godot/thirdparty/embree/kernels/subdiv/catmullrom_curve.h

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

315 lines
12 KiB
C++
Raw Normal View History

// Copyright 2009-2021 Intel Corporation
2021-04-20 16:38:09 +00:00
// SPDX-License-Identifier: Apache-2.0
#pragma once
#include "../common/default.h"
2024-02-24 11:40:55 +00:00
#include "bezier_curve.h"
2021-04-20 16:38:09 +00:00
#include "../common/scene_curves.h"
/*
2024-02-24 11:40:55 +00:00
Implements Catmul Rom curves with control points p0, p1, p2, p3. At
t=0 the curve goes through p1, with tangent (p2-p0)/2, and for t=1
2021-04-20 16:38:09 +00:00
the curve goes through p2 with tangent (p3-p2)/2.
*/
namespace embree
{
class CatmullRomBasis
{
public:
template<typename T>
static __forceinline Vec4<T> eval(const T& u)
{
const T t = u;
const T s = T(1.0f) - u;
const T n0 = - t * s * s;
const T n1 = 2.0f + t * t * (3.0f * t - 5.0f);
const T n2 = 2.0f + s * s * (3.0f * s - 5.0f);
const T n3 = - s * t * t;
return T(0.5f) * Vec4<T>(n0, n1, n2, n3);
}
template<typename T>
static __forceinline Vec4<T> derivative(const T& u)
{
const T t = u;
const T s = 1.0f - u;
const T n0 = - s * s + 2.0f * s * t;
const T n1 = 2.0f * t * (3.0f * t - 5.0f) + 3.0f * t * t;
const T n2 = 2.0f * s * (3.0f * t + 2.0f) - 3.0f * s * s;
const T n3 = -2.0f * s * t + t * t;
return T(0.5f) * Vec4<T>(n0, n1, n2, n3);
}
template<typename T>
static __forceinline Vec4<T> derivative2(const T& u)
{
const T t = u;
const T n0 = -3.0f * t + 2.0f;
const T n1 = 9.0f * t - 5.0f;
const T n2 = -9.0f * t + 4.0f;
const T n3 = 3.0f * t - 1.0f;
return Vec4<T>(n0, n1, n2, n3);
}
};
struct PrecomputedCatmullRomBasis
{
enum { N = 16 };
public:
PrecomputedCatmullRomBasis() {}
PrecomputedCatmullRomBasis(int shift);
/* basis for bspline evaluation */
public:
float c0[N+1][N+1];
float c1[N+1][N+1];
float c2[N+1][N+1];
float c3[N+1][N+1];
/* basis for bspline derivative evaluation */
public:
float d0[N+1][N+1];
float d1[N+1][N+1];
float d2[N+1][N+1];
float d3[N+1][N+1];
};
extern PrecomputedCatmullRomBasis catmullrom_basis0;
extern PrecomputedCatmullRomBasis catmullrom_basis1;
template<typename Vertex>
struct CatmullRomCurveT
{
Vertex v0,v1,v2,v3;
__forceinline CatmullRomCurveT() {}
__forceinline CatmullRomCurveT(const Vertex& v0, const Vertex& v1, const Vertex& v2, const Vertex& v3)
: v0(v0), v1(v1), v2(v2), v3(v3) {}
__forceinline Vertex begin() const {
2022-11-24 14:45:59 +00:00
return v1;
2021-04-20 16:38:09 +00:00
}
__forceinline Vertex end() const {
2022-11-24 14:45:59 +00:00
return v2;
2021-04-20 16:38:09 +00:00
}
__forceinline Vertex center() const {
2024-02-24 11:40:55 +00:00
return 0.5f*(v0+v1);
2021-04-20 16:38:09 +00:00
}
__forceinline BBox<Vertex> bounds() const {
return merge(BBox<Vertex>(v0),BBox<Vertex>(v1),BBox<Vertex>(v2),BBox<Vertex>(v3));
}
__forceinline friend CatmullRomCurveT operator -( const CatmullRomCurveT& a, const Vertex& b ) {
return CatmullRomCurveT(a.v0-b,a.v1-b,a.v2-b,a.v3-b);
}
__forceinline CatmullRomCurveT<Vec3ff> xfm_pr(const LinearSpace3fa& space, const Vec3fa& p) const
{
const Vec3ff q0(xfmVector(space,v0-p), v0.w);
const Vec3ff q1(xfmVector(space,v1-p), v1.w);
const Vec3ff q2(xfmVector(space,v2-p), v2.w);
const Vec3ff q3(xfmVector(space,v3-p), v3.w);
return CatmullRomCurveT<Vec3ff>(q0,q1,q2,q3);
}
__forceinline Vertex eval(const float t) const
{
const Vec4<float> b = CatmullRomBasis::eval(t);
return madd(b.x,v0,madd(b.y,v1,madd(b.z,v2,b.w*v3)));
}
__forceinline Vertex eval_du(const float t) const
{
const Vec4<float> b = CatmullRomBasis::derivative(t);
return madd(b.x,v0,madd(b.y,v1,madd(b.z,v2,b.w*v3)));
}
__forceinline Vertex eval_dudu(const float t) const
{
const Vec4<float> b = CatmullRomBasis::derivative2(t);
return madd(b.x,v0,madd(b.y,v1,madd(b.z,v2,b.w*v3)));
}
2024-02-24 11:40:55 +00:00
__forceinline void eval(const float t, Vertex& p, Vertex& dp) const
{
p = eval(t);
dp = eval_du(t);
}
2021-04-20 16:38:09 +00:00
__forceinline void eval(const float t, Vertex& p, Vertex& dp, Vertex& ddp) const
{
p = eval(t);
dp = eval_du(t);
ddp = eval_dudu(t);
}
template<int M>
__forceinline Vec4vf<M> veval(const vfloat<M>& t) const
{
const Vec4vf<M> b = CatmullRomBasis::eval(t);
return madd(b.x, Vec4vf<M>(v0), madd(b.y, Vec4vf<M>(v1), madd(b.z, Vec4vf<M>(v2), b.w * Vec4vf<M>(v3))));
}
template<int M>
__forceinline Vec4vf<M> veval_du(const vfloat<M>& t) const
{
const Vec4vf<M> b = CatmullRomBasis::derivative(t);
return madd(b.x, Vec4vf<M>(v0), madd(b.y, Vec4vf<M>(v1), madd(b.z, Vec4vf<M>(v2), b.w * Vec4vf<M>(v3))));
}
template<int M>
__forceinline Vec4vf<M> veval_dudu(const vfloat<M>& t) const
{
const Vec4vf<M> b = CatmullRomBasis::derivative2(t);
return madd(b.x, Vec4vf<M>(v0), madd(b.y, Vec4vf<M>(v1), madd(b.z, Vec4vf<M>(v2), b.w * Vec4vf<M>(v3))));
}
template<int M>
__forceinline void veval(const vfloat<M>& t, Vec4vf<M>& p, Vec4vf<M>& dp) const
{
p = veval<M>(t);
dp = veval_du<M>(t);
2021-04-20 16:38:09 +00:00
}
template<int M>
__forceinline Vec4vf<M> eval0(const int ofs, const int size) const
{
assert(size <= PrecomputedCatmullRomBasis::N);
assert(ofs <= size);
return madd(vfloat<M>::loadu(&catmullrom_basis0.c0[size][ofs]), Vec4vf<M>(v0),
madd(vfloat<M>::loadu(&catmullrom_basis0.c1[size][ofs]), Vec4vf<M>(v1),
madd(vfloat<M>::loadu(&catmullrom_basis0.c2[size][ofs]), Vec4vf<M>(v2),
vfloat<M>::loadu(&catmullrom_basis0.c3[size][ofs]) * Vec4vf<M>(v3))));
}
template<int M>
__forceinline Vec4vf<M> eval1(const int ofs, const int size) const
{
assert(size <= PrecomputedCatmullRomBasis::N);
assert(ofs <= size);
return madd(vfloat<M>::loadu(&catmullrom_basis1.c0[size][ofs]), Vec4vf<M>(v0),
madd(vfloat<M>::loadu(&catmullrom_basis1.c1[size][ofs]), Vec4vf<M>(v1),
madd(vfloat<M>::loadu(&catmullrom_basis1.c2[size][ofs]), Vec4vf<M>(v2),
vfloat<M>::loadu(&catmullrom_basis1.c3[size][ofs]) * Vec4vf<M>(v3))));
}
template<int M>
__forceinline Vec4vf<M> derivative0(const int ofs, const int size) const
{
assert(size <= PrecomputedCatmullRomBasis::N);
assert(ofs <= size);
return madd(vfloat<M>::loadu(&catmullrom_basis0.d0[size][ofs]), Vec4vf<M>(v0),
madd(vfloat<M>::loadu(&catmullrom_basis0.d1[size][ofs]), Vec4vf<M>(v1),
madd(vfloat<M>::loadu(&catmullrom_basis0.d2[size][ofs]), Vec4vf<M>(v2),
vfloat<M>::loadu(&catmullrom_basis0.d3[size][ofs]) * Vec4vf<M>(v3))));
}
template<int M>
__forceinline Vec4vf<M> derivative1(const int ofs, const int size) const
{
assert(size <= PrecomputedCatmullRomBasis::N);
assert(ofs <= size);
return madd(vfloat<M>::loadu(&catmullrom_basis1.d0[size][ofs]), Vec4vf<M>(v0),
madd(vfloat<M>::loadu(&catmullrom_basis1.d1[size][ofs]), Vec4vf<M>(v1),
madd(vfloat<M>::loadu(&catmullrom_basis1.d2[size][ofs]), Vec4vf<M>(v2),
vfloat<M>::loadu(&catmullrom_basis1.d3[size][ofs]) * Vec4vf<M>(v3))));
}
/* calculates bounds of catmull-rom curve geometry */
__forceinline BBox3fa accurateRoundBounds() const
{
const int N = 7;
const float scale = 1.0f/(3.0f*(N-1));
Vec4vfx pl(pos_inf), pu(neg_inf);
for (int i=0; i<=N; i+=VSIZEX)
{
vintx vi = vintx(i)+vintx(step);
vboolx valid = vi <= vintx(N);
const Vec4vfx p = eval0<VSIZEX>(i,N);
const Vec4vfx dp = derivative0<VSIZEX>(i,N);
const Vec4vfx pm = p-Vec4vfx(scale)*select(vi!=vintx(0),dp,Vec4vfx(zero));
const Vec4vfx pp = p+Vec4vfx(scale)*select(vi!=vintx(N),dp,Vec4vfx(zero));
pl = select(valid,min(pl,p,pm,pp),pl); // FIXME: use masked min
pu = select(valid,max(pu,p,pm,pp),pu); // FIXME: use masked min
}
const Vec3fa lower(reduce_min(pl.x),reduce_min(pl.y),reduce_min(pl.z));
const Vec3fa upper(reduce_max(pu.x),reduce_max(pu.y),reduce_max(pu.z));
const float r_min = reduce_min(pl.w);
const float r_max = reduce_max(pu.w);
const Vec3fa upper_r = Vec3fa(max(abs(r_min),abs(r_max)));
return enlarge(BBox3fa(lower,upper),upper_r);
}
/* calculates bounds when tessellated into N line segments */
__forceinline BBox3fa accurateFlatBounds(int N) const
{
if (likely(N == 4))
{
const Vec4vf4 pi = eval0<4>(0,4);
const Vec3fa lower(reduce_min(pi.x),reduce_min(pi.y),reduce_min(pi.z));
const Vec3fa upper(reduce_max(pi.x),reduce_max(pi.y),reduce_max(pi.z));
const Vec3fa upper_r = Vec3fa(reduce_max(abs(pi.w)));
const Vec3ff pe = end();
return enlarge(BBox3fa(min(lower,pe),max(upper,pe)),max(upper_r,Vec3fa(abs(pe.w))));
}
else
{
Vec3vfx pl(pos_inf), pu(neg_inf); vfloatx ru(0.0f);
for (int i=0; i<=N; i+=VSIZEX)
{
vboolx valid = vintx(i)+vintx(step) <= vintx(N);
const Vec4vfx pi = eval0<VSIZEX>(i,N);
pl.x = select(valid,min(pl.x,pi.x),pl.x); // FIXME: use masked min
pl.y = select(valid,min(pl.y,pi.y),pl.y);
pl.z = select(valid,min(pl.z,pi.z),pl.z);
pu.x = select(valid,max(pu.x,pi.x),pu.x); // FIXME: use masked min
pu.y = select(valid,max(pu.y,pi.y),pu.y);
pu.z = select(valid,max(pu.z,pi.z),pu.z);
ru = select(valid,max(ru,abs(pi.w)),ru);
}
const Vec3fa lower(reduce_min(pl.x),reduce_min(pl.y),reduce_min(pl.z));
const Vec3fa upper(reduce_max(pu.x),reduce_max(pu.y),reduce_max(pu.z));
const Vec3fa upper_r(reduce_max(ru));
return enlarge(BBox3fa(lower,upper),upper_r);
}
}
friend __forceinline embree_ostream operator<<(embree_ostream cout, const CatmullRomCurveT& curve) {
return cout << "CatmullRomCurve { v0 = " << curve.v0 << ", v1 = " << curve.v1 << ", v2 = " << curve.v2 << ", v3 = " << curve.v3 << " }";
}
};
2024-02-24 11:40:55 +00:00
template<typename Vertex>
__forceinline void convert(const CatmullRomCurveT<Vertex>& icurve, BezierCurveT<Vertex>& ocurve)
{
const Vertex v0 = icurve.v1;
const Vertex v1 = icurve.v1+(icurve.v2-icurve.v0)*(1.0f/6.0f);
const Vertex v2 = icurve.v2+(icurve.v1-icurve.v3)*(1.0f/6.0f);
const Vertex v3 = icurve.v2;
ocurve = BezierCurveT<Vertex>(v0,v1,v2,v3);
}
template<typename CurveGeometry>
2024-02-24 11:40:55 +00:00
__forceinline CatmullRomCurveT<Vec3ff> enlargeRadiusToMinWidth(const RayQueryContext* context, const CurveGeometry* geom, const Vec3fa& ray_org, const CatmullRomCurveT<Vec3ff>& curve)
2021-04-20 16:38:09 +00:00
{
return CatmullRomCurveT<Vec3ff>(enlargeRadiusToMinWidth(context,geom,ray_org,curve.v0),
enlargeRadiusToMinWidth(context,geom,ray_org,curve.v1),
enlargeRadiusToMinWidth(context,geom,ray_org,curve.v2),
enlargeRadiusToMinWidth(context,geom,ray_org,curve.v3));
}
typedef CatmullRomCurveT<Vec3fa> CatmullRomCurve3fa;
}