godot/thirdparty/openssl/crypto/asn1/x_x509.c

290 lines
9.5 KiB
C
Raw Normal View History

/* crypto/asn1/x_x509.c */
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
2016-04-10 13:18:59 +00:00
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
2016-04-10 13:18:59 +00:00
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
2016-04-10 13:18:59 +00:00
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
2016-04-10 13:18:59 +00:00
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
2016-04-10 13:18:59 +00:00
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
2016-04-10 13:18:59 +00:00
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/
#include <stdio.h>
#include "cryptlib.h"
#include <openssl/evp.h>
#include <openssl/asn1t.h>
#include <openssl/x509.h>
#include <openssl/x509v3.h>
ASN1_SEQUENCE_enc(X509_CINF, enc, 0) = {
2016-04-10 13:18:59 +00:00
ASN1_EXP_OPT(X509_CINF, version, ASN1_INTEGER, 0),
ASN1_SIMPLE(X509_CINF, serialNumber, ASN1_INTEGER),
ASN1_SIMPLE(X509_CINF, signature, X509_ALGOR),
ASN1_SIMPLE(X509_CINF, issuer, X509_NAME),
ASN1_SIMPLE(X509_CINF, validity, X509_VAL),
ASN1_SIMPLE(X509_CINF, subject, X509_NAME),
ASN1_SIMPLE(X509_CINF, key, X509_PUBKEY),
ASN1_IMP_OPT(X509_CINF, issuerUID, ASN1_BIT_STRING, 1),
ASN1_IMP_OPT(X509_CINF, subjectUID, ASN1_BIT_STRING, 2),
ASN1_EXP_SEQUENCE_OF_OPT(X509_CINF, extensions, X509_EXTENSION, 3)
} ASN1_SEQUENCE_END_enc(X509_CINF, X509_CINF)
IMPLEMENT_ASN1_FUNCTIONS(X509_CINF)
/* X509 top level structure needs a bit of customisation */
extern void policy_cache_free(X509_POLICY_CACHE *cache);
static int x509_cb(int operation, ASN1_VALUE **pval, const ASN1_ITEM *it,
2016-04-10 13:18:59 +00:00
void *exarg)
{
2016-04-10 13:18:59 +00:00
X509 *ret = (X509 *)*pval;
2016-04-10 13:18:59 +00:00
switch (operation) {
2016-04-10 13:18:59 +00:00
case ASN1_OP_NEW_POST:
ret->valid = 0;
ret->name = NULL;
ret->ex_flags = 0;
ret->ex_pathlen = -1;
ret->skid = NULL;
ret->akid = NULL;
#ifndef OPENSSL_NO_RFC3779
2016-04-10 13:18:59 +00:00
ret->rfc3779_addr = NULL;
ret->rfc3779_asid = NULL;
#endif
2016-04-10 13:18:59 +00:00
ret->aux = NULL;
ret->crldp = NULL;
CRYPTO_new_ex_data(CRYPTO_EX_INDEX_X509, ret, &ret->ex_data);
break;
case ASN1_OP_D2I_POST:
if (ret->name != NULL)
OPENSSL_free(ret->name);
ret->name = X509_NAME_oneline(ret->cert_info->subject, NULL, 0);
break;
case ASN1_OP_FREE_POST:
CRYPTO_free_ex_data(CRYPTO_EX_INDEX_X509, ret, &ret->ex_data);
X509_CERT_AUX_free(ret->aux);
ASN1_OCTET_STRING_free(ret->skid);
AUTHORITY_KEYID_free(ret->akid);
CRL_DIST_POINTS_free(ret->crldp);
policy_cache_free(ret->policy_cache);
GENERAL_NAMES_free(ret->altname);
NAME_CONSTRAINTS_free(ret->nc);
#ifndef OPENSSL_NO_RFC3779
2016-04-10 13:18:59 +00:00
sk_IPAddressFamily_pop_free(ret->rfc3779_addr, IPAddressFamily_free);
ASIdentifiers_free(ret->rfc3779_asid);
#endif
2016-04-10 13:18:59 +00:00
if (ret->name != NULL)
OPENSSL_free(ret->name);
break;
2016-04-10 13:18:59 +00:00
}
2016-04-10 13:18:59 +00:00
return 1;
}
ASN1_SEQUENCE_ref(X509, x509_cb, CRYPTO_LOCK_X509) = {
2016-04-10 13:18:59 +00:00
ASN1_SIMPLE(X509, cert_info, X509_CINF),
ASN1_SIMPLE(X509, sig_alg, X509_ALGOR),
ASN1_SIMPLE(X509, signature, ASN1_BIT_STRING)
} ASN1_SEQUENCE_END_ref(X509, X509)
IMPLEMENT_ASN1_FUNCTIONS(X509)
2016-04-10 13:18:59 +00:00
IMPLEMENT_ASN1_DUP_FUNCTION(X509)
int X509_get_ex_new_index(long argl, void *argp, CRYPTO_EX_new *new_func,
2016-04-10 13:18:59 +00:00
CRYPTO_EX_dup *dup_func, CRYPTO_EX_free *free_func)
{
return CRYPTO_get_ex_new_index(CRYPTO_EX_INDEX_X509, argl, argp,
new_func, dup_func, free_func);
}
int X509_set_ex_data(X509 *r, int idx, void *arg)
2016-04-10 13:18:59 +00:00
{
return (CRYPTO_set_ex_data(&r->ex_data, idx, arg));
}
void *X509_get_ex_data(X509 *r, int idx)
2016-04-10 13:18:59 +00:00
{
return (CRYPTO_get_ex_data(&r->ex_data, idx));
}
/*
* X509_AUX ASN1 routines. X509_AUX is the name given to a certificate with
* extra info tagged on the end. Since these functions set how a certificate
* is trusted they should only be used when the certificate comes from a
* reliable source such as local storage.
*/
X509 *d2i_X509_AUX(X509 **a, const unsigned char **pp, long length)
{
2016-04-10 13:18:59 +00:00
const unsigned char *q;
X509 *ret;
int freeret = 0;
/* Save start position */
q = *pp;
if (!a || *a == NULL) {
freeret = 1;
}
ret = d2i_X509(a, &q, length);
/* If certificate unreadable then forget it */
if (!ret)
return NULL;
/* update length */
length -= q - *pp;
if (length > 0 && !d2i_X509_CERT_AUX(&ret->aux, &q, length))
goto err;
*pp = q;
return ret;
err:
if (freeret) {
X509_free(ret);
if (a)
*a = NULL;
}
return NULL;
}
/*
* Serialize trusted certificate to *pp or just return the required buffer
* length if pp == NULL. We ultimately want to avoid modifying *pp in the
* error path, but that depends on similar hygiene in lower-level functions.
* Here we avoid compounding the problem.
*/
static int i2d_x509_aux_internal(X509 *a, unsigned char **pp)
{
2016-05-03 19:29:14 +00:00
int length, tmplen;
unsigned char *start = pp != NULL ? *pp : NULL;
OPENSSL_assert(pp == NULL || *pp != NULL);
/*
* This might perturb *pp on error, but fixing that belongs in i2d_X509()
* not here. It should be that if a == NULL length is zero, but we check
* both just in case.
*/
2016-04-10 13:18:59 +00:00
length = i2d_X509(a, pp);
if (length <= 0 || a == NULL)
2016-05-03 19:29:14 +00:00
return length;
tmplen = i2d_X509_CERT_AUX(a->aux, pp);
if (tmplen < 0) {
if (start != NULL)
*pp = start;
return tmplen;
}
length += tmplen;
2016-04-10 13:18:59 +00:00
return length;
}
2016-04-15 14:33:35 +00:00
/*
* Serialize trusted certificate to *pp, or just return the required buffer
* length if pp == NULL.
*
* When pp is not NULL, but *pp == NULL, we allocate the buffer, but since
* we're writing two ASN.1 objects back to back, we can't have i2d_X509() do
* the allocation, nor can we allow i2d_X509_CERT_AUX() to increment the
* allocated buffer.
*/
int i2d_X509_AUX(X509 *a, unsigned char **pp)
{
int length;
unsigned char *tmp;
/* Buffer provided by caller */
if (pp == NULL || *pp != NULL)
return i2d_x509_aux_internal(a, pp);
/* Obtain the combined length */
if ((length = i2d_x509_aux_internal(a, NULL)) <= 0)
return length;
/* Allocate requisite combined storage */
*pp = tmp = OPENSSL_malloc(length);
if (tmp == NULL)
return -1; /* Push error onto error stack? */
/* Encode, but keep *pp at the originally malloced pointer */
length = i2d_x509_aux_internal(a, &tmp);
if (length <= 0) {
OPENSSL_free(*pp);
*pp = NULL;
}
return length;
}
2016-04-15 14:33:35 +00:00
int i2d_re_X509_tbs(X509 *x, unsigned char **pp)
{
x->cert_info->enc.modified = 1;
return i2d_X509_CINF(x->cert_info, pp);
}
void X509_get0_signature(ASN1_BIT_STRING **psig, X509_ALGOR **palg,
const X509 *x)
{
if (psig)
*psig = x->signature;
if (palg)
*palg = x->sig_alg;
}
int X509_get_signature_nid(const X509 *x)
{
return OBJ_obj2nid(x->sig_alg->algorithm);
}