2017-09-12 20:42:36 +00:00
<?xml version="1.0" encoding="UTF-8" ?>
2020-02-01 01:03:48 +00:00
<class name= "Transform" version= "4.0" >
2017-09-12 20:42:36 +00:00
<brief_description >
2019-06-21 23:04:47 +00:00
3D transformation (3× 4 matrix).
2017-09-12 20:42:36 +00:00
</brief_description>
<description >
2020-07-21 18:07:00 +00:00
3× 4 matrix (3 rows, 4 columns) used for 3D linear transformations. It can represent transformations such as translation, rotation, or scaling. It consists of a [member basis] (first 3 columns) and a [Vector3] for the [member origin] (last column).
For more information, read the "Matrices and transforms" documentation article.
2017-09-12 20:42:36 +00:00
</description>
<tutorials >
2020-08-05 12:43:40 +00:00
<link title= "Math tutorial index" > https://docs.godotengine.org/en/latest/tutorials/math/index.html</link>
<link title= "Matrices and transforms" > https://docs.godotengine.org/en/latest/tutorials/math/matrices_and_transforms.html</link>
<link title= "Using 3D transforms" > https://docs.godotengine.org/en/latest/tutorials/3d/using_transforms.html</link>
2020-10-01 08:34:47 +00:00
<link title= "Matrix Transform Demo" > https://godotengine.org/asset-library/asset/584</link>
<link title= "3D Platformer Demo" > https://godotengine.org/asset-library/asset/125</link>
<link title= "2.5D Demo" > https://godotengine.org/asset-library/asset/583</link>
2017-09-12 20:42:36 +00:00
</tutorials>
<methods >
2020-11-10 13:16:20 +00:00
<method name= "Transform" qualifiers= "constructor" >
2017-09-12 20:42:36 +00:00
<return type= "Transform" >
</return>
<description >
2020-11-09 16:46:03 +00:00
Constructs a default-initialized [Transform] set to [constant IDENTITY].
2017-09-12 20:42:36 +00:00
</description>
</method>
2020-11-10 13:16:20 +00:00
<method name= "Transform" qualifiers= "constructor" >
2017-09-12 20:42:36 +00:00
<return type= "Transform" >
</return>
2020-11-09 16:46:03 +00:00
<argument index= "0" name= "from" type= "Transform" >
2017-09-12 20:42:36 +00:00
</argument>
<description >
2020-11-09 16:46:03 +00:00
Constructs a [Transform] as a copy of the given [Transform].
2017-09-12 20:42:36 +00:00
</description>
</method>
2020-11-10 13:16:20 +00:00
<method name= "Transform" qualifiers= "constructor" >
2017-09-12 20:42:36 +00:00
<return type= "Transform" >
</return>
2020-11-09 16:46:03 +00:00
<argument index= "0" name= "basis" type= "Basis" >
2017-09-12 20:42:36 +00:00
</argument>
2020-11-09 16:46:03 +00:00
<argument index= "1" name= "origin" type= "Vector3" >
2017-09-12 20:42:36 +00:00
</argument>
<description >
2020-11-09 16:46:03 +00:00
Constructs a Transform from a [Basis] and [Vector3].
2017-09-12 20:42:36 +00:00
</description>
</method>
2020-11-10 13:16:20 +00:00
<method name= "Transform" qualifiers= "constructor" >
2017-09-12 20:42:36 +00:00
<return type= "Transform" >
</return>
2020-11-09 16:46:03 +00:00
<argument index= "0" name= "x_axis" type= "Vector3" >
</argument>
<argument index= "1" name= "y_axis" type= "Vector3" >
</argument>
<argument index= "2" name= "z_axis" type= "Vector3" >
</argument>
<argument index= "3" name= "origin" type= "Vector3" >
2017-09-12 20:42:36 +00:00
</argument>
<description >
2020-11-09 16:46:03 +00:00
Constructs a Transform from four [Vector3] values (matrix columns). Each axis corresponds to local basis vectors (some of which may be scaled).
2017-09-12 20:42:36 +00:00
</description>
</method>
<method name= "affine_inverse" >
<return type= "Transform" >
</return>
<description >
2017-10-14 10:45:26 +00:00
Returns the inverse of the transform, under the assumption that the transformation is composed of rotation, scaling and translation.
2017-09-12 20:42:36 +00:00
</description>
</method>
<method name= "interpolate_with" >
<return type= "Transform" >
</return>
2020-11-04 14:38:26 +00:00
<argument index= "0" name= "xform" type= "Transform" >
2017-09-12 20:42:36 +00:00
</argument>
<argument index= "1" name= "weight" type= "float" >
</argument>
<description >
2020-07-21 18:07:00 +00:00
Interpolates the transform to other Transform by weight amount (on the range of 0.0 to 1.0).
2017-09-12 20:42:36 +00:00
</description>
</method>
<method name= "inverse" >
<return type= "Transform" >
</return>
<description >
Returns the inverse of the transform, under the assumption that the transformation is composed of rotation and translation (no scaling, use affine_inverse for transforms with scaling).
</description>
</method>
2019-11-08 07:33:48 +00:00
<method name= "is_equal_approx" >
<return type= "bool" >
</return>
2020-11-04 14:38:26 +00:00
<argument index= "0" name= "xform" type= "Transform" >
2019-11-08 07:33:48 +00:00
</argument>
<description >
2019-11-30 20:08:50 +00:00
Returns [code]true[/code] if this transform and [code]transform[/code] are approximately equal, by calling [code]is_equal_approx[/code] on each component.
2019-11-08 07:33:48 +00:00
</description>
</method>
2017-09-12 20:42:36 +00:00
<method name= "looking_at" >
<return type= "Transform" >
</return>
<argument index= "0" name= "target" type= "Vector3" >
</argument>
2021-02-19 12:35:31 +00:00
<argument index= "1" name= "up" type= "Vector3" default= "Vector3( 0, 1, 0 )" >
2017-09-12 20:42:36 +00:00
</argument>
<description >
2018-04-29 13:44:07 +00:00
Returns a copy of the transform rotated such that its -Z axis points towards the [code]target[/code] position.
The transform will first be rotated around the given [code]up[/code] vector, and then fully aligned to the target by a further rotation around an axis perpendicular to both the [code]target[/code] and [code]up[/code] vectors.
Operations take place in global space.
2017-09-12 20:42:36 +00:00
</description>
</method>
2020-11-10 13:16:20 +00:00
<method name= "operator !=" qualifiers= "operator" >
<return type= "bool" >
</return>
<argument index= "0" name= "right" type= "Transform" >
</argument>
<description >
</description>
</method>
<method name= "operator *" qualifiers= "operator" >
<return type= "PackedVector3Array" >
</return>
<argument index= "0" name= "right" type= "PackedVector3Array" >
</argument>
<description >
</description>
</method>
<method name= "operator *" qualifiers= "operator" >
<return type= "Transform" >
</return>
<argument index= "0" name= "right" type= "Transform" >
</argument>
<description >
</description>
</method>
<method name= "operator *" qualifiers= "operator" >
<return type= "AABB" >
</return>
<argument index= "0" name= "right" type= "AABB" >
</argument>
<description >
</description>
</method>
<method name= "operator *" qualifiers= "operator" >
<return type= "Vector3" >
</return>
<argument index= "0" name= "right" type= "Vector3" >
</argument>
<description >
</description>
</method>
<method name= "operator ==" qualifiers= "operator" >
<return type= "bool" >
</return>
<argument index= "0" name= "right" type= "Transform" >
</argument>
<description >
</description>
</method>
2017-09-12 20:42:36 +00:00
<method name= "orthonormalized" >
<return type= "Transform" >
</return>
<description >
2017-10-14 10:45:26 +00:00
Returns the transform with the basis orthogonal (90 degrees), and normalized axis vectors.
2017-09-12 20:42:36 +00:00
</description>
</method>
<method name= "rotated" >
<return type= "Transform" >
</return>
<argument index= "0" name= "axis" type= "Vector3" >
</argument>
<argument index= "1" name= "phi" type= "float" >
</argument>
<description >
2019-12-13 20:23:26 +00:00
Rotates the transform around the given axis by the given angle (in radians), using matrix multiplication. The axis must be a normalized vector.
2017-09-12 20:42:36 +00:00
</description>
</method>
<method name= "scaled" >
<return type= "Transform" >
</return>
<argument index= "0" name= "scale" type= "Vector3" >
</argument>
<description >
2020-04-10 20:27:45 +00:00
Scales basis and origin of the transform by the given scale factor, using matrix multiplication.
2017-09-12 20:42:36 +00:00
</description>
</method>
<method name= "translated" >
<return type= "Transform" >
</return>
2019-12-13 20:23:26 +00:00
<argument index= "0" name= "offset" type= "Vector3" >
2017-09-12 20:42:36 +00:00
</argument>
<description >
2019-12-13 20:23:26 +00:00
Translates the transform by the given offset, relative to the transform's basis vectors.
Unlike [method rotated] and [method scaled], this does not use matrix multiplication.
2017-09-12 20:42:36 +00:00
</description>
</method>
</methods>
<members >
2019-06-29 10:38:01 +00:00
<member name= "basis" type= "Basis" setter= "" getter= "" default= "Basis( 1, 0, 0, 0, 1, 0, 0, 0, 1 )" >
2017-09-12 20:42:36 +00:00
The basis is a matrix containing 3 [Vector3] as its columns: X axis, Y axis, and Z axis. These vectors can be interpreted as the basis vectors of local coordinate system traveling with the object.
</member>
2019-06-29 10:38:01 +00:00
<member name= "origin" type= "Vector3" setter= "" getter= "" default= "Vector3( 0, 0, 0 )" >
2020-07-21 18:07:00 +00:00
The translation offset of the transform (column 3, the fourth column). Equivalent to array index [code]3[/code].
2017-09-12 20:42:36 +00:00
</member>
</members>
<constants >
2018-08-20 22:35:30 +00:00
<constant name= "IDENTITY" value= "Transform( 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0 )" >
2019-07-05 02:10:47 +00:00
[Transform] with no translation, rotation or scaling applied. When applied to other data structures, [constant IDENTITY] performs no transformation.
2018-08-20 22:35:30 +00:00
</constant>
<constant name= "FLIP_X" value= "Transform( -1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0 )" >
2019-07-05 02:10:47 +00:00
[Transform] with mirroring applied perpendicular to the YZ plane.
2018-08-20 22:35:30 +00:00
</constant>
2019-04-15 12:49:41 +00:00
<constant name= "FLIP_Y" value= "Transform( 1, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0 )" >
2019-07-05 02:10:47 +00:00
[Transform] with mirroring applied perpendicular to the XZ plane.
2018-08-20 22:35:30 +00:00
</constant>
2019-04-15 12:49:41 +00:00
<constant name= "FLIP_Z" value= "Transform( 1, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0 )" >
2019-07-05 02:10:47 +00:00
[Transform] with mirroring applied perpendicular to the XY plane.
2018-08-20 22:35:30 +00:00
</constant>
2017-09-12 20:42:36 +00:00
</constants>
</class>