2021-05-20 10:49:33 +00:00
|
|
|
// Copyright 2009-2021 Intel Corporation
|
2020-12-19 13:50:20 +00:00
|
|
|
// SPDX-License-Identifier: Apache-2.0
|
|
|
|
|
|
|
|
#pragma once
|
|
|
|
|
|
|
|
#include "../common/ray.h"
|
|
|
|
#include "cylinder.h"
|
|
|
|
#include "plane.h"
|
|
|
|
#include "line_intersector.h"
|
|
|
|
#include "curve_intersector_precalculations.h"
|
|
|
|
|
|
|
|
namespace embree
|
|
|
|
{
|
|
|
|
namespace isa
|
|
|
|
{
|
|
|
|
static const size_t numJacobianIterations = 5;
|
|
|
|
#if defined(__AVX__)
|
|
|
|
static const size_t numBezierSubdivisions = 2;
|
|
|
|
#else
|
|
|
|
static const size_t numBezierSubdivisions = 3;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
struct BezierCurveHit
|
|
|
|
{
|
|
|
|
__forceinline BezierCurveHit() {}
|
|
|
|
|
|
|
|
__forceinline BezierCurveHit(const float t, const float u, const Vec3fa& Ng)
|
|
|
|
: t(t), u(u), v(0.0f), Ng(Ng) {}
|
|
|
|
|
|
|
|
__forceinline BezierCurveHit(const float t, const float u, const float v, const Vec3fa& Ng)
|
|
|
|
: t(t), u(u), v(v), Ng(Ng) {}
|
|
|
|
|
|
|
|
__forceinline void finalize() {}
|
|
|
|
|
|
|
|
public:
|
|
|
|
float t;
|
|
|
|
float u;
|
|
|
|
float v;
|
|
|
|
Vec3fa Ng;
|
|
|
|
};
|
|
|
|
|
|
|
|
template<typename NativeCurve3ff, typename Ray, typename Epilog>
|
|
|
|
__forceinline bool intersect_bezier_iterative_debug(const Ray& ray, const float dt, const NativeCurve3ff& curve, size_t i,
|
|
|
|
const vfloatx& u, const BBox<vfloatx>& tp, const BBox<vfloatx>& h0, const BBox<vfloatx>& h1,
|
|
|
|
const Vec3vfx& Ng, const Vec4vfx& dP0du, const Vec4vfx& dP3du,
|
|
|
|
const Epilog& epilog)
|
|
|
|
{
|
|
|
|
if (tp.lower[i]+dt > ray.tfar) return false;
|
|
|
|
Vec3fa Ng_o = Vec3fa(Ng.x[i],Ng.y[i],Ng.z[i]);
|
|
|
|
if (h0.lower[i] == tp.lower[i]) Ng_o = -Vec3fa(dP0du.x[i],dP0du.y[i],dP0du.z[i]);
|
|
|
|
if (h1.lower[i] == tp.lower[i]) Ng_o = +Vec3fa(dP3du.x[i],dP3du.y[i],dP3du.z[i]);
|
|
|
|
BezierCurveHit hit(tp.lower[i]+dt,u[i],Ng_o);
|
|
|
|
return epilog(hit);
|
|
|
|
}
|
|
|
|
|
|
|
|
template<typename NativeCurve3ff, typename Ray, typename Epilog>
|
|
|
|
__forceinline bool intersect_bezier_iterative_jacobian(const Ray& ray, const float dt, const NativeCurve3ff& curve, float u, float t, const Epilog& epilog)
|
|
|
|
{
|
|
|
|
const Vec3fa org = zero;
|
|
|
|
const Vec3fa dir = ray.dir;
|
|
|
|
const float length_ray_dir = length(dir);
|
|
|
|
|
2022-11-24 14:45:59 +00:00
|
|
|
/* error of curve evaluations is proportional to largest coordinate */
|
2020-12-19 13:50:20 +00:00
|
|
|
const BBox3ff box = curve.bounds();
|
|
|
|
const float P_err = 16.0f*float(ulp)*reduce_max(max(abs(box.lower),abs(box.upper)));
|
|
|
|
|
|
|
|
for (size_t i=0; i<numJacobianIterations; i++)
|
|
|
|
{
|
|
|
|
const Vec3fa Q = madd(Vec3fa(t),dir,org);
|
|
|
|
//const Vec3fa dQdu = zero;
|
|
|
|
const Vec3fa dQdt = dir;
|
|
|
|
const float Q_err = 16.0f*float(ulp)*length_ray_dir*t; // works as org=zero here
|
|
|
|
|
|
|
|
Vec3ff P,dPdu,ddPdu; curve.eval(u,P,dPdu,ddPdu);
|
|
|
|
//const Vec3fa dPdt = zero;
|
|
|
|
|
|
|
|
const Vec3fa R = Q-P;
|
|
|
|
const float len_R = length(R); //reduce_max(abs(R));
|
|
|
|
const float R_err = max(Q_err,P_err);
|
|
|
|
const Vec3fa dRdu = /*dQdu*/-dPdu;
|
|
|
|
const Vec3fa dRdt = dQdt;//-dPdt;
|
|
|
|
|
|
|
|
const Vec3fa T = normalize(dPdu);
|
|
|
|
const Vec3fa dTdu = dnormalize(dPdu,ddPdu);
|
|
|
|
//const Vec3fa dTdt = zero;
|
|
|
|
const float cos_err = P_err/length(dPdu);
|
|
|
|
|
|
|
|
/* Error estimate for dot(R,T):
|
|
|
|
|
|
|
|
dot(R,T) = cos(R,T) |R| |T|
|
|
|
|
= (cos(R,T) +- cos_error) * (|R| +- |R|_err) * (|T| +- |T|_err)
|
|
|
|
= cos(R,T)*|R|*|T|
|
|
|
|
+- cos(R,T)*(|R|*|T|_err + |T|*|R|_err)
|
|
|
|
+- cos_error*(|R| + |T|)
|
|
|
|
+- lower order terms
|
|
|
|
with cos(R,T) being in [0,1] and |T| = 1 we get:
|
|
|
|
dot(R,T)_err = |R|*|T|_err + |R|_err = cos_error*(|R|+1)
|
|
|
|
*/
|
|
|
|
|
|
|
|
const float f = dot(R,T);
|
|
|
|
const float f_err = len_R*P_err + R_err + cos_err*(1.0f+len_R);
|
|
|
|
const float dfdu = dot(dRdu,T) + dot(R,dTdu);
|
|
|
|
const float dfdt = dot(dRdt,T);// + dot(R,dTdt);
|
|
|
|
|
|
|
|
const float K = dot(R,R)-sqr(f);
|
|
|
|
const float dKdu = /*2.0f*/(dot(R,dRdu)-f*dfdu);
|
|
|
|
const float dKdt = /*2.0f*/(dot(R,dRdt)-f*dfdt);
|
|
|
|
const float rsqrt_K = rsqrt(K);
|
|
|
|
|
|
|
|
const float g = sqrt(K)-P.w;
|
|
|
|
const float g_err = R_err + f_err + 16.0f*float(ulp)*box.upper.w;
|
|
|
|
const float dgdu = /*0.5f*/dKdu*rsqrt_K-dPdu.w;
|
|
|
|
const float dgdt = /*0.5f*/dKdt*rsqrt_K;//-dPdt.w;
|
|
|
|
|
|
|
|
const LinearSpace2f J = LinearSpace2f(dfdu,dfdt,dgdu,dgdt);
|
|
|
|
const Vec2f dut = rcp(J)*Vec2f(f,g);
|
|
|
|
const Vec2f ut = Vec2f(u,t) - dut;
|
|
|
|
u = ut.x; t = ut.y;
|
|
|
|
|
|
|
|
if (abs(f) < f_err && abs(g) < g_err)
|
|
|
|
{
|
|
|
|
t+=dt;
|
|
|
|
if (!(ray.tnear() <= t && t <= ray.tfar)) return false; // rejects NaNs
|
|
|
|
if (!(u >= 0.0f && u <= 1.0f)) return false; // rejects NaNs
|
|
|
|
const Vec3fa R = normalize(Q-P);
|
|
|
|
const Vec3fa U = madd(Vec3fa(dPdu.w),R,dPdu);
|
|
|
|
const Vec3fa V = cross(dPdu,R);
|
|
|
|
BezierCurveHit hit(t,u,cross(V,U));
|
|
|
|
return epilog(hit);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
template<typename NativeCurve3ff, typename Ray, typename Epilog>
|
|
|
|
bool intersect_bezier_recursive_jacobian(const Ray& ray, const float dt, const NativeCurve3ff& curve,
|
|
|
|
float u0, float u1, unsigned int depth, const Epilog& epilog)
|
|
|
|
{
|
|
|
|
#if defined(__AVX__)
|
2021-05-20 10:49:33 +00:00
|
|
|
enum { VSIZEX_ = 8 };
|
2020-12-19 13:50:20 +00:00
|
|
|
typedef vbool8 vboolx; // maximally 8-wide to work around KNL issues
|
|
|
|
typedef vint8 vintx;
|
|
|
|
typedef vfloat8 vfloatx;
|
|
|
|
#else
|
2021-05-20 10:49:33 +00:00
|
|
|
enum { VSIZEX_ = 4 };
|
2020-12-19 13:50:20 +00:00
|
|
|
typedef vbool4 vboolx;
|
|
|
|
typedef vint4 vintx;
|
|
|
|
typedef vfloat4 vfloatx;
|
|
|
|
#endif
|
|
|
|
typedef Vec3<vfloatx> Vec3vfx;
|
|
|
|
typedef Vec4<vfloatx> Vec4vfx;
|
|
|
|
|
|
|
|
unsigned int maxDepth = numBezierSubdivisions;
|
|
|
|
bool found = false;
|
|
|
|
const Vec3fa org = zero;
|
|
|
|
const Vec3fa dir = ray.dir;
|
|
|
|
|
|
|
|
unsigned int sptr = 0;
|
|
|
|
const unsigned int stack_size = numBezierSubdivisions+1; // +1 because of unstable workaround below
|
|
|
|
struct StackEntry {
|
|
|
|
vboolx valid;
|
|
|
|
vfloatx tlower;
|
|
|
|
float u0;
|
|
|
|
float u1;
|
|
|
|
unsigned int depth;
|
|
|
|
};
|
|
|
|
StackEntry stack[stack_size];
|
|
|
|
goto entry;
|
|
|
|
|
|
|
|
/* terminate if stack is empty */
|
|
|
|
while (sptr)
|
|
|
|
{
|
|
|
|
/* pop from stack */
|
|
|
|
{
|
|
|
|
sptr--;
|
|
|
|
vboolx valid = stack[sptr].valid;
|
|
|
|
const vfloatx tlower = stack[sptr].tlower;
|
|
|
|
valid &= tlower+dt <= ray.tfar;
|
|
|
|
if (none(valid)) continue;
|
|
|
|
u0 = stack[sptr].u0;
|
|
|
|
u1 = stack[sptr].u1;
|
|
|
|
depth = stack[sptr].depth;
|
|
|
|
const size_t i = select_min(valid,tlower); clear(valid,i);
|
|
|
|
stack[sptr].valid = valid;
|
|
|
|
if (any(valid)) sptr++; // there are still items on the stack
|
|
|
|
|
|
|
|
/* process next segment */
|
|
|
|
const vfloatx vu0 = lerp(u0,u1,vfloatx(step)*(1.0f/(vfloatx::size-1)));
|
|
|
|
u0 = vu0[i+0];
|
|
|
|
u1 = vu0[i+1];
|
|
|
|
}
|
|
|
|
entry:
|
|
|
|
|
|
|
|
/* subdivide curve */
|
|
|
|
const float dscale = (u1-u0)*(1.0f/(3.0f*(vfloatx::size-1)));
|
|
|
|
const vfloatx vu0 = lerp(u0,u1,vfloatx(step)*(1.0f/(vfloatx::size-1)));
|
2021-05-20 10:49:33 +00:00
|
|
|
Vec4vfx P0, dP0du; curve.template veval<VSIZEX_>(vu0,P0,dP0du); dP0du = dP0du * Vec4vfx(dscale);
|
2020-12-19 13:50:20 +00:00
|
|
|
const Vec4vfx P3 = shift_right_1(P0);
|
|
|
|
const Vec4vfx dP3du = shift_right_1(dP0du);
|
|
|
|
const Vec4vfx P1 = P0 + dP0du;
|
|
|
|
const Vec4vfx P2 = P3 - dP3du;
|
|
|
|
|
|
|
|
/* calculate bounding cylinders */
|
|
|
|
const vfloatx rr1 = sqr_point_to_line_distance(Vec3vfx(dP0du),Vec3vfx(P3-P0));
|
|
|
|
const vfloatx rr2 = sqr_point_to_line_distance(Vec3vfx(dP3du),Vec3vfx(P3-P0));
|
|
|
|
const vfloatx maxr12 = sqrt(max(rr1,rr2));
|
|
|
|
const vfloatx one_plus_ulp = 1.0f+2.0f*float(ulp);
|
|
|
|
const vfloatx one_minus_ulp = 1.0f-2.0f*float(ulp);
|
|
|
|
vfloatx r_outer = max(P0.w,P1.w,P2.w,P3.w)+maxr12;
|
|
|
|
vfloatx r_inner = min(P0.w,P1.w,P2.w,P3.w)-maxr12;
|
|
|
|
r_outer = one_plus_ulp*r_outer;
|
|
|
|
r_inner = max(0.0f,one_minus_ulp*r_inner);
|
|
|
|
const CylinderN<vfloatx::size> cylinder_outer(Vec3vfx(P0),Vec3vfx(P3),r_outer);
|
|
|
|
const CylinderN<vfloatx::size> cylinder_inner(Vec3vfx(P0),Vec3vfx(P3),r_inner);
|
|
|
|
vboolx valid = true; clear(valid,vfloatx::size-1);
|
|
|
|
|
|
|
|
/* intersect with outer cylinder */
|
|
|
|
BBox<vfloatx> tc_outer; vfloatx u_outer0; Vec3vfx Ng_outer0; vfloatx u_outer1; Vec3vfx Ng_outer1;
|
|
|
|
valid &= cylinder_outer.intersect(org,dir,tc_outer,u_outer0,Ng_outer0,u_outer1,Ng_outer1);
|
|
|
|
if (none(valid)) continue;
|
|
|
|
|
|
|
|
/* intersect with cap-planes */
|
|
|
|
BBox<vfloatx> tp(ray.tnear()-dt,ray.tfar-dt);
|
|
|
|
tp = embree::intersect(tp,tc_outer);
|
|
|
|
BBox<vfloatx> h0 = HalfPlaneN<vfloatx::size>(Vec3vfx(P0),+Vec3vfx(dP0du)).intersect(org,dir);
|
|
|
|
tp = embree::intersect(tp,h0);
|
|
|
|
BBox<vfloatx> h1 = HalfPlaneN<vfloatx::size>(Vec3vfx(P3),-Vec3vfx(dP3du)).intersect(org,dir);
|
|
|
|
tp = embree::intersect(tp,h1);
|
|
|
|
valid &= tp.lower <= tp.upper;
|
|
|
|
if (none(valid)) continue;
|
|
|
|
|
|
|
|
/* clamp and correct u parameter */
|
|
|
|
u_outer0 = clamp(u_outer0,vfloatx(0.0f),vfloatx(1.0f));
|
|
|
|
u_outer1 = clamp(u_outer1,vfloatx(0.0f),vfloatx(1.0f));
|
|
|
|
u_outer0 = lerp(u0,u1,(vfloatx(step)+u_outer0)*(1.0f/float(vfloatx::size)));
|
|
|
|
u_outer1 = lerp(u0,u1,(vfloatx(step)+u_outer1)*(1.0f/float(vfloatx::size)));
|
|
|
|
|
|
|
|
/* intersect with inner cylinder */
|
|
|
|
BBox<vfloatx> tc_inner;
|
|
|
|
vfloatx u_inner0 = zero; Vec3vfx Ng_inner0 = zero; vfloatx u_inner1 = zero; Vec3vfx Ng_inner1 = zero;
|
|
|
|
const vboolx valid_inner = cylinder_inner.intersect(org,dir,tc_inner,u_inner0,Ng_inner0,u_inner1,Ng_inner1);
|
|
|
|
|
|
|
|
/* at the unstable area we subdivide deeper */
|
|
|
|
const vboolx unstable0 = (!valid_inner) | (abs(dot(Vec3vfx(Vec3fa(ray.dir)),Ng_inner0)) < 0.3f);
|
|
|
|
const vboolx unstable1 = (!valid_inner) | (abs(dot(Vec3vfx(Vec3fa(ray.dir)),Ng_inner1)) < 0.3f);
|
|
|
|
|
|
|
|
/* subtract the inner interval from the current hit interval */
|
|
|
|
BBox<vfloatx> tp0, tp1;
|
|
|
|
subtract(tp,tc_inner,tp0,tp1);
|
|
|
|
vboolx valid0 = valid & (tp0.lower <= tp0.upper);
|
|
|
|
vboolx valid1 = valid & (tp1.lower <= tp1.upper);
|
|
|
|
if (none(valid0 | valid1)) continue;
|
|
|
|
|
|
|
|
/* iterate over all first hits front to back */
|
|
|
|
const vintx termDepth0 = select(unstable0,vintx(maxDepth+1),vintx(maxDepth));
|
|
|
|
vboolx recursion_valid0 = valid0 & (depth < termDepth0);
|
|
|
|
valid0 &= depth >= termDepth0;
|
|
|
|
|
|
|
|
while (any(valid0))
|
|
|
|
{
|
|
|
|
const size_t i = select_min(valid0,tp0.lower); clear(valid0,i);
|
|
|
|
found = found | intersect_bezier_iterative_jacobian(ray,dt,curve,u_outer0[i],tp0.lower[i],epilog);
|
|
|
|
//found = found | intersect_bezier_iterative_debug (ray,dt,curve,i,u_outer0,tp0,h0,h1,Ng_outer0,dP0du,dP3du,epilog);
|
|
|
|
valid0 &= tp0.lower+dt <= ray.tfar;
|
|
|
|
}
|
|
|
|
valid1 &= tp1.lower+dt <= ray.tfar;
|
|
|
|
|
|
|
|
/* iterate over all second hits front to back */
|
|
|
|
const vintx termDepth1 = select(unstable1,vintx(maxDepth+1),vintx(maxDepth));
|
|
|
|
vboolx recursion_valid1 = valid1 & (depth < termDepth1);
|
|
|
|
valid1 &= depth >= termDepth1;
|
|
|
|
while (any(valid1))
|
|
|
|
{
|
|
|
|
const size_t i = select_min(valid1,tp1.lower); clear(valid1,i);
|
|
|
|
found = found | intersect_bezier_iterative_jacobian(ray,dt,curve,u_outer1[i],tp1.upper[i],epilog);
|
|
|
|
//found = found | intersect_bezier_iterative_debug (ray,dt,curve,i,u_outer1,tp1,h0,h1,Ng_outer1,dP0du,dP3du,epilog);
|
|
|
|
valid1 &= tp1.lower+dt <= ray.tfar;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* push valid segments to stack */
|
|
|
|
recursion_valid0 &= tp0.lower+dt <= ray.tfar;
|
|
|
|
recursion_valid1 &= tp1.lower+dt <= ray.tfar;
|
|
|
|
const vboolx recursion_valid = recursion_valid0 | recursion_valid1;
|
|
|
|
if (any(recursion_valid))
|
|
|
|
{
|
|
|
|
assert(sptr < stack_size);
|
|
|
|
stack[sptr].valid = recursion_valid;
|
|
|
|
stack[sptr].tlower = select(recursion_valid0,tp0.lower,tp1.lower);
|
|
|
|
stack[sptr].u0 = u0;
|
|
|
|
stack[sptr].u1 = u1;
|
|
|
|
stack[sptr].depth = depth+1;
|
|
|
|
sptr++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return found;
|
|
|
|
}
|
|
|
|
|
|
|
|
template<template<typename Ty> class NativeCurve>
|
|
|
|
struct SweepCurve1Intersector1
|
|
|
|
{
|
|
|
|
typedef NativeCurve<Vec3ff> NativeCurve3ff;
|
|
|
|
|
|
|
|
template<typename Epilog>
|
|
|
|
__noinline bool intersect(const CurvePrecalculations1& pre, Ray& ray,
|
|
|
|
IntersectContext* context,
|
|
|
|
const CurveGeometry* geom, const unsigned int primID,
|
|
|
|
const Vec3ff& v0, const Vec3ff& v1, const Vec3ff& v2, const Vec3ff& v3,
|
|
|
|
const Epilog& epilog)
|
|
|
|
{
|
|
|
|
STAT3(normal.trav_prims,1,1,1);
|
|
|
|
|
|
|
|
/* move ray closer to make intersection stable */
|
|
|
|
NativeCurve3ff curve0(v0,v1,v2,v3);
|
|
|
|
curve0 = enlargeRadiusToMinWidth(context,geom,ray.org,curve0);
|
|
|
|
const float dt = dot(curve0.center()-ray.org,ray.dir)*rcp(dot(ray.dir,ray.dir));
|
|
|
|
const Vec3ff ref(madd(Vec3fa(dt),ray.dir,ray.org),0.0f);
|
|
|
|
const NativeCurve3ff curve1 = curve0-ref;
|
|
|
|
return intersect_bezier_recursive_jacobian(ray,dt,curve1,0.0f,1.0f,1,epilog);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
template<template<typename Ty> class NativeCurve, int K>
|
|
|
|
struct SweepCurve1IntersectorK
|
|
|
|
{
|
|
|
|
typedef NativeCurve<Vec3ff> NativeCurve3ff;
|
|
|
|
|
|
|
|
struct Ray1
|
|
|
|
{
|
|
|
|
__forceinline Ray1(RayK<K>& ray, size_t k)
|
|
|
|
: org(ray.org.x[k],ray.org.y[k],ray.org.z[k]), dir(ray.dir.x[k],ray.dir.y[k],ray.dir.z[k]), _tnear(ray.tnear()[k]), tfar(ray.tfar[k]) {}
|
|
|
|
|
|
|
|
Vec3fa org;
|
|
|
|
Vec3fa dir;
|
|
|
|
float _tnear;
|
|
|
|
float& tfar;
|
|
|
|
|
|
|
|
__forceinline float& tnear() { return _tnear; }
|
|
|
|
//__forceinline float& tfar() { return _tfar; }
|
|
|
|
__forceinline const float& tnear() const { return _tnear; }
|
|
|
|
//__forceinline const float& tfar() const { return _tfar; }
|
|
|
|
|
|
|
|
};
|
|
|
|
|
|
|
|
template<typename Epilog>
|
|
|
|
__forceinline bool intersect(const CurvePrecalculationsK<K>& pre, RayK<K>& vray, size_t k,
|
|
|
|
IntersectContext* context,
|
|
|
|
const CurveGeometry* geom, const unsigned int primID,
|
|
|
|
const Vec3ff& v0, const Vec3ff& v1, const Vec3ff& v2, const Vec3ff& v3,
|
|
|
|
const Epilog& epilog)
|
|
|
|
{
|
|
|
|
STAT3(normal.trav_prims,1,1,1);
|
|
|
|
Ray1 ray(vray,k);
|
|
|
|
|
|
|
|
/* move ray closer to make intersection stable */
|
|
|
|
NativeCurve3ff curve0(v0,v1,v2,v3);
|
|
|
|
curve0 = enlargeRadiusToMinWidth(context,geom,ray.org,curve0);
|
|
|
|
const float dt = dot(curve0.center()-ray.org,ray.dir)*rcp(dot(ray.dir,ray.dir));
|
|
|
|
const Vec3ff ref(madd(Vec3fa(dt),ray.dir,ray.org),0.0f);
|
|
|
|
const NativeCurve3ff curve1 = curve0-ref;
|
|
|
|
return intersect_bezier_recursive_jacobian(ray,dt,curve1,0.0f,1.0f,1,epilog);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
}
|
|
|
|
}
|