message *msg = memnew_placement(buffer_end, Message);
msg->args = p_argcount;
msg->callable = p_callable;
msg->type = TYPE_CALL;
if (p_show_error) {
msg->type |= FLAG_SHOW_ERROR;
}
// Support callables of static methods.
if (p_callable.get_object_id().is_null() && p_callable.is_valid()) {
msg->type |= FLAG_NULL_IS_OK;
}
buffer_end += sizeof(Message);
for (int i = 0; i < p_argcount; i++) {
Variant *v = memnew_placement(buffer_end, Variant);
buffer_end += sizeof(Variant);
*v = *p_args[i];
}
page_messages[pages_used - 1]++;
page_offset += room_needed;
mutex.unlock();
return OK;
}
Error CallQueue::push_set(ObjectID p_id, const StringName &p_prop, const Variant &p_value) {
mutex.lock();
uint32_t room_needed = sizeof(Message) + sizeof(Variant);
2014-02-10 01:10:30 +00:00
_ensure_first_page();
2014-02-10 01:10:30 +00:00
if ((page_offset + room_needed) > uint32_t(PAGE_SIZE_BYTES)) {
if (pages_used == max_pages) {
String type;
if (ObjectDB::get_instance(p_id)) {
type = ObjectDB::get_instance(p_id)->get_class();
}
ERR_PRINT("Failed set: " + type + ":" + p_prop + " target ID: " + itos(p_id) + ". Message queue out of memory. " + error_text);
statistics();
2014-02-10 01:10:30 +00:00
mutex.unlock();
return ERR_OUT_OF_MEMORY;
}
_add_page();
}
2014-02-10 01:10:30 +00:00
Page *page = pages[pages_used - 1];
uint8_t *buffer_end = &page->data[page_offset];
2014-02-10 01:10:30 +00:00
Message *msg = memnew_placement(buffer_end, Message);
msg->args = 1;
msg->callable = Callable(p_id, p_prop);
msg->type = TYPE_SET;
2014-02-10 01:10:30 +00:00
buffer_end += sizeof(Message);
2014-02-10 01:10:30 +00:00
Variant *v = memnew_placement(buffer_end, Variant);
*v = p_value;
2014-02-10 01:10:30 +00:00
page_messages[pages_used - 1]++;
page_offset += room_needed;
mutex.unlock();
2014-02-10 01:10:30 +00:00
return OK;
}
2014-02-10 01:10:30 +00:00
Error CallQueue::push_notification(ObjectID p_id, int p_notification) {
ERR_FAIL_COND_V(p_notification < 0, ERR_INVALID_PARAMETER);
mutex.lock();
uint32_t room_needed = sizeof(Message);
2014-02-10 01:10:30 +00:00
_ensure_first_page();
2014-02-10 01:10:30 +00:00
if ((page_offset + room_needed) > uint32_t(PAGE_SIZE_BYTES)) {
if (pages_used == max_pages) {
ERR_PRINT("Failed notification: " + itos(p_notification) + " target ID: " + itos(p_id) + ". Message queue out of memory. " + error_text);
statistics();
mutex.unlock();
return ERR_OUT_OF_MEMORY;
}
_add_page();
2014-02-10 01:10:30 +00:00
}
Page *page = pages[pages_used - 1];
uint8_t *buffer_end = &page->data[page_offset];
2014-02-10 01:10:30 +00:00
Message *msg = memnew_placement(buffer_end, Message);
2014-02-10 01:10:30 +00:00
msg->type = TYPE_NOTIFICATION;
msg->callable = Callable(p_id, CoreStringNames::get_singleton()->notification); //name is meaningless but callable needs it
//msg->target;
msg->notification = p_notification;
2014-02-10 01:10:30 +00:00
page_messages[pages_used - 1]++;
page_offset += room_needed;
mutex.unlock();
2014-02-10 01:10:30 +00:00
return OK;
2014-02-10 01:10:30 +00:00
}
void CallQueue::_call_function(const Callable &p_callable, const Variant *p_args, int p_argcount, bool p_show_error) {
2020-04-01 23:20:12 +00:00
const Variant **argptrs = nullptr;
if (p_argcount) {
argptrs = (const Variant **)alloca(sizeof(Variant *) * p_argcount);
for (int i = 0; i < p_argcount; i++) {
argptrs[i] = &p_args[i];
}
}
Callable::CallError ce;
Variant ret;
p_callable.callp(argptrs, p_argcount, ret, ce);
if (p_show_error && ce.error != Callable::CallError::CALL_OK) {
ERR_PRINT("Error calling deferred method: " + Variant::get_callable_error_text(p_callable, argptrs, p_argcount, ce) + ".");
}
}
Error CallQueue::flush() {
mutex.lock();
2014-02-10 01:10:30 +00:00
if (pages.size() == 0) {
// Never allocated
mutex.unlock();
return OK; // Do nothing.
}
if (flushing) {
mutex.unlock();
return ERR_BUSY;
}
flushing = true;
uint32_t i = 0;
uint32_t j = 0;
uint32_t offset = 0;
while (i < pages_used && j < page_messages[i]) {
Page *page = pages[i];
//lock on each iteration, so a call can re-add itself to the message queue
2014-02-10 01:10:30 +00:00
Message *message = (Message *)&page->data[offset];
2014-02-10 01:10:30 +00:00
2017-05-18 11:01:12 +00:00
uint32_t advance = sizeof(Message);
if ((message->type & FLAG_MASK) != TYPE_NOTIFICATION) {
2017-05-18 11:01:12 +00:00
advance += sizeof(Variant) * message->args;
}
2017-05-18 11:01:12 +00:00
//pre-advance so this function is reentrant
offset += advance;
2017-05-18 11:01:12 +00:00
Object *target = message->callable.get_object();
2014-02-10 01:10:30 +00:00
mutex.unlock();
switch (message->type & FLAG_MASK) {
case TYPE_CALL: {
if (target || (message->type & FLAG_NULL_IS_OK)) {
2014-02-10 01:10:30 +00:00
Variant *args = (Variant *)(message + 1);
_call_function(message->callable, args, message->args, message->type & FLAG_SHOW_ERROR);
}
} break;
case TYPE_NOTIFICATION: {
if (target) {
2014-02-10 01:10:30 +00:00
target->notification(message->notification);
}
} break;
case TYPE_SET: {
if (target) {
2014-02-10 01:10:30 +00:00
Variant *arg = (Variant *)(message + 1);
target->set(message->callable.get_method(), *arg);
}
} break;
2014-02-10 01:10:30 +00:00
}
if ((message->type & FLAG_MASK) != TYPE_NOTIFICATION) {
Variant *args = (Variant *)(message + 1);
for (int k = 0; k < message->args; k++) {
args[k].~Variant();
}
}
message->~Message();
mutex.lock();
j++;
if (j == page_messages[i]) {
j = 0;
i++;
offset = 0;
}
2014-02-10 01:10:30 +00:00
}
page_messages[0] = 0;
page_offset = 0;
pages_used = 1;
flushing = false;
mutex.unlock();
return OK;
2014-02-10 01:10:30 +00:00
}
void CallQueue::clear() {
mutex.lock();
if (pages.size() == 0) {
mutex.unlock();
return; // Nothing to clear.
}
2014-02-10 01:10:30 +00:00
for (uint32_t i = 0; i < pages_used; i++) {
uint32_t offset = 0;
for (uint32_t j = 0; j < page_messages[i]; j++) {
Page *page = pages[i];
2014-02-10 01:10:30 +00:00
//lock on each iteration, so a call can re-add itself to the message queue
2014-02-10 01:10:30 +00:00
Message *message = (Message *)&page->data[offset];
uint32_t advance = sizeof(Message);
if ((message->type & FLAG_MASK) != TYPE_NOTIFICATION) {
advance += sizeof(Variant) * message->args;
}
//pre-advance so this function is reentrant
offset += advance;
if ((message->type & FLAG_MASK) != TYPE_NOTIFICATION) {
Variant *args = (Variant *)(message + 1);
for (int k = 0; k < message->args; k++) {
args[k].~Variant();
}
}
message->~Message();
2014-02-10 01:10:30 +00:00
}
}
2014-02-10 01:10:30 +00:00
pages_used = 1;
page_offset = 0;
page_messages[0] = 0;
mutex.unlock();
}
void CallQueue::statistics() {
mutex.lock();
HashMap<StringName, int> set_count;
HashMap<int, int> notify_count;
HashMap<Callable, int> call_count;
int null_count = 0;
for (uint32_t i = 0; i < pages_used; i++) {
uint32_t offset = 0;
for (uint32_t j = 0; j < page_messages[i]; j++) {
Page *page = pages[i];
//lock on each iteration, so a call can re-add itself to the message queue
Message *message = (Message *)&page->data[offset];
uint32_t advance = sizeof(Message);
if ((message->type & FLAG_MASK) != TYPE_NOTIFICATION) {
advance += sizeof(Variant) * message->args;
}
Object *target = message->callable.get_object();
bool null_target = true;
switch (message->type & FLAG_MASK) {
case TYPE_CALL: {
if (target || (message->type & FLAG_NULL_IS_OK)) {
if (!call_count.has(message->callable)) {
call_count[message->callable] = 0;
}
call_count[message->callable]++;
null_target = false;
}
} break;
case TYPE_NOTIFICATION: {
if (target) {
if (!notify_count.has(message->notification)) {
notify_count[message->notification] = 0;
}
notify_count[message->notification]++;
null_target = false;
}
} break;
case TYPE_SET: {
if (target) {
StringName t = message->callable.get_method();
if (!set_count.has(t)) {
set_count[t] = 0;
}
set_count[t]++;
null_target = false;
}
} break;
}
if (null_target) {
//object was deleted
print_line("Object was deleted while awaiting a callback");
null_count++;
}
//pre-advance so this function is reentrant
offset += advance;
if ((message->type & FLAG_MASK) != TYPE_NOTIFICATION) {
Variant *args = (Variant *)(message + 1);
for (int k = 0; k < message->args; k++) {
args[k].~Variant();
}
}
message->~Message();
}
2014-02-10 01:10:30 +00:00
}
print_line("TOTAL PAGES: " + itos(pages_used) + " (" + itos(pages_used * PAGE_SIZE_BYTES) + " bytes).");
print_line("NULL count: " + itos(null_count));
for (const KeyValue<StringName, int> &E : set_count) {
print_line("SET " + E.key + ": " + itos(E.value));
}
for (const KeyValue<Callable, int> &E : call_count) {
print_line("CALL " + E.key + ": " + itos(E.value));
}
for (const KeyValue<int, int> &E : notify_count) {
print_line("NOTIFY " + itos(E.key) + ": " + itos(E.value));
}
mutex.unlock();
}
bool CallQueue::is_flushing() const {
return flushing;
}
int CallQueue::get_max_buffer_usage() const {
return pages.size() * PAGE_SIZE_BYTES;
}
CallQueue::CallQueue(Allocator *p_custom_allocator, uint32_t p_max_pages, const String &p_error_text) {
if (p_custom_allocator) {
allocator = p_custom_allocator;
allocator_is_custom = true;
} else {
allocator = memnew(Allocator(16)); // 16 elements per allocator page, 64kb per allocator page. Anything small will do, though.
allocator_is_custom = false;
}
max_pages = p_max_pages;
error_text = p_error_text;
}
CallQueue::~CallQueue() {
clear();
// Let go of pages.
for (uint32_t i = 0; i < pages.size(); i++) {
allocator->free(pages[i]);
}
if (!allocator_is_custom) {
memdelete(allocator);
}
}
//////////////////////
MessageQueue *MessageQueue::singleton = nullptr;
MessageQueue::MessageQueue() :
CallQueue(nullptr,
int(GLOBAL_DEF_RST(PropertyInfo(Variant::INT, "memory/limits/message_queue/max_size_mb", PROPERTY_HINT_RANGE, "1,512,1,or_greater"), 32)) * 1024 * 1024 / PAGE_SIZE_BYTES,
"Message queue out of memory. Try increasing 'memory/limits/message_queue/max_size_mb' in project settings.") {
ERR_FAIL_COND_MSG(singleton != nullptr, "A MessageQueue singleton already exists.");
singleton = this;
}
MessageQueue::~MessageQueue() {
2020-04-01 23:20:12 +00:00
singleton = nullptr;
2014-02-10 01:10:30 +00:00
}