godot/thirdparty/openssl/crypto/rsa/rsa_oaep.c

301 lines
9.2 KiB
C
Raw Normal View History

/* crypto/rsa/rsa_oaep.c */
2016-04-10 13:18:59 +00:00
/*
* Written by Ulf Moeller. This software is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied.
*/
/* EME-OAEP as defined in RFC 2437 (PKCS #1 v2.0) */
2016-04-10 13:18:59 +00:00
/*
* See Victor Shoup, "OAEP reconsidered," Nov. 2000, <URL:
* http://www.shoup.net/papers/oaep.ps.Z> for problems with the security
* proof for the original OAEP scheme, which EME-OAEP is based on. A new
* proof can be found in E. Fujisaki, T. Okamoto, D. Pointcheval, J. Stern,
* "RSA-OEAP is Still Alive!", Dec. 2000, <URL:
* http://eprint.iacr.org/2000/061/>. The new proof has stronger requirements
* for the underlying permutation: "partial-one-wayness" instead of
* one-wayness. For the RSA function, this is an equivalent notion.
*/
2016-04-10 13:18:59 +00:00
#include "constant_time_locl.h"
#if !defined(OPENSSL_NO_SHA) && !defined(OPENSSL_NO_SHA1)
2016-04-10 13:18:59 +00:00
# include <stdio.h>
# include "cryptlib.h"
# include <openssl/bn.h>
# include <openssl/rsa.h>
# include <openssl/evp.h>
# include <openssl/rand.h>
# include <openssl/sha.h>
int RSA_padding_add_PKCS1_OAEP(unsigned char *to, int tlen,
2016-04-10 13:18:59 +00:00
const unsigned char *from, int flen,
const unsigned char *param, int plen)
2016-04-15 14:33:35 +00:00
{
return RSA_padding_add_PKCS1_OAEP_mgf1(to, tlen, from, flen,
param, plen, NULL, NULL);
}
int RSA_padding_add_PKCS1_OAEP_mgf1(unsigned char *to, int tlen,
const unsigned char *from, int flen,
const unsigned char *param, int plen,
const EVP_MD *md, const EVP_MD *mgf1md)
2016-04-10 13:18:59 +00:00
{
int i, emlen = tlen - 1;
unsigned char *db, *seed;
2016-04-15 14:33:35 +00:00
unsigned char *dbmask, seedmask[EVP_MAX_MD_SIZE];
int mdlen;
if (md == NULL)
md = EVP_sha1();
if (mgf1md == NULL)
mgf1md = md;
2016-04-10 13:18:59 +00:00
2016-04-15 14:33:35 +00:00
mdlen = EVP_MD_size(md);
if (flen > emlen - 2 * mdlen - 1) {
RSAerr(RSA_F_RSA_PADDING_ADD_PKCS1_OAEP_MGF1,
2016-04-10 13:18:59 +00:00
RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE);
return 0;
}
2016-04-15 14:33:35 +00:00
if (emlen < 2 * mdlen + 1) {
RSAerr(RSA_F_RSA_PADDING_ADD_PKCS1_OAEP_MGF1,
RSA_R_KEY_SIZE_TOO_SMALL);
2016-04-10 13:18:59 +00:00
return 0;
}
to[0] = 0;
seed = to + 1;
2016-04-15 14:33:35 +00:00
db = to + mdlen + 1;
2016-04-10 13:18:59 +00:00
2016-04-15 14:33:35 +00:00
if (!EVP_Digest((void *)param, plen, db, NULL, md, NULL))
2016-04-10 13:18:59 +00:00
return 0;
2016-04-15 14:33:35 +00:00
memset(db + mdlen, 0, emlen - flen - 2 * mdlen - 1);
db[emlen - flen - mdlen - 1] = 0x01;
memcpy(db + emlen - flen - mdlen, from, (unsigned int)flen);
if (RAND_bytes(seed, mdlen) <= 0)
2016-04-10 13:18:59 +00:00
return 0;
# ifdef PKCS_TESTVECT
memcpy(seed,
"\xaa\xfd\x12\xf6\x59\xca\xe6\x34\x89\xb4\x79\xe5\x07\x6d\xde\xc2\xf0\x6c\xb5\x8f",
20);
# endif
2016-04-15 14:33:35 +00:00
dbmask = OPENSSL_malloc(emlen - mdlen);
2016-04-10 13:18:59 +00:00
if (dbmask == NULL) {
2016-04-15 14:33:35 +00:00
RSAerr(RSA_F_RSA_PADDING_ADD_PKCS1_OAEP_MGF1, ERR_R_MALLOC_FAILURE);
2016-04-10 13:18:59 +00:00
return 0;
}
2016-04-15 14:33:35 +00:00
if (PKCS1_MGF1(dbmask, emlen - mdlen, seed, mdlen, mgf1md) < 0)
goto err;
2016-04-15 14:33:35 +00:00
for (i = 0; i < emlen - mdlen; i++)
2016-04-10 13:18:59 +00:00
db[i] ^= dbmask[i];
2016-04-15 14:33:35 +00:00
if (PKCS1_MGF1(seedmask, mdlen, db, emlen - mdlen, mgf1md) < 0)
goto err;
2016-04-15 14:33:35 +00:00
for (i = 0; i < mdlen; i++)
2016-04-10 13:18:59 +00:00
seed[i] ^= seedmask[i];
2016-04-10 13:18:59 +00:00
OPENSSL_free(dbmask);
return 1;
err:
OPENSSL_free(dbmask);
return 0;
2016-04-10 13:18:59 +00:00
}
int RSA_padding_check_PKCS1_OAEP(unsigned char *to, int tlen,
2016-04-10 13:18:59 +00:00
const unsigned char *from, int flen, int num,
const unsigned char *param, int plen)
2016-04-15 14:33:35 +00:00
{
return RSA_padding_check_PKCS1_OAEP_mgf1(to, tlen, from, flen, num,
param, plen, NULL, NULL);
}
int RSA_padding_check_PKCS1_OAEP_mgf1(unsigned char *to, int tlen,
const unsigned char *from, int flen,
int num, const unsigned char *param,
int plen, const EVP_MD *md,
const EVP_MD *mgf1md)
2016-04-10 13:18:59 +00:00
{
int i, dblen = 0, mlen = -1, one_index = 0, msg_index;
2016-04-10 13:18:59 +00:00
unsigned int good, found_one_byte;
const unsigned char *maskedseed, *maskeddb;
/*
* |em| is the encoded message, zero-padded to exactly |num| bytes: em =
* Y || maskedSeed || maskedDB
*/
unsigned char *db = NULL, *em = NULL, seed[EVP_MAX_MD_SIZE],
phash[EVP_MAX_MD_SIZE];
2016-04-15 14:33:35 +00:00
int mdlen;
if (md == NULL)
md = EVP_sha1();
if (mgf1md == NULL)
mgf1md = md;
mdlen = EVP_MD_size(md);
2016-04-10 13:18:59 +00:00
if (tlen <= 0 || flen <= 0)
return -1;
/*
* |num| is the length of the modulus; |flen| is the length of the
* encoded message. Therefore, for any |from| that was obtained by
* decrypting a ciphertext, we must have |flen| <= |num|. Similarly,
2016-04-15 14:33:35 +00:00
* num < 2 * mdlen + 2 must hold for the modulus irrespective of
* the ciphertext, see PKCS #1 v2.2, section 7.1.2.
2016-04-10 13:18:59 +00:00
* This does not leak any side-channel information.
*/
2016-04-15 14:33:35 +00:00
if (num < flen || num < 2 * mdlen + 2)
2016-04-10 13:18:59 +00:00
goto decoding_err;
2016-04-15 14:33:35 +00:00
dblen = num - mdlen - 1;
2016-04-10 13:18:59 +00:00
db = OPENSSL_malloc(dblen);
if (db == NULL) {
2016-04-15 14:33:35 +00:00
RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_OAEP_MGF1, ERR_R_MALLOC_FAILURE);
2016-04-10 13:18:59 +00:00
goto cleanup;
}
if (flen != num) {
em = OPENSSL_malloc(num);
if (em == NULL) {
RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_OAEP_MGF1,
ERR_R_MALLOC_FAILURE);
goto cleanup;
}
/*
* Caller is encouraged to pass zero-padded message created with
* BN_bn2binpad, but if it doesn't, we do this zero-padding copy
* to avoid leaking that information. The copy still leaks some
* side-channel information, but it's impossible to have a fixed
* memory access pattern since we can't read out of the bounds of
* |from|.
*/
memset(em, 0, num);
memcpy(em + num - flen, from, flen);
from = em;
}
2016-04-10 13:18:59 +00:00
/*
* The first byte must be zero, however we must not leak if this is
* true. See James H. Manger, "A Chosen Ciphertext Attack on RSA
* Optimal Asymmetric Encryption Padding (OAEP) [...]", CRYPTO 2001).
*/
good = constant_time_is_zero(from[0]);
2016-04-10 13:18:59 +00:00
maskedseed = from + 1;
maskeddb = from + 1 + mdlen;
2016-04-10 13:18:59 +00:00
2016-04-15 14:33:35 +00:00
if (PKCS1_MGF1(seed, mdlen, maskeddb, dblen, mgf1md))
2016-04-10 13:18:59 +00:00
goto cleanup;
2016-04-15 14:33:35 +00:00
for (i = 0; i < mdlen; i++)
2016-04-10 13:18:59 +00:00
seed[i] ^= maskedseed[i];
2016-04-15 14:33:35 +00:00
if (PKCS1_MGF1(db, dblen, seed, mdlen, mgf1md))
2016-04-10 13:18:59 +00:00
goto cleanup;
for (i = 0; i < dblen; i++)
db[i] ^= maskeddb[i];
2016-04-15 14:33:35 +00:00
if (!EVP_Digest((void *)param, plen, phash, NULL, md, NULL))
2016-04-10 13:18:59 +00:00
goto cleanup;
2016-04-15 14:33:35 +00:00
good &= constant_time_is_zero(CRYPTO_memcmp(db, phash, mdlen));
2016-04-10 13:18:59 +00:00
found_one_byte = 0;
2016-04-15 14:33:35 +00:00
for (i = mdlen; i < dblen; i++) {
2016-04-10 13:18:59 +00:00
/*
* Padding consists of a number of 0-bytes, followed by a 1.
*/
unsigned int equals1 = constant_time_eq(db[i], 1);
unsigned int equals0 = constant_time_is_zero(db[i]);
one_index = constant_time_select_int(~found_one_byte & equals1,
i, one_index);
found_one_byte |= equals1;
good &= (found_one_byte | equals0);
}
good &= found_one_byte;
/*
* At this point |good| is zero unless the plaintext was valid,
* so plaintext-awareness ensures timing side-channels are no longer a
* concern.
*/
if (!good)
goto decoding_err;
msg_index = one_index + 1;
mlen = dblen - msg_index;
if (tlen < mlen) {
2016-04-15 14:33:35 +00:00
RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_OAEP_MGF1, RSA_R_DATA_TOO_LARGE);
2016-04-10 13:18:59 +00:00
mlen = -1;
} else {
memcpy(to, db + msg_index, mlen);
goto cleanup;
}
decoding_err:
/*
* To avoid chosen ciphertext attacks, the error message should not
* reveal which kind of decoding error happened.
*/
2016-04-15 14:33:35 +00:00
RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_OAEP_MGF1,
RSA_R_OAEP_DECODING_ERROR);
2016-04-10 13:18:59 +00:00
cleanup:
if (db != NULL) {
OPENSSL_cleanse(db, dblen);
2016-04-10 13:18:59 +00:00
OPENSSL_free(db);
}
if (em != NULL) {
OPENSSL_cleanse(em, num);
2016-04-10 13:18:59 +00:00
OPENSSL_free(em);
}
2016-04-10 13:18:59 +00:00
return mlen;
}
int PKCS1_MGF1(unsigned char *mask, long len,
2016-04-10 13:18:59 +00:00
const unsigned char *seed, long seedlen, const EVP_MD *dgst)
{
long i, outlen = 0;
unsigned char cnt[4];
EVP_MD_CTX c;
unsigned char md[EVP_MAX_MD_SIZE];
int mdlen;
int rv = -1;
EVP_MD_CTX_init(&c);
mdlen = EVP_MD_size(dgst);
if (mdlen < 0)
goto err;
for (i = 0; outlen < len; i++) {
cnt[0] = (unsigned char)((i >> 24) & 255);
cnt[1] = (unsigned char)((i >> 16) & 255);
cnt[2] = (unsigned char)((i >> 8)) & 255;
cnt[3] = (unsigned char)(i & 255);
if (!EVP_DigestInit_ex(&c, dgst, NULL)
|| !EVP_DigestUpdate(&c, seed, seedlen)
|| !EVP_DigestUpdate(&c, cnt, 4))
goto err;
if (outlen + mdlen <= len) {
if (!EVP_DigestFinal_ex(&c, mask + outlen, NULL))
goto err;
outlen += mdlen;
} else {
if (!EVP_DigestFinal_ex(&c, md, NULL))
goto err;
memcpy(mask + outlen, md, len - outlen);
outlen = len;
}
}
rv = 0;
err:
EVP_MD_CTX_cleanup(&c);
return rv;
}
#endif