2018-08-24 22:25:06 +00:00
|
|
|
/*
|
|
|
|
* OpenSimplex (Simplectic) Noise in C.
|
|
|
|
* Ported by Stephen M. Cameron from Kurt Spencer's java implementation
|
|
|
|
*
|
|
|
|
* v1.1 (October 5, 2014)
|
|
|
|
* - Added 2D and 4D implementations.
|
|
|
|
* - Proper gradient sets for all dimensions, from a
|
|
|
|
* dimensionally-generalizable scheme with an actual
|
|
|
|
* rhyme and reason behind it.
|
|
|
|
* - Removed default permutation array in favor of
|
|
|
|
* default seed.
|
|
|
|
* - Changed seed-based constructor to be independent
|
|
|
|
* of any particular randomization library, so results
|
|
|
|
* will be the same when ported to other languages.
|
|
|
|
*/
|
|
|
|
|
|
|
|
// -- GODOT start --
|
|
|
|
// Modified to work without allocating memory, also removed some unused function.
|
|
|
|
// -- GODOT end --
|
|
|
|
|
|
|
|
#include <math.h>
|
|
|
|
#include <stdlib.h>
|
|
|
|
#include <stdint.h>
|
|
|
|
#include <string.h>
|
|
|
|
#include <errno.h>
|
|
|
|
|
|
|
|
#include "open-simplex-noise.h"
|
|
|
|
|
|
|
|
#define STRETCH_CONSTANT_2D (-0.211324865405187) /* (1 / sqrt(2 + 1) - 1 ) / 2; */
|
|
|
|
#define SQUISH_CONSTANT_2D (0.366025403784439) /* (sqrt(2 + 1) -1) / 2; */
|
|
|
|
#define STRETCH_CONSTANT_3D (-1.0 / 6.0) /* (1 / sqrt(3 + 1) - 1) / 3; */
|
|
|
|
#define SQUISH_CONSTANT_3D (1.0 / 3.0) /* (sqrt(3+1)-1)/3; */
|
|
|
|
#define STRETCH_CONSTANT_4D (-0.138196601125011) /* (1 / sqrt(4 + 1) - 1) / 4; */
|
|
|
|
#define SQUISH_CONSTANT_4D (0.309016994374947) /* (sqrt(4 + 1) - 1) / 4; */
|
|
|
|
|
|
|
|
#define NORM_CONSTANT_2D (47.0)
|
|
|
|
#define NORM_CONSTANT_3D (103.0)
|
|
|
|
#define NORM_CONSTANT_4D (30.0)
|
|
|
|
|
|
|
|
#define DEFAULT_SEED (0LL)
|
|
|
|
|
|
|
|
// -- GODOT start --
|
|
|
|
/*struct osn_context {
|
|
|
|
int16_t *perm;
|
|
|
|
int16_t *permGradIndex3D;
|
|
|
|
};*/
|
|
|
|
// -- GODOT end --
|
|
|
|
#define ARRAYSIZE(x) (sizeof((x)) / sizeof((x)[0]))
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Gradients for 2D. They approximate the directions to the
|
|
|
|
* vertices of an octagon from the center.
|
|
|
|
*/
|
|
|
|
static const int8_t gradients2D[] = {
|
|
|
|
5, 2, 2, 5,
|
|
|
|
-5, 2, -2, 5,
|
|
|
|
5, -2, 2, -5,
|
|
|
|
-5, -2, -2, -5,
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Gradients for 3D. They approximate the directions to the
|
|
|
|
* vertices of a rhombicuboctahedron from the center, skewed so
|
|
|
|
* that the triangular and square facets can be inscribed inside
|
|
|
|
* circles of the same radius.
|
|
|
|
*/
|
|
|
|
static const signed char gradients3D[] = {
|
|
|
|
-11, 4, 4, -4, 11, 4, -4, 4, 11,
|
|
|
|
11, 4, 4, 4, 11, 4, 4, 4, 11,
|
|
|
|
-11, -4, 4, -4, -11, 4, -4, -4, 11,
|
|
|
|
11, -4, 4, 4, -11, 4, 4, -4, 11,
|
|
|
|
-11, 4, -4, -4, 11, -4, -4, 4, -11,
|
|
|
|
11, 4, -4, 4, 11, -4, 4, 4, -11,
|
|
|
|
-11, -4, -4, -4, -11, -4, -4, -4, -11,
|
|
|
|
11, -4, -4, 4, -11, -4, 4, -4, -11,
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Gradients for 4D. They approximate the directions to the
|
|
|
|
* vertices of a disprismatotesseractihexadecachoron from the center,
|
|
|
|
* skewed so that the tetrahedral and cubic facets can be inscribed inside
|
|
|
|
* spheres of the same radius.
|
|
|
|
*/
|
|
|
|
static const signed char gradients4D[] = {
|
|
|
|
3, 1, 1, 1, 1, 3, 1, 1, 1, 1, 3, 1, 1, 1, 1, 3,
|
|
|
|
-3, 1, 1, 1, -1, 3, 1, 1, -1, 1, 3, 1, -1, 1, 1, 3,
|
|
|
|
3, -1, 1, 1, 1, -3, 1, 1, 1, -1, 3, 1, 1, -1, 1, 3,
|
|
|
|
-3, -1, 1, 1, -1, -3, 1, 1, -1, -1, 3, 1, -1, -1, 1, 3,
|
|
|
|
3, 1, -1, 1, 1, 3, -1, 1, 1, 1, -3, 1, 1, 1, -1, 3,
|
|
|
|
-3, 1, -1, 1, -1, 3, -1, 1, -1, 1, -3, 1, -1, 1, -1, 3,
|
|
|
|
3, -1, -1, 1, 1, -3, -1, 1, 1, -1, -3, 1, 1, -1, -1, 3,
|
|
|
|
-3, -1, -1, 1, -1, -3, -1, 1, -1, -1, -3, 1, -1, -1, -1, 3,
|
|
|
|
3, 1, 1, -1, 1, 3, 1, -1, 1, 1, 3, -1, 1, 1, 1, -3,
|
|
|
|
-3, 1, 1, -1, -1, 3, 1, -1, -1, 1, 3, -1, -1, 1, 1, -3,
|
|
|
|
3, -1, 1, -1, 1, -3, 1, -1, 1, -1, 3, -1, 1, -1, 1, -3,
|
|
|
|
-3, -1, 1, -1, -1, -3, 1, -1, -1, -1, 3, -1, -1, -1, 1, -3,
|
|
|
|
3, 1, -1, -1, 1, 3, -1, -1, 1, 1, -3, -1, 1, 1, -1, -3,
|
|
|
|
-3, 1, -1, -1, -1, 3, -1, -1, -1, 1, -3, -1, -1, 1, -1, -3,
|
|
|
|
3, -1, -1, -1, 1, -3, -1, -1, 1, -1, -3, -1, 1, -1, -1, -3,
|
|
|
|
-3, -1, -1, -1, -1, -3, -1, -1, -1, -1, -3, -1, -1, -1, -1, -3,
|
|
|
|
};
|
|
|
|
|
|
|
|
static double extrapolate2(struct osn_context *ctx, int xsb, int ysb, double dx, double dy)
|
|
|
|
{
|
|
|
|
int16_t *perm = ctx->perm;
|
|
|
|
int index = perm[(perm[xsb & 0xFF] + ysb) & 0xFF] & 0x0E;
|
|
|
|
return gradients2D[index] * dx
|
|
|
|
+ gradients2D[index + 1] * dy;
|
|
|
|
}
|
|
|
|
|
|
|
|
static double extrapolate3(struct osn_context *ctx, int xsb, int ysb, int zsb, double dx, double dy, double dz)
|
|
|
|
{
|
|
|
|
int16_t *perm = ctx->perm;
|
|
|
|
int16_t *permGradIndex3D = ctx->permGradIndex3D;
|
|
|
|
int index = permGradIndex3D[(perm[(perm[xsb & 0xFF] + ysb) & 0xFF] + zsb) & 0xFF];
|
|
|
|
return gradients3D[index] * dx
|
|
|
|
+ gradients3D[index + 1] * dy
|
|
|
|
+ gradients3D[index + 2] * dz;
|
|
|
|
}
|
|
|
|
|
|
|
|
static double extrapolate4(struct osn_context *ctx, int xsb, int ysb, int zsb, int wsb, double dx, double dy, double dz, double dw)
|
|
|
|
{
|
|
|
|
int16_t *perm = ctx->perm;
|
|
|
|
int index = perm[(perm[(perm[(perm[xsb & 0xFF] + ysb) & 0xFF] + zsb) & 0xFF] + wsb) & 0xFF] & 0xFC;
|
|
|
|
return gradients4D[index] * dx
|
|
|
|
+ gradients4D[index + 1] * dy
|
|
|
|
+ gradients4D[index + 2] * dz
|
|
|
|
+ gradients4D[index + 3] * dw;
|
|
|
|
}
|
|
|
|
|
|
|
|
static INLINE int fastFloor(double x) {
|
|
|
|
int xi = (int) x;
|
|
|
|
return x < xi ? xi - 1 : xi;
|
|
|
|
}
|
|
|
|
|
|
|
|
// -- GODOT start --
|
|
|
|
/*
|
|
|
|
static int allocate_perm(struct osn_context *ctx, int nperm, int ngrad)
|
|
|
|
{
|
|
|
|
if (ctx->perm)
|
|
|
|
free(ctx->perm);
|
|
|
|
if (ctx->permGradIndex3D)
|
|
|
|
free(ctx->permGradIndex3D);
|
|
|
|
ctx->perm = (int16_t *) malloc(sizeof(*ctx->perm) * nperm);
|
|
|
|
if (!ctx->perm)
|
|
|
|
return -ENOMEM;
|
|
|
|
ctx->permGradIndex3D = (int16_t *) malloc(sizeof(*ctx->permGradIndex3D) * ngrad);
|
|
|
|
if (!ctx->permGradIndex3D) {
|
|
|
|
free(ctx->perm);
|
|
|
|
return -ENOMEM;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
int open_simplex_noise_init_perm(struct osn_context *ctx, int16_t p[], int nelements)
|
|
|
|
{
|
|
|
|
int i, rc;
|
|
|
|
|
|
|
|
rc = allocate_perm(ctx, nelements, 256);
|
|
|
|
if (rc)
|
|
|
|
return rc;
|
|
|
|
memcpy(ctx->perm, p, sizeof(*ctx->perm) * nelements);
|
|
|
|
|
|
|
|
for (i = 0; i < 256; i++) {
|
|
|
|
// Since 3D has 24 gradients, simple bitmask won't work, so precompute modulo array.
|
|
|
|
ctx->permGradIndex3D[i] = (int16_t)((ctx->perm[i] % (ARRAYSIZE(gradients3D) / 3)) * 3);
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
*/
|
|
|
|
// -- GODOT end --
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Initializes using a permutation array generated from a 64-bit seed.
|
|
|
|
* Generates a proper permutation (i.e. doesn't merely perform N successive pair
|
|
|
|
* swaps on a base array). Uses a simple 64-bit LCG.
|
|
|
|
*/
|
|
|
|
// -- GODOT start --
|
|
|
|
int open_simplex_noise(int64_t seed, struct osn_context *ctx)
|
|
|
|
{
|
|
|
|
int rc;
|
|
|
|
int16_t source[256];
|
|
|
|
int i;
|
|
|
|
int16_t *perm;
|
|
|
|
int16_t *permGradIndex3D;
|
|
|
|
int r;
|
|
|
|
|
|
|
|
perm = ctx->perm;
|
|
|
|
permGradIndex3D = ctx->permGradIndex3D;
|
|
|
|
// -- GODOT end --
|
|
|
|
|
2020-11-09 12:25:16 +00:00
|
|
|
uint64_t seedU = seed;
|
2018-08-24 22:25:06 +00:00
|
|
|
for (i = 0; i < 256; i++)
|
|
|
|
source[i] = (int16_t) i;
|
2020-11-09 12:25:16 +00:00
|
|
|
seedU = seedU * 6364136223846793005ULL + 1442695040888963407ULL;
|
|
|
|
seedU = seedU * 6364136223846793005ULL + 1442695040888963407ULL;
|
|
|
|
seedU = seedU * 6364136223846793005ULL + 1442695040888963407ULL;
|
2018-08-24 22:25:06 +00:00
|
|
|
for (i = 255; i >= 0; i--) {
|
2020-11-09 12:25:16 +00:00
|
|
|
seedU = seedU * 6364136223846793005ULL + 1442695040888963407ULL;
|
|
|
|
r = (int)((seedU + 31) % (i + 1));
|
2018-08-24 22:25:06 +00:00
|
|
|
if (r < 0)
|
|
|
|
r += (i + 1);
|
|
|
|
perm[i] = source[r];
|
|
|
|
permGradIndex3D[i] = (short)((perm[i] % (ARRAYSIZE(gradients3D) / 3)) * 3);
|
|
|
|
source[r] = source[i];
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
// -- GODOT start --
|
|
|
|
/*
|
|
|
|
void open_simplex_noise_free(struct osn_context *ctx)
|
|
|
|
{
|
|
|
|
if (!ctx)
|
|
|
|
return;
|
|
|
|
if (ctx->perm) {
|
|
|
|
free(ctx->perm);
|
|
|
|
ctx->perm = NULL;
|
|
|
|
}
|
|
|
|
if (ctx->permGradIndex3D) {
|
|
|
|
free(ctx->permGradIndex3D);
|
|
|
|
ctx->permGradIndex3D = NULL;
|
|
|
|
}
|
|
|
|
free(ctx);
|
|
|
|
}
|
|
|
|
*/
|
|
|
|
// -- GODOT end --
|
|
|
|
|
|
|
|
/* 2D OpenSimplex (Simplectic) Noise. */
|
|
|
|
double open_simplex_noise2(struct osn_context *ctx, double x, double y)
|
|
|
|
{
|
|
|
|
|
|
|
|
/* Place input coordinates onto grid. */
|
|
|
|
double stretchOffset = (x + y) * STRETCH_CONSTANT_2D;
|
|
|
|
double xs = x + stretchOffset;
|
|
|
|
double ys = y + stretchOffset;
|
|
|
|
|
|
|
|
/* Floor to get grid coordinates of rhombus (stretched square) super-cell origin. */
|
|
|
|
int xsb = fastFloor(xs);
|
|
|
|
int ysb = fastFloor(ys);
|
|
|
|
|
|
|
|
/* Skew out to get actual coordinates of rhombus origin. We'll need these later. */
|
|
|
|
double squishOffset = (xsb + ysb) * SQUISH_CONSTANT_2D;
|
|
|
|
double xb = xsb + squishOffset;
|
|
|
|
double yb = ysb + squishOffset;
|
|
|
|
|
|
|
|
/* Compute grid coordinates relative to rhombus origin. */
|
|
|
|
double xins = xs - xsb;
|
|
|
|
double yins = ys - ysb;
|
|
|
|
|
|
|
|
/* Sum those together to get a value that determines which region we're in. */
|
|
|
|
double inSum = xins + yins;
|
|
|
|
|
|
|
|
/* Positions relative to origin point. */
|
|
|
|
double dx0 = x - xb;
|
|
|
|
double dy0 = y - yb;
|
|
|
|
|
|
|
|
/* We'll be defining these inside the next block and using them afterwards. */
|
|
|
|
double dx_ext, dy_ext;
|
|
|
|
int xsv_ext, ysv_ext;
|
|
|
|
|
|
|
|
double dx1;
|
|
|
|
double dy1;
|
|
|
|
double attn1;
|
|
|
|
double dx2;
|
|
|
|
double dy2;
|
|
|
|
double attn2;
|
|
|
|
double zins;
|
|
|
|
double attn0;
|
|
|
|
double attn_ext;
|
|
|
|
|
|
|
|
double value = 0;
|
|
|
|
|
|
|
|
/* Contribution (1,0) */
|
|
|
|
dx1 = dx0 - 1 - SQUISH_CONSTANT_2D;
|
|
|
|
dy1 = dy0 - 0 - SQUISH_CONSTANT_2D;
|
|
|
|
attn1 = 2 - dx1 * dx1 - dy1 * dy1;
|
|
|
|
if (attn1 > 0) {
|
|
|
|
attn1 *= attn1;
|
|
|
|
value += attn1 * attn1 * extrapolate2(ctx, xsb + 1, ysb + 0, dx1, dy1);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Contribution (0,1) */
|
|
|
|
dx2 = dx0 - 0 - SQUISH_CONSTANT_2D;
|
|
|
|
dy2 = dy0 - 1 - SQUISH_CONSTANT_2D;
|
|
|
|
attn2 = 2 - dx2 * dx2 - dy2 * dy2;
|
|
|
|
if (attn2 > 0) {
|
|
|
|
attn2 *= attn2;
|
|
|
|
value += attn2 * attn2 * extrapolate2(ctx, xsb + 0, ysb + 1, dx2, dy2);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (inSum <= 1) { /* We're inside the triangle (2-Simplex) at (0,0) */
|
|
|
|
zins = 1 - inSum;
|
|
|
|
if (zins > xins || zins > yins) { /* (0,0) is one of the closest two triangular vertices */
|
|
|
|
if (xins > yins) {
|
|
|
|
xsv_ext = xsb + 1;
|
|
|
|
ysv_ext = ysb - 1;
|
|
|
|
dx_ext = dx0 - 1;
|
|
|
|
dy_ext = dy0 + 1;
|
|
|
|
} else {
|
|
|
|
xsv_ext = xsb - 1;
|
|
|
|
ysv_ext = ysb + 1;
|
|
|
|
dx_ext = dx0 + 1;
|
|
|
|
dy_ext = dy0 - 1;
|
|
|
|
}
|
|
|
|
} else { /* (1,0) and (0,1) are the closest two vertices. */
|
|
|
|
xsv_ext = xsb + 1;
|
|
|
|
ysv_ext = ysb + 1;
|
|
|
|
dx_ext = dx0 - 1 - 2 * SQUISH_CONSTANT_2D;
|
|
|
|
dy_ext = dy0 - 1 - 2 * SQUISH_CONSTANT_2D;
|
|
|
|
}
|
|
|
|
} else { /* We're inside the triangle (2-Simplex) at (1,1) */
|
|
|
|
zins = 2 - inSum;
|
|
|
|
if (zins < xins || zins < yins) { /* (0,0) is one of the closest two triangular vertices */
|
|
|
|
if (xins > yins) {
|
|
|
|
xsv_ext = xsb + 2;
|
|
|
|
ysv_ext = ysb + 0;
|
|
|
|
dx_ext = dx0 - 2 - 2 * SQUISH_CONSTANT_2D;
|
|
|
|
dy_ext = dy0 + 0 - 2 * SQUISH_CONSTANT_2D;
|
|
|
|
} else {
|
|
|
|
xsv_ext = xsb + 0;
|
|
|
|
ysv_ext = ysb + 2;
|
|
|
|
dx_ext = dx0 + 0 - 2 * SQUISH_CONSTANT_2D;
|
|
|
|
dy_ext = dy0 - 2 - 2 * SQUISH_CONSTANT_2D;
|
|
|
|
}
|
|
|
|
} else { /* (1,0) and (0,1) are the closest two vertices. */
|
|
|
|
dx_ext = dx0;
|
|
|
|
dy_ext = dy0;
|
|
|
|
xsv_ext = xsb;
|
|
|
|
ysv_ext = ysb;
|
|
|
|
}
|
|
|
|
xsb += 1;
|
|
|
|
ysb += 1;
|
|
|
|
dx0 = dx0 - 1 - 2 * SQUISH_CONSTANT_2D;
|
|
|
|
dy0 = dy0 - 1 - 2 * SQUISH_CONSTANT_2D;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Contribution (0,0) or (1,1) */
|
|
|
|
attn0 = 2 - dx0 * dx0 - dy0 * dy0;
|
|
|
|
if (attn0 > 0) {
|
|
|
|
attn0 *= attn0;
|
|
|
|
value += attn0 * attn0 * extrapolate2(ctx, xsb, ysb, dx0, dy0);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Extra Vertex */
|
|
|
|
attn_ext = 2 - dx_ext * dx_ext - dy_ext * dy_ext;
|
|
|
|
if (attn_ext > 0) {
|
|
|
|
attn_ext *= attn_ext;
|
|
|
|
value += attn_ext * attn_ext * extrapolate2(ctx, xsv_ext, ysv_ext, dx_ext, dy_ext);
|
|
|
|
}
|
|
|
|
|
|
|
|
return value / NORM_CONSTANT_2D;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* 3D OpenSimplex (Simplectic) Noise
|
|
|
|
*/
|
|
|
|
double open_simplex_noise3(struct osn_context *ctx, double x, double y, double z)
|
|
|
|
{
|
|
|
|
|
|
|
|
/* Place input coordinates on simplectic honeycomb. */
|
|
|
|
double stretchOffset = (x + y + z) * STRETCH_CONSTANT_3D;
|
|
|
|
double xs = x + stretchOffset;
|
|
|
|
double ys = y + stretchOffset;
|
|
|
|
double zs = z + stretchOffset;
|
|
|
|
|
|
|
|
/* Floor to get simplectic honeycomb coordinates of rhombohedron (stretched cube) super-cell origin. */
|
|
|
|
int xsb = fastFloor(xs);
|
|
|
|
int ysb = fastFloor(ys);
|
|
|
|
int zsb = fastFloor(zs);
|
|
|
|
|
|
|
|
/* Skew out to get actual coordinates of rhombohedron origin. We'll need these later. */
|
|
|
|
double squishOffset = (xsb + ysb + zsb) * SQUISH_CONSTANT_3D;
|
|
|
|
double xb = xsb + squishOffset;
|
|
|
|
double yb = ysb + squishOffset;
|
|
|
|
double zb = zsb + squishOffset;
|
|
|
|
|
|
|
|
/* Compute simplectic honeycomb coordinates relative to rhombohedral origin. */
|
|
|
|
double xins = xs - xsb;
|
|
|
|
double yins = ys - ysb;
|
|
|
|
double zins = zs - zsb;
|
|
|
|
|
|
|
|
/* Sum those together to get a value that determines which region we're in. */
|
|
|
|
double inSum = xins + yins + zins;
|
|
|
|
|
|
|
|
/* Positions relative to origin point. */
|
|
|
|
double dx0 = x - xb;
|
|
|
|
double dy0 = y - yb;
|
|
|
|
double dz0 = z - zb;
|
|
|
|
|
|
|
|
/* We'll be defining these inside the next block and using them afterwards. */
|
|
|
|
double dx_ext0, dy_ext0, dz_ext0;
|
|
|
|
double dx_ext1, dy_ext1, dz_ext1;
|
|
|
|
int xsv_ext0, ysv_ext0, zsv_ext0;
|
|
|
|
int xsv_ext1, ysv_ext1, zsv_ext1;
|
|
|
|
|
|
|
|
double wins;
|
|
|
|
int8_t c, c1, c2;
|
|
|
|
int8_t aPoint, bPoint;
|
|
|
|
double aScore, bScore;
|
|
|
|
int aIsFurtherSide;
|
|
|
|
int bIsFurtherSide;
|
|
|
|
double p1, p2, p3;
|
|
|
|
double score;
|
|
|
|
double attn0, attn1, attn2, attn3, attn4, attn5, attn6;
|
|
|
|
double dx1, dy1, dz1;
|
|
|
|
double dx2, dy2, dz2;
|
|
|
|
double dx3, dy3, dz3;
|
|
|
|
double dx4, dy4, dz4;
|
|
|
|
double dx5, dy5, dz5;
|
|
|
|
double dx6, dy6, dz6;
|
|
|
|
double attn_ext0, attn_ext1;
|
|
|
|
|
|
|
|
double value = 0;
|
|
|
|
if (inSum <= 1) { /* We're inside the tetrahedron (3-Simplex) at (0,0,0) */
|
|
|
|
|
|
|
|
/* Determine which two of (0,0,1), (0,1,0), (1,0,0) are closest. */
|
|
|
|
aPoint = 0x01;
|
|
|
|
aScore = xins;
|
|
|
|
bPoint = 0x02;
|
|
|
|
bScore = yins;
|
|
|
|
if (aScore >= bScore && zins > bScore) {
|
|
|
|
bScore = zins;
|
|
|
|
bPoint = 0x04;
|
|
|
|
} else if (aScore < bScore && zins > aScore) {
|
|
|
|
aScore = zins;
|
|
|
|
aPoint = 0x04;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Now we determine the two lattice points not part of the tetrahedron that may contribute.
|
|
|
|
This depends on the closest two tetrahedral vertices, including (0,0,0) */
|
|
|
|
wins = 1 - inSum;
|
|
|
|
if (wins > aScore || wins > bScore) { /* (0,0,0) is one of the closest two tetrahedral vertices. */
|
|
|
|
c = (bScore > aScore ? bPoint : aPoint); /* Our other closest vertex is the closest out of a and b. */
|
|
|
|
|
|
|
|
if ((c & 0x01) == 0) {
|
|
|
|
xsv_ext0 = xsb - 1;
|
|
|
|
xsv_ext1 = xsb;
|
|
|
|
dx_ext0 = dx0 + 1;
|
|
|
|
dx_ext1 = dx0;
|
|
|
|
} else {
|
|
|
|
xsv_ext0 = xsv_ext1 = xsb + 1;
|
|
|
|
dx_ext0 = dx_ext1 = dx0 - 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
if ((c & 0x02) == 0) {
|
|
|
|
ysv_ext0 = ysv_ext1 = ysb;
|
|
|
|
dy_ext0 = dy_ext1 = dy0;
|
|
|
|
if ((c & 0x01) == 0) {
|
|
|
|
ysv_ext1 -= 1;
|
|
|
|
dy_ext1 += 1;
|
|
|
|
} else {
|
|
|
|
ysv_ext0 -= 1;
|
|
|
|
dy_ext0 += 1;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
ysv_ext0 = ysv_ext1 = ysb + 1;
|
|
|
|
dy_ext0 = dy_ext1 = dy0 - 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
if ((c & 0x04) == 0) {
|
|
|
|
zsv_ext0 = zsb;
|
|
|
|
zsv_ext1 = zsb - 1;
|
|
|
|
dz_ext0 = dz0;
|
|
|
|
dz_ext1 = dz0 + 1;
|
|
|
|
} else {
|
|
|
|
zsv_ext0 = zsv_ext1 = zsb + 1;
|
|
|
|
dz_ext0 = dz_ext1 = dz0 - 1;
|
|
|
|
}
|
|
|
|
} else { /* (0,0,0) is not one of the closest two tetrahedral vertices. */
|
|
|
|
c = (int8_t)(aPoint | bPoint); /* Our two extra vertices are determined by the closest two. */
|
|
|
|
|
|
|
|
if ((c & 0x01) == 0) {
|
|
|
|
xsv_ext0 = xsb;
|
|
|
|
xsv_ext1 = xsb - 1;
|
|
|
|
dx_ext0 = dx0 - 2 * SQUISH_CONSTANT_3D;
|
|
|
|
dx_ext1 = dx0 + 1 - SQUISH_CONSTANT_3D;
|
|
|
|
} else {
|
|
|
|
xsv_ext0 = xsv_ext1 = xsb + 1;
|
|
|
|
dx_ext0 = dx0 - 1 - 2 * SQUISH_CONSTANT_3D;
|
|
|
|
dx_ext1 = dx0 - 1 - SQUISH_CONSTANT_3D;
|
|
|
|
}
|
|
|
|
|
|
|
|
if ((c & 0x02) == 0) {
|
|
|
|
ysv_ext0 = ysb;
|
|
|
|
ysv_ext1 = ysb - 1;
|
|
|
|
dy_ext0 = dy0 - 2 * SQUISH_CONSTANT_3D;
|
|
|
|
dy_ext1 = dy0 + 1 - SQUISH_CONSTANT_3D;
|
|
|
|
} else {
|
|
|
|
ysv_ext0 = ysv_ext1 = ysb + 1;
|
|
|
|
dy_ext0 = dy0 - 1 - 2 * SQUISH_CONSTANT_3D;
|
|
|
|
dy_ext1 = dy0 - 1 - SQUISH_CONSTANT_3D;
|
|
|
|
}
|
|
|
|
|
|
|
|
if ((c & 0x04) == 0) {
|
|
|
|
zsv_ext0 = zsb;
|
|
|
|
zsv_ext1 = zsb - 1;
|
|
|
|
dz_ext0 = dz0 - 2 * SQUISH_CONSTANT_3D;
|
|
|
|
dz_ext1 = dz0 + 1 - SQUISH_CONSTANT_3D;
|
|
|
|
} else {
|
|
|
|
zsv_ext0 = zsv_ext1 = zsb + 1;
|
|
|
|
dz_ext0 = dz0 - 1 - 2 * SQUISH_CONSTANT_3D;
|
|
|
|
dz_ext1 = dz0 - 1 - SQUISH_CONSTANT_3D;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Contribution (0,0,0) */
|
|
|
|
attn0 = 2 - dx0 * dx0 - dy0 * dy0 - dz0 * dz0;
|
|
|
|
if (attn0 > 0) {
|
|
|
|
attn0 *= attn0;
|
|
|
|
value += attn0 * attn0 * extrapolate3(ctx, xsb + 0, ysb + 0, zsb + 0, dx0, dy0, dz0);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Contribution (1,0,0) */
|
|
|
|
dx1 = dx0 - 1 - SQUISH_CONSTANT_3D;
|
|
|
|
dy1 = dy0 - 0 - SQUISH_CONSTANT_3D;
|
|
|
|
dz1 = dz0 - 0 - SQUISH_CONSTANT_3D;
|
|
|
|
attn1 = 2 - dx1 * dx1 - dy1 * dy1 - dz1 * dz1;
|
|
|
|
if (attn1 > 0) {
|
|
|
|
attn1 *= attn1;
|
|
|
|
value += attn1 * attn1 * extrapolate3(ctx, xsb + 1, ysb + 0, zsb + 0, dx1, dy1, dz1);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Contribution (0,1,0) */
|
|
|
|
dx2 = dx0 - 0 - SQUISH_CONSTANT_3D;
|
|
|
|
dy2 = dy0 - 1 - SQUISH_CONSTANT_3D;
|
|
|
|
dz2 = dz1;
|
|
|
|
attn2 = 2 - dx2 * dx2 - dy2 * dy2 - dz2 * dz2;
|
|
|
|
if (attn2 > 0) {
|
|
|
|
attn2 *= attn2;
|
|
|
|
value += attn2 * attn2 * extrapolate3(ctx, xsb + 0, ysb + 1, zsb + 0, dx2, dy2, dz2);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Contribution (0,0,1) */
|
|
|
|
dx3 = dx2;
|
|
|
|
dy3 = dy1;
|
|
|
|
dz3 = dz0 - 1 - SQUISH_CONSTANT_3D;
|
|
|
|
attn3 = 2 - dx3 * dx3 - dy3 * dy3 - dz3 * dz3;
|
|
|
|
if (attn3 > 0) {
|
|
|
|
attn3 *= attn3;
|
|
|
|
value += attn3 * attn3 * extrapolate3(ctx, xsb + 0, ysb + 0, zsb + 1, dx3, dy3, dz3);
|
|
|
|
}
|
|
|
|
} else if (inSum >= 2) { /* We're inside the tetrahedron (3-Simplex) at (1,1,1) */
|
|
|
|
|
|
|
|
/* Determine which two tetrahedral vertices are the closest, out of (1,1,0), (1,0,1), (0,1,1) but not (1,1,1). */
|
|
|
|
aPoint = 0x06;
|
|
|
|
aScore = xins;
|
|
|
|
bPoint = 0x05;
|
|
|
|
bScore = yins;
|
|
|
|
if (aScore <= bScore && zins < bScore) {
|
|
|
|
bScore = zins;
|
|
|
|
bPoint = 0x03;
|
|
|
|
} else if (aScore > bScore && zins < aScore) {
|
|
|
|
aScore = zins;
|
|
|
|
aPoint = 0x03;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Now we determine the two lattice points not part of the tetrahedron that may contribute.
|
|
|
|
This depends on the closest two tetrahedral vertices, including (1,1,1) */
|
|
|
|
wins = 3 - inSum;
|
|
|
|
if (wins < aScore || wins < bScore) { /* (1,1,1) is one of the closest two tetrahedral vertices. */
|
|
|
|
c = (bScore < aScore ? bPoint : aPoint); /* Our other closest vertex is the closest out of a and b. */
|
|
|
|
|
|
|
|
if ((c & 0x01) != 0) {
|
|
|
|
xsv_ext0 = xsb + 2;
|
|
|
|
xsv_ext1 = xsb + 1;
|
|
|
|
dx_ext0 = dx0 - 2 - 3 * SQUISH_CONSTANT_3D;
|
|
|
|
dx_ext1 = dx0 - 1 - 3 * SQUISH_CONSTANT_3D;
|
|
|
|
} else {
|
|
|
|
xsv_ext0 = xsv_ext1 = xsb;
|
|
|
|
dx_ext0 = dx_ext1 = dx0 - 3 * SQUISH_CONSTANT_3D;
|
|
|
|
}
|
|
|
|
|
|
|
|
if ((c & 0x02) != 0) {
|
|
|
|
ysv_ext0 = ysv_ext1 = ysb + 1;
|
|
|
|
dy_ext0 = dy_ext1 = dy0 - 1 - 3 * SQUISH_CONSTANT_3D;
|
|
|
|
if ((c & 0x01) != 0) {
|
|
|
|
ysv_ext1 += 1;
|
|
|
|
dy_ext1 -= 1;
|
|
|
|
} else {
|
|
|
|
ysv_ext0 += 1;
|
|
|
|
dy_ext0 -= 1;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
ysv_ext0 = ysv_ext1 = ysb;
|
|
|
|
dy_ext0 = dy_ext1 = dy0 - 3 * SQUISH_CONSTANT_3D;
|
|
|
|
}
|
|
|
|
|
|
|
|
if ((c & 0x04) != 0) {
|
|
|
|
zsv_ext0 = zsb + 1;
|
|
|
|
zsv_ext1 = zsb + 2;
|
|
|
|
dz_ext0 = dz0 - 1 - 3 * SQUISH_CONSTANT_3D;
|
|
|
|
dz_ext1 = dz0 - 2 - 3 * SQUISH_CONSTANT_3D;
|
|
|
|
} else {
|
|
|
|
zsv_ext0 = zsv_ext1 = zsb;
|
|
|
|
dz_ext0 = dz_ext1 = dz0 - 3 * SQUISH_CONSTANT_3D;
|
|
|
|
}
|
|
|
|
} else { /* (1,1,1) is not one of the closest two tetrahedral vertices. */
|
|
|
|
c = (int8_t)(aPoint & bPoint); /* Our two extra vertices are determined by the closest two. */
|
|
|
|
|
|
|
|
if ((c & 0x01) != 0) {
|
|
|
|
xsv_ext0 = xsb + 1;
|
|
|
|
xsv_ext1 = xsb + 2;
|
|
|
|
dx_ext0 = dx0 - 1 - SQUISH_CONSTANT_3D;
|
|
|
|
dx_ext1 = dx0 - 2 - 2 * SQUISH_CONSTANT_3D;
|
|
|
|
} else {
|
|
|
|
xsv_ext0 = xsv_ext1 = xsb;
|
|
|
|
dx_ext0 = dx0 - SQUISH_CONSTANT_3D;
|
|
|
|
dx_ext1 = dx0 - 2 * SQUISH_CONSTANT_3D;
|
|
|
|
}
|
|
|
|
|
|
|
|
if ((c & 0x02) != 0) {
|
|
|
|
ysv_ext0 = ysb + 1;
|
|
|
|
ysv_ext1 = ysb + 2;
|
|
|
|
dy_ext0 = dy0 - 1 - SQUISH_CONSTANT_3D;
|
|
|
|
dy_ext1 = dy0 - 2 - 2 * SQUISH_CONSTANT_3D;
|
|
|
|
} else {
|
|
|
|
ysv_ext0 = ysv_ext1 = ysb;
|
|
|
|
dy_ext0 = dy0 - SQUISH_CONSTANT_3D;
|
|
|
|
dy_ext1 = dy0 - 2 * SQUISH_CONSTANT_3D;
|
|
|
|
}
|
|
|
|
|
|
|
|
if ((c & 0x04) != 0) {
|
|
|
|
zsv_ext0 = zsb + 1;
|
|
|
|
zsv_ext1 = zsb + 2;
|
|
|
|
dz_ext0 = dz0 - 1 - SQUISH_CONSTANT_3D;
|
|
|
|
dz_ext1 = dz0 - 2 - 2 * SQUISH_CONSTANT_3D;
|
|
|
|
} else {
|
|
|
|
zsv_ext0 = zsv_ext1 = zsb;
|
|
|
|
dz_ext0 = dz0 - SQUISH_CONSTANT_3D;
|
|
|
|
dz_ext1 = dz0 - 2 * SQUISH_CONSTANT_3D;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Contribution (1,1,0) */
|
|
|
|
dx3 = dx0 - 1 - 2 * SQUISH_CONSTANT_3D;
|
|
|
|
dy3 = dy0 - 1 - 2 * SQUISH_CONSTANT_3D;
|
|
|
|
dz3 = dz0 - 0 - 2 * SQUISH_CONSTANT_3D;
|
|
|
|
attn3 = 2 - dx3 * dx3 - dy3 * dy3 - dz3 * dz3;
|
|
|
|
if (attn3 > 0) {
|
|
|
|
attn3 *= attn3;
|
|
|
|
value += attn3 * attn3 * extrapolate3(ctx, xsb + 1, ysb + 1, zsb + 0, dx3, dy3, dz3);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Contribution (1,0,1) */
|
|
|
|
dx2 = dx3;
|
|
|
|
dy2 = dy0 - 0 - 2 * SQUISH_CONSTANT_3D;
|
|
|
|
dz2 = dz0 - 1 - 2 * SQUISH_CONSTANT_3D;
|
|
|
|
attn2 = 2 - dx2 * dx2 - dy2 * dy2 - dz2 * dz2;
|
|
|
|
if (attn2 > 0) {
|
|
|
|
attn2 *= attn2;
|
|
|
|
value += attn2 * attn2 * extrapolate3(ctx, xsb + 1, ysb + 0, zsb + 1, dx2, dy2, dz2);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Contribution (0,1,1) */
|
|
|
|
dx1 = dx0 - 0 - 2 * SQUISH_CONSTANT_3D;
|
|
|
|
dy1 = dy3;
|
|
|
|
dz1 = dz2;
|
|
|
|
attn1 = 2 - dx1 * dx1 - dy1 * dy1 - dz1 * dz1;
|
|
|
|
if (attn1 > 0) {
|
|
|
|
attn1 *= attn1;
|
|
|
|
value += attn1 * attn1 * extrapolate3(ctx, xsb + 0, ysb + 1, zsb + 1, dx1, dy1, dz1);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Contribution (1,1,1) */
|
|
|
|
dx0 = dx0 - 1 - 3 * SQUISH_CONSTANT_3D;
|
|
|
|
dy0 = dy0 - 1 - 3 * SQUISH_CONSTANT_3D;
|
|
|
|
dz0 = dz0 - 1 - 3 * SQUISH_CONSTANT_3D;
|
|
|
|
attn0 = 2 - dx0 * dx0 - dy0 * dy0 - dz0 * dz0;
|
|
|
|
if (attn0 > 0) {
|
|
|
|
attn0 *= attn0;
|
|
|
|
value += attn0 * attn0 * extrapolate3(ctx, xsb + 1, ysb + 1, zsb + 1, dx0, dy0, dz0);
|
|
|
|
}
|
|
|
|
} else { /* We're inside the octahedron (Rectified 3-Simplex) in between.
|
|
|
|
Decide between point (0,0,1) and (1,1,0) as closest */
|
|
|
|
p1 = xins + yins;
|
|
|
|
if (p1 > 1) {
|
|
|
|
aScore = p1 - 1;
|
|
|
|
aPoint = 0x03;
|
|
|
|
aIsFurtherSide = 1;
|
|
|
|
} else {
|
|
|
|
aScore = 1 - p1;
|
|
|
|
aPoint = 0x04;
|
|
|
|
aIsFurtherSide = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Decide between point (0,1,0) and (1,0,1) as closest */
|
|
|
|
p2 = xins + zins;
|
|
|
|
if (p2 > 1) {
|
|
|
|
bScore = p2 - 1;
|
|
|
|
bPoint = 0x05;
|
|
|
|
bIsFurtherSide = 1;
|
|
|
|
} else {
|
|
|
|
bScore = 1 - p2;
|
|
|
|
bPoint = 0x02;
|
|
|
|
bIsFurtherSide = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* The closest out of the two (1,0,0) and (0,1,1) will replace the furthest out of the two decided above, if closer. */
|
|
|
|
p3 = yins + zins;
|
|
|
|
if (p3 > 1) {
|
|
|
|
score = p3 - 1;
|
|
|
|
if (aScore <= bScore && aScore < score) {
|
|
|
|
aScore = score;
|
|
|
|
aPoint = 0x06;
|
|
|
|
aIsFurtherSide = 1;
|
|
|
|
} else if (aScore > bScore && bScore < score) {
|
|
|
|
bScore = score;
|
|
|
|
bPoint = 0x06;
|
|
|
|
bIsFurtherSide = 1;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
score = 1 - p3;
|
|
|
|
if (aScore <= bScore && aScore < score) {
|
|
|
|
aScore = score;
|
|
|
|
aPoint = 0x01;
|
|
|
|
aIsFurtherSide = 0;
|
|
|
|
} else if (aScore > bScore && bScore < score) {
|
|
|
|
bScore = score;
|
|
|
|
bPoint = 0x01;
|
|
|
|
bIsFurtherSide = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Where each of the two closest points are determines how the extra two vertices are calculated. */
|
|
|
|
if (aIsFurtherSide == bIsFurtherSide) {
|
|
|
|
if (aIsFurtherSide) { /* Both closest points on (1,1,1) side */
|
|
|
|
|
|
|
|
/* One of the two extra points is (1,1,1) */
|
|
|
|
dx_ext0 = dx0 - 1 - 3 * SQUISH_CONSTANT_3D;
|
|
|
|
dy_ext0 = dy0 - 1 - 3 * SQUISH_CONSTANT_3D;
|
|
|
|
dz_ext0 = dz0 - 1 - 3 * SQUISH_CONSTANT_3D;
|
|
|
|
xsv_ext0 = xsb + 1;
|
|
|
|
ysv_ext0 = ysb + 1;
|
|
|
|
zsv_ext0 = zsb + 1;
|
|
|
|
|
|
|
|
/* Other extra point is based on the shared axis. */
|
|
|
|
c = (int8_t)(aPoint & bPoint);
|
|
|
|
if ((c & 0x01) != 0) {
|
|
|
|
dx_ext1 = dx0 - 2 - 2 * SQUISH_CONSTANT_3D;
|
|
|
|
dy_ext1 = dy0 - 2 * SQUISH_CONSTANT_3D;
|
|
|
|
dz_ext1 = dz0 - 2 * SQUISH_CONSTANT_3D;
|
|
|
|
xsv_ext1 = xsb + 2;
|
|
|
|
ysv_ext1 = ysb;
|
|
|
|
zsv_ext1 = zsb;
|
|
|
|
} else if ((c & 0x02) != 0) {
|
|
|
|
dx_ext1 = dx0 - 2 * SQUISH_CONSTANT_3D;
|
|
|
|
dy_ext1 = dy0 - 2 - 2 * SQUISH_CONSTANT_3D;
|
|
|
|
dz_ext1 = dz0 - 2 * SQUISH_CONSTANT_3D;
|
|
|
|
xsv_ext1 = xsb;
|
|
|
|
ysv_ext1 = ysb + 2;
|
|
|
|
zsv_ext1 = zsb;
|
|
|
|
} else {
|
|
|
|
dx_ext1 = dx0 - 2 * SQUISH_CONSTANT_3D;
|
|
|
|
dy_ext1 = dy0 - 2 * SQUISH_CONSTANT_3D;
|
|
|
|
dz_ext1 = dz0 - 2 - 2 * SQUISH_CONSTANT_3D;
|
|
|
|
xsv_ext1 = xsb;
|
|
|
|
ysv_ext1 = ysb;
|
|
|
|
zsv_ext1 = zsb + 2;
|
|
|
|
}
|
|
|
|
} else { /* Both closest points on (0,0,0) side */
|
|
|
|
|
|
|
|
/* One of the two extra points is (0,0,0) */
|
|
|
|
dx_ext0 = dx0;
|
|
|
|
dy_ext0 = dy0;
|
|
|
|
dz_ext0 = dz0;
|
|
|
|
xsv_ext0 = xsb;
|
|
|
|
ysv_ext0 = ysb;
|
|
|
|
zsv_ext0 = zsb;
|
|
|
|
|
|
|
|
/* Other extra point is based on the omitted axis. */
|
|
|
|
c = (int8_t)(aPoint | bPoint);
|
|
|
|
if ((c & 0x01) == 0) {
|
|
|
|
dx_ext1 = dx0 + 1 - SQUISH_CONSTANT_3D;
|
|
|
|
dy_ext1 = dy0 - 1 - SQUISH_CONSTANT_3D;
|
|
|
|
dz_ext1 = dz0 - 1 - SQUISH_CONSTANT_3D;
|
|
|
|
xsv_ext1 = xsb - 1;
|
|
|
|
ysv_ext1 = ysb + 1;
|
|
|
|
zsv_ext1 = zsb + 1;
|
|
|
|
} else if ((c & 0x02) == 0) {
|
|
|
|
dx_ext1 = dx0 - 1 - SQUISH_CONSTANT_3D;
|
|
|
|
dy_ext1 = dy0 + 1 - SQUISH_CONSTANT_3D;
|
|
|
|
dz_ext1 = dz0 - 1 - SQUISH_CONSTANT_3D;
|
|
|
|
xsv_ext1 = xsb + 1;
|
|
|
|
ysv_ext1 = ysb - 1;
|
|
|
|
zsv_ext1 = zsb + 1;
|
|
|
|
} else {
|
|
|
|
dx_ext1 = dx0 - 1 - SQUISH_CONSTANT_3D;
|
|
|
|
dy_ext1 = dy0 - 1 - SQUISH_CONSTANT_3D;
|
|
|
|
dz_ext1 = dz0 + 1 - SQUISH_CONSTANT_3D;
|
|
|
|
xsv_ext1 = xsb + 1;
|
|
|
|
ysv_ext1 = ysb + 1;
|
|
|
|
zsv_ext1 = zsb - 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else { /* One point on (0,0,0) side, one point on (1,1,1) side */
|
|
|
|
if (aIsFurtherSide) {
|
|
|
|
c1 = aPoint;
|
|
|
|
c2 = bPoint;
|
|
|
|
} else {
|
|
|
|
c1 = bPoint;
|
|
|
|
c2 = aPoint;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* One contribution is a permutation of (1,1,-1) */
|
|
|
|
if ((c1 & 0x01) == 0) {
|
|
|
|
dx_ext0 = dx0 + 1 - SQUISH_CONSTANT_3D;
|
|
|
|
dy_ext0 = dy0 - 1 - SQUISH_CONSTANT_3D;
|
|
|
|
dz_ext0 = dz0 - 1 - SQUISH_CONSTANT_3D;
|
|
|
|
xsv_ext0 = xsb - 1;
|
|
|
|
ysv_ext0 = ysb + 1;
|
|
|
|
zsv_ext0 = zsb + 1;
|
|
|
|
} else if ((c1 & 0x02) == 0) {
|
|
|
|
dx_ext0 = dx0 - 1 - SQUISH_CONSTANT_3D;
|
|
|
|
dy_ext0 = dy0 + 1 - SQUISH_CONSTANT_3D;
|
|
|
|
dz_ext0 = dz0 - 1 - SQUISH_CONSTANT_3D;
|
|
|
|
xsv_ext0 = xsb + 1;
|
|
|
|
ysv_ext0 = ysb - 1;
|
|
|
|
zsv_ext0 = zsb + 1;
|
|
|
|
} else {
|
|
|
|
dx_ext0 = dx0 - 1 - SQUISH_CONSTANT_3D;
|
|
|
|
dy_ext0 = dy0 - 1 - SQUISH_CONSTANT_3D;
|
|
|
|
dz_ext0 = dz0 + 1 - SQUISH_CONSTANT_3D;
|
|
|
|
xsv_ext0 = xsb + 1;
|
|
|
|
ysv_ext0 = ysb + 1;
|
|
|
|
zsv_ext0 = zsb - 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* One contribution is a permutation of (0,0,2) */
|
|
|
|
dx_ext1 = dx0 - 2 * SQUISH_CONSTANT_3D;
|
|
|
|
dy_ext1 = dy0 - 2 * SQUISH_CONSTANT_3D;
|
|
|
|
dz_ext1 = dz0 - 2 * SQUISH_CONSTANT_3D;
|
|
|
|
xsv_ext1 = xsb;
|
|
|
|
ysv_ext1 = ysb;
|
|
|
|
zsv_ext1 = zsb;
|
|
|
|
if ((c2 & 0x01) != 0) {
|
|
|
|
dx_ext1 -= 2;
|
|
|
|
xsv_ext1 += 2;
|
|
|
|
} else if ((c2 & 0x02) != 0) {
|
|
|
|
dy_ext1 -= 2;
|
|
|
|
ysv_ext1 += 2;
|
|
|
|
} else {
|
|
|
|
dz_ext1 -= 2;
|
|
|
|
zsv_ext1 += 2;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Contribution (1,0,0) */
|
|
|
|
dx1 = dx0 - 1 - SQUISH_CONSTANT_3D;
|
|
|
|
dy1 = dy0 - 0 - SQUISH_CONSTANT_3D;
|
|
|
|
dz1 = dz0 - 0 - SQUISH_CONSTANT_3D;
|
|
|
|
attn1 = 2 - dx1 * dx1 - dy1 * dy1 - dz1 * dz1;
|
|
|
|
if (attn1 > 0) {
|
|
|
|
attn1 *= attn1;
|
|
|
|
value += attn1 * attn1 * extrapolate3(ctx, xsb + 1, ysb + 0, zsb + 0, dx1, dy1, dz1);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Contribution (0,1,0) */
|
|
|
|
dx2 = dx0 - 0 - SQUISH_CONSTANT_3D;
|
|
|
|
dy2 = dy0 - 1 - SQUISH_CONSTANT_3D;
|
|
|
|
dz2 = dz1;
|
|
|
|
attn2 = 2 - dx2 * dx2 - dy2 * dy2 - dz2 * dz2;
|
|
|
|
if (attn2 > 0) {
|
|
|
|
attn2 *= attn2;
|
|
|
|
value += attn2 * attn2 * extrapolate3(ctx, xsb + 0, ysb + 1, zsb + 0, dx2, dy2, dz2);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Contribution (0,0,1) */
|
|
|
|
dx3 = dx2;
|
|
|
|
dy3 = dy1;
|
|
|
|
dz3 = dz0 - 1 - SQUISH_CONSTANT_3D;
|
|
|
|
attn3 = 2 - dx3 * dx3 - dy3 * dy3 - dz3 * dz3;
|
|
|
|
if (attn3 > 0) {
|
|
|
|
attn3 *= attn3;
|
|
|
|
value += attn3 * attn3 * extrapolate3(ctx, xsb + 0, ysb + 0, zsb + 1, dx3, dy3, dz3);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Contribution (1,1,0) */
|
|
|
|
dx4 = dx0 - 1 - 2 * SQUISH_CONSTANT_3D;
|
|
|
|
dy4 = dy0 - 1 - 2 * SQUISH_CONSTANT_3D;
|
|
|
|
dz4 = dz0 - 0 - 2 * SQUISH_CONSTANT_3D;
|
|
|
|
attn4 = 2 - dx4 * dx4 - dy4 * dy4 - dz4 * dz4;
|
|
|
|
if (attn4 > 0) {
|
|
|
|
attn4 *= attn4;
|
|
|
|
value += attn4 * attn4 * extrapolate3(ctx, xsb + 1, ysb + 1, zsb + 0, dx4, dy4, dz4);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Contribution (1,0,1) */
|
|
|
|
dx5 = dx4;
|
|
|
|
dy5 = dy0 - 0 - 2 * SQUISH_CONSTANT_3D;
|
|
|
|
dz5 = dz0 - 1 - 2 * SQUISH_CONSTANT_3D;
|
|
|
|
attn5 = 2 - dx5 * dx5 - dy5 * dy5 - dz5 * dz5;
|
|
|
|
if (attn5 > 0) {
|
|
|
|
attn5 *= attn5;
|
|
|
|
value += attn5 * attn5 * extrapolate3(ctx, xsb + 1, ysb + 0, zsb + 1, dx5, dy5, dz5);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Contribution (0,1,1) */
|
|
|
|
dx6 = dx0 - 0 - 2 * SQUISH_CONSTANT_3D;
|
|
|
|
dy6 = dy4;
|
|
|
|
dz6 = dz5;
|
|
|
|
attn6 = 2 - dx6 * dx6 - dy6 * dy6 - dz6 * dz6;
|
|
|
|
if (attn6 > 0) {
|
|
|
|
attn6 *= attn6;
|
|
|
|
value += attn6 * attn6 * extrapolate3(ctx, xsb + 0, ysb + 1, zsb + 1, dx6, dy6, dz6);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* First extra vertex */
|
|
|
|
attn_ext0 = 2 - dx_ext0 * dx_ext0 - dy_ext0 * dy_ext0 - dz_ext0 * dz_ext0;
|
|
|
|
if (attn_ext0 > 0)
|
|
|
|
{
|
|
|
|
attn_ext0 *= attn_ext0;
|
|
|
|
value += attn_ext0 * attn_ext0 * extrapolate3(ctx, xsv_ext0, ysv_ext0, zsv_ext0, dx_ext0, dy_ext0, dz_ext0);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Second extra vertex */
|
|
|
|
attn_ext1 = 2 - dx_ext1 * dx_ext1 - dy_ext1 * dy_ext1 - dz_ext1 * dz_ext1;
|
|
|
|
if (attn_ext1 > 0)
|
|
|
|
{
|
|
|
|
attn_ext1 *= attn_ext1;
|
|
|
|
value += attn_ext1 * attn_ext1 * extrapolate3(ctx, xsv_ext1, ysv_ext1, zsv_ext1, dx_ext1, dy_ext1, dz_ext1);
|
|
|
|
}
|
|
|
|
|
|
|
|
return value / NORM_CONSTANT_3D;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* 4D OpenSimplex (Simplectic) Noise.
|
|
|
|
*/
|
|
|
|
double open_simplex_noise4(struct osn_context *ctx, double x, double y, double z, double w)
|
|
|
|
{
|
|
|
|
double uins;
|
|
|
|
double dx1, dy1, dz1, dw1;
|
|
|
|
double dx2, dy2, dz2, dw2;
|
|
|
|
double dx3, dy3, dz3, dw3;
|
|
|
|
double dx4, dy4, dz4, dw4;
|
|
|
|
double dx5, dy5, dz5, dw5;
|
|
|
|
double dx6, dy6, dz6, dw6;
|
|
|
|
double dx7, dy7, dz7, dw7;
|
|
|
|
double dx8, dy8, dz8, dw8;
|
|
|
|
double dx9, dy9, dz9, dw9;
|
|
|
|
double dx10, dy10, dz10, dw10;
|
|
|
|
double attn0, attn1, attn2, attn3, attn4;
|
|
|
|
double attn5, attn6, attn7, attn8, attn9, attn10;
|
|
|
|
double attn_ext0, attn_ext1, attn_ext2;
|
|
|
|
int8_t c, c1, c2;
|
|
|
|
int8_t aPoint, bPoint;
|
|
|
|
double aScore, bScore;
|
|
|
|
int aIsBiggerSide;
|
|
|
|
int bIsBiggerSide;
|
|
|
|
double p1, p2, p3, p4;
|
|
|
|
double score;
|
|
|
|
|
|
|
|
/* Place input coordinates on simplectic honeycomb. */
|
|
|
|
double stretchOffset = (x + y + z + w) * STRETCH_CONSTANT_4D;
|
|
|
|
double xs = x + stretchOffset;
|
|
|
|
double ys = y + stretchOffset;
|
|
|
|
double zs = z + stretchOffset;
|
|
|
|
double ws = w + stretchOffset;
|
|
|
|
|
|
|
|
/* Floor to get simplectic honeycomb coordinates of rhombo-hypercube super-cell origin. */
|
|
|
|
int xsb = fastFloor(xs);
|
|
|
|
int ysb = fastFloor(ys);
|
|
|
|
int zsb = fastFloor(zs);
|
|
|
|
int wsb = fastFloor(ws);
|
|
|
|
|
|
|
|
/* Skew out to get actual coordinates of stretched rhombo-hypercube origin. We'll need these later. */
|
|
|
|
double squishOffset = (xsb + ysb + zsb + wsb) * SQUISH_CONSTANT_4D;
|
|
|
|
double xb = xsb + squishOffset;
|
|
|
|
double yb = ysb + squishOffset;
|
|
|
|
double zb = zsb + squishOffset;
|
|
|
|
double wb = wsb + squishOffset;
|
|
|
|
|
|
|
|
/* Compute simplectic honeycomb coordinates relative to rhombo-hypercube origin. */
|
|
|
|
double xins = xs - xsb;
|
|
|
|
double yins = ys - ysb;
|
|
|
|
double zins = zs - zsb;
|
|
|
|
double wins = ws - wsb;
|
|
|
|
|
|
|
|
/* Sum those together to get a value that determines which region we're in. */
|
|
|
|
double inSum = xins + yins + zins + wins;
|
|
|
|
|
|
|
|
/* Positions relative to origin point. */
|
|
|
|
double dx0 = x - xb;
|
|
|
|
double dy0 = y - yb;
|
|
|
|
double dz0 = z - zb;
|
|
|
|
double dw0 = w - wb;
|
|
|
|
|
|
|
|
/* We'll be defining these inside the next block and using them afterwards. */
|
|
|
|
double dx_ext0, dy_ext0, dz_ext0, dw_ext0;
|
|
|
|
double dx_ext1, dy_ext1, dz_ext1, dw_ext1;
|
|
|
|
double dx_ext2, dy_ext2, dz_ext2, dw_ext2;
|
|
|
|
int xsv_ext0, ysv_ext0, zsv_ext0, wsv_ext0;
|
|
|
|
int xsv_ext1, ysv_ext1, zsv_ext1, wsv_ext1;
|
|
|
|
int xsv_ext2, ysv_ext2, zsv_ext2, wsv_ext2;
|
|
|
|
|
|
|
|
double value = 0;
|
|
|
|
if (inSum <= 1) { /* We're inside the pentachoron (4-Simplex) at (0,0,0,0) */
|
|
|
|
|
|
|
|
/* Determine which two of (0,0,0,1), (0,0,1,0), (0,1,0,0), (1,0,0,0) are closest. */
|
|
|
|
aPoint = 0x01;
|
|
|
|
aScore = xins;
|
|
|
|
bPoint = 0x02;
|
|
|
|
bScore = yins;
|
|
|
|
if (aScore >= bScore && zins > bScore) {
|
|
|
|
bScore = zins;
|
|
|
|
bPoint = 0x04;
|
|
|
|
} else if (aScore < bScore && zins > aScore) {
|
|
|
|
aScore = zins;
|
|
|
|
aPoint = 0x04;
|
|
|
|
}
|
|
|
|
if (aScore >= bScore && wins > bScore) {
|
|
|
|
bScore = wins;
|
|
|
|
bPoint = 0x08;
|
|
|
|
} else if (aScore < bScore && wins > aScore) {
|
|
|
|
aScore = wins;
|
|
|
|
aPoint = 0x08;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Now we determine the three lattice points not part of the pentachoron that may contribute.
|
|
|
|
This depends on the closest two pentachoron vertices, including (0,0,0,0) */
|
|
|
|
uins = 1 - inSum;
|
|
|
|
if (uins > aScore || uins > bScore) { /* (0,0,0,0) is one of the closest two pentachoron vertices. */
|
|
|
|
c = (bScore > aScore ? bPoint : aPoint); /* Our other closest vertex is the closest out of a and b. */
|
|
|
|
if ((c & 0x01) == 0) {
|
|
|
|
xsv_ext0 = xsb - 1;
|
|
|
|
xsv_ext1 = xsv_ext2 = xsb;
|
|
|
|
dx_ext0 = dx0 + 1;
|
|
|
|
dx_ext1 = dx_ext2 = dx0;
|
|
|
|
} else {
|
|
|
|
xsv_ext0 = xsv_ext1 = xsv_ext2 = xsb + 1;
|
|
|
|
dx_ext0 = dx_ext1 = dx_ext2 = dx0 - 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
if ((c & 0x02) == 0) {
|
|
|
|
ysv_ext0 = ysv_ext1 = ysv_ext2 = ysb;
|
|
|
|
dy_ext0 = dy_ext1 = dy_ext2 = dy0;
|
|
|
|
if ((c & 0x01) == 0x01) {
|
|
|
|
ysv_ext0 -= 1;
|
|
|
|
dy_ext0 += 1;
|
|
|
|
} else {
|
|
|
|
ysv_ext1 -= 1;
|
|
|
|
dy_ext1 += 1;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
ysv_ext0 = ysv_ext1 = ysv_ext2 = ysb + 1;
|
|
|
|
dy_ext0 = dy_ext1 = dy_ext2 = dy0 - 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
if ((c & 0x04) == 0) {
|
|
|
|
zsv_ext0 = zsv_ext1 = zsv_ext2 = zsb;
|
|
|
|
dz_ext0 = dz_ext1 = dz_ext2 = dz0;
|
|
|
|
if ((c & 0x03) != 0) {
|
|
|
|
if ((c & 0x03) == 0x03) {
|
|
|
|
zsv_ext0 -= 1;
|
|
|
|
dz_ext0 += 1;
|
|
|
|
} else {
|
|
|
|
zsv_ext1 -= 1;
|
|
|
|
dz_ext1 += 1;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
zsv_ext2 -= 1;
|
|
|
|
dz_ext2 += 1;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
zsv_ext0 = zsv_ext1 = zsv_ext2 = zsb + 1;
|
|
|
|
dz_ext0 = dz_ext1 = dz_ext2 = dz0 - 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
if ((c & 0x08) == 0) {
|
|
|
|
wsv_ext0 = wsv_ext1 = wsb;
|
|
|
|
wsv_ext2 = wsb - 1;
|
|
|
|
dw_ext0 = dw_ext1 = dw0;
|
|
|
|
dw_ext2 = dw0 + 1;
|
|
|
|
} else {
|
|
|
|
wsv_ext0 = wsv_ext1 = wsv_ext2 = wsb + 1;
|
|
|
|
dw_ext0 = dw_ext1 = dw_ext2 = dw0 - 1;
|
|
|
|
}
|
|
|
|
} else { /* (0,0,0,0) is not one of the closest two pentachoron vertices. */
|
|
|
|
c = (int8_t)(aPoint | bPoint); /* Our three extra vertices are determined by the closest two. */
|
|
|
|
|
|
|
|
if ((c & 0x01) == 0) {
|
|
|
|
xsv_ext0 = xsv_ext2 = xsb;
|
|
|
|
xsv_ext1 = xsb - 1;
|
|
|
|
dx_ext0 = dx0 - 2 * SQUISH_CONSTANT_4D;
|
|
|
|
dx_ext1 = dx0 + 1 - SQUISH_CONSTANT_4D;
|
|
|
|
dx_ext2 = dx0 - SQUISH_CONSTANT_4D;
|
|
|
|
} else {
|
|
|
|
xsv_ext0 = xsv_ext1 = xsv_ext2 = xsb + 1;
|
|
|
|
dx_ext0 = dx0 - 1 - 2 * SQUISH_CONSTANT_4D;
|
|
|
|
dx_ext1 = dx_ext2 = dx0 - 1 - SQUISH_CONSTANT_4D;
|
|
|
|
}
|
|
|
|
|
|
|
|
if ((c & 0x02) == 0) {
|
|
|
|
ysv_ext0 = ysv_ext1 = ysv_ext2 = ysb;
|
|
|
|
dy_ext0 = dy0 - 2 * SQUISH_CONSTANT_4D;
|
|
|
|
dy_ext1 = dy_ext2 = dy0 - SQUISH_CONSTANT_4D;
|
|
|
|
if ((c & 0x01) == 0x01) {
|
|
|
|
ysv_ext1 -= 1;
|
|
|
|
dy_ext1 += 1;
|
|
|
|
} else {
|
|
|
|
ysv_ext2 -= 1;
|
|
|
|
dy_ext2 += 1;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
ysv_ext0 = ysv_ext1 = ysv_ext2 = ysb + 1;
|
|
|
|
dy_ext0 = dy0 - 1 - 2 * SQUISH_CONSTANT_4D;
|
|
|
|
dy_ext1 = dy_ext2 = dy0 - 1 - SQUISH_CONSTANT_4D;
|
|
|
|
}
|
|
|
|
|
|
|
|
if ((c & 0x04) == 0) {
|
|
|
|
zsv_ext0 = zsv_ext1 = zsv_ext2 = zsb;
|
|
|
|
dz_ext0 = dz0 - 2 * SQUISH_CONSTANT_4D;
|
|
|
|
dz_ext1 = dz_ext2 = dz0 - SQUISH_CONSTANT_4D;
|
|
|
|
if ((c & 0x03) == 0x03) {
|
|
|
|
zsv_ext1 -= 1;
|
|
|
|
dz_ext1 += 1;
|
|
|
|
} else {
|
|
|
|
zsv_ext2 -= 1;
|
|
|
|
dz_ext2 += 1;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
zsv_ext0 = zsv_ext1 = zsv_ext2 = zsb + 1;
|
|
|
|
dz_ext0 = dz0 - 1 - 2 * SQUISH_CONSTANT_4D;
|
|
|
|
dz_ext1 = dz_ext2 = dz0 - 1 - SQUISH_CONSTANT_4D;
|
|
|
|
}
|
|
|
|
|
|
|
|
if ((c & 0x08) == 0) {
|
|
|
|
wsv_ext0 = wsv_ext1 = wsb;
|
|
|
|
wsv_ext2 = wsb - 1;
|
|
|
|
dw_ext0 = dw0 - 2 * SQUISH_CONSTANT_4D;
|
|
|
|
dw_ext1 = dw0 - SQUISH_CONSTANT_4D;
|
|
|
|
dw_ext2 = dw0 + 1 - SQUISH_CONSTANT_4D;
|
|
|
|
} else {
|
|
|
|
wsv_ext0 = wsv_ext1 = wsv_ext2 = wsb + 1;
|
|
|
|
dw_ext0 = dw0 - 1 - 2 * SQUISH_CONSTANT_4D;
|
|
|
|
dw_ext1 = dw_ext2 = dw0 - 1 - SQUISH_CONSTANT_4D;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Contribution (0,0,0,0) */
|
|
|
|
attn0 = 2 - dx0 * dx0 - dy0 * dy0 - dz0 * dz0 - dw0 * dw0;
|
|
|
|
if (attn0 > 0) {
|
|
|
|
attn0 *= attn0;
|
|
|
|
value += attn0 * attn0 * extrapolate4(ctx, xsb + 0, ysb + 0, zsb + 0, wsb + 0, dx0, dy0, dz0, dw0);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Contribution (1,0,0,0) */
|
|
|
|
dx1 = dx0 - 1 - SQUISH_CONSTANT_4D;
|
|
|
|
dy1 = dy0 - 0 - SQUISH_CONSTANT_4D;
|
|
|
|
dz1 = dz0 - 0 - SQUISH_CONSTANT_4D;
|
|
|
|
dw1 = dw0 - 0 - SQUISH_CONSTANT_4D;
|
|
|
|
attn1 = 2 - dx1 * dx1 - dy1 * dy1 - dz1 * dz1 - dw1 * dw1;
|
|
|
|
if (attn1 > 0) {
|
|
|
|
attn1 *= attn1;
|
|
|
|
value += attn1 * attn1 * extrapolate4(ctx, xsb + 1, ysb + 0, zsb + 0, wsb + 0, dx1, dy1, dz1, dw1);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Contribution (0,1,0,0) */
|
|
|
|
dx2 = dx0 - 0 - SQUISH_CONSTANT_4D;
|
|
|
|
dy2 = dy0 - 1 - SQUISH_CONSTANT_4D;
|
|
|
|
dz2 = dz1;
|
|
|
|
dw2 = dw1;
|
|
|
|
attn2 = 2 - dx2 * dx2 - dy2 * dy2 - dz2 * dz2 - dw2 * dw2;
|
|
|
|
if (attn2 > 0) {
|
|
|
|
attn2 *= attn2;
|
|
|
|
value += attn2 * attn2 * extrapolate4(ctx, xsb + 0, ysb + 1, zsb + 0, wsb + 0, dx2, dy2, dz2, dw2);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Contribution (0,0,1,0) */
|
|
|
|
dx3 = dx2;
|
|
|
|
dy3 = dy1;
|
|
|
|
dz3 = dz0 - 1 - SQUISH_CONSTANT_4D;
|
|
|
|
dw3 = dw1;
|
|
|
|
attn3 = 2 - dx3 * dx3 - dy3 * dy3 - dz3 * dz3 - dw3 * dw3;
|
|
|
|
if (attn3 > 0) {
|
|
|
|
attn3 *= attn3;
|
|
|
|
value += attn3 * attn3 * extrapolate4(ctx, xsb + 0, ysb + 0, zsb + 1, wsb + 0, dx3, dy3, dz3, dw3);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Contribution (0,0,0,1) */
|
|
|
|
dx4 = dx2;
|
|
|
|
dy4 = dy1;
|
|
|
|
dz4 = dz1;
|
|
|
|
dw4 = dw0 - 1 - SQUISH_CONSTANT_4D;
|
|
|
|
attn4 = 2 - dx4 * dx4 - dy4 * dy4 - dz4 * dz4 - dw4 * dw4;
|
|
|
|
if (attn4 > 0) {
|
|
|
|
attn4 *= attn4;
|
|
|
|
value += attn4 * attn4 * extrapolate4(ctx, xsb + 0, ysb + 0, zsb + 0, wsb + 1, dx4, dy4, dz4, dw4);
|
|
|
|
}
|
|
|
|
} else if (inSum >= 3) { /* We're inside the pentachoron (4-Simplex) at (1,1,1,1)
|
|
|
|
Determine which two of (1,1,1,0), (1,1,0,1), (1,0,1,1), (0,1,1,1) are closest. */
|
|
|
|
aPoint = 0x0E;
|
|
|
|
aScore = xins;
|
|
|
|
bPoint = 0x0D;
|
|
|
|
bScore = yins;
|
|
|
|
if (aScore <= bScore && zins < bScore) {
|
|
|
|
bScore = zins;
|
|
|
|
bPoint = 0x0B;
|
|
|
|
} else if (aScore > bScore && zins < aScore) {
|
|
|
|
aScore = zins;
|
|
|
|
aPoint = 0x0B;
|
|
|
|
}
|
|
|
|
if (aScore <= bScore && wins < bScore) {
|
|
|
|
bScore = wins;
|
|
|
|
bPoint = 0x07;
|
|
|
|
} else if (aScore > bScore && wins < aScore) {
|
|
|
|
aScore = wins;
|
|
|
|
aPoint = 0x07;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Now we determine the three lattice points not part of the pentachoron that may contribute.
|
|
|
|
This depends on the closest two pentachoron vertices, including (0,0,0,0) */
|
|
|
|
uins = 4 - inSum;
|
|
|
|
if (uins < aScore || uins < bScore) { /* (1,1,1,1) is one of the closest two pentachoron vertices. */
|
|
|
|
c = (bScore < aScore ? bPoint : aPoint); /* Our other closest vertex is the closest out of a and b. */
|
|
|
|
|
|
|
|
if ((c & 0x01) != 0) {
|
|
|
|
xsv_ext0 = xsb + 2;
|
|
|
|
xsv_ext1 = xsv_ext2 = xsb + 1;
|
|
|
|
dx_ext0 = dx0 - 2 - 4 * SQUISH_CONSTANT_4D;
|
|
|
|
dx_ext1 = dx_ext2 = dx0 - 1 - 4 * SQUISH_CONSTANT_4D;
|
|
|
|
} else {
|
|
|
|
xsv_ext0 = xsv_ext1 = xsv_ext2 = xsb;
|
|
|
|
dx_ext0 = dx_ext1 = dx_ext2 = dx0 - 4 * SQUISH_CONSTANT_4D;
|
|
|
|
}
|
|
|
|
|
|
|
|
if ((c & 0x02) != 0) {
|
|
|
|
ysv_ext0 = ysv_ext1 = ysv_ext2 = ysb + 1;
|
|
|
|
dy_ext0 = dy_ext1 = dy_ext2 = dy0 - 1 - 4 * SQUISH_CONSTANT_4D;
|
|
|
|
if ((c & 0x01) != 0) {
|
|
|
|
ysv_ext1 += 1;
|
|
|
|
dy_ext1 -= 1;
|
|
|
|
} else {
|
|
|
|
ysv_ext0 += 1;
|
|
|
|
dy_ext0 -= 1;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
ysv_ext0 = ysv_ext1 = ysv_ext2 = ysb;
|
|
|
|
dy_ext0 = dy_ext1 = dy_ext2 = dy0 - 4 * SQUISH_CONSTANT_4D;
|
|
|
|
}
|
|
|
|
|
|
|
|
if ((c & 0x04) != 0) {
|
|
|
|
zsv_ext0 = zsv_ext1 = zsv_ext2 = zsb + 1;
|
|
|
|
dz_ext0 = dz_ext1 = dz_ext2 = dz0 - 1 - 4 * SQUISH_CONSTANT_4D;
|
|
|
|
if ((c & 0x03) != 0x03) {
|
|
|
|
if ((c & 0x03) == 0) {
|
|
|
|
zsv_ext0 += 1;
|
|
|
|
dz_ext0 -= 1;
|
|
|
|
} else {
|
|
|
|
zsv_ext1 += 1;
|
|
|
|
dz_ext1 -= 1;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
zsv_ext2 += 1;
|
|
|
|
dz_ext2 -= 1;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
zsv_ext0 = zsv_ext1 = zsv_ext2 = zsb;
|
|
|
|
dz_ext0 = dz_ext1 = dz_ext2 = dz0 - 4 * SQUISH_CONSTANT_4D;
|
|
|
|
}
|
|
|
|
|
|
|
|
if ((c & 0x08) != 0) {
|
|
|
|
wsv_ext0 = wsv_ext1 = wsb + 1;
|
|
|
|
wsv_ext2 = wsb + 2;
|
|
|
|
dw_ext0 = dw_ext1 = dw0 - 1 - 4 * SQUISH_CONSTANT_4D;
|
|
|
|
dw_ext2 = dw0 - 2 - 4 * SQUISH_CONSTANT_4D;
|
|
|
|
} else {
|
|
|
|
wsv_ext0 = wsv_ext1 = wsv_ext2 = wsb;
|
|
|
|
dw_ext0 = dw_ext1 = dw_ext2 = dw0 - 4 * SQUISH_CONSTANT_4D;
|
|
|
|
}
|
|
|
|
} else { /* (1,1,1,1) is not one of the closest two pentachoron vertices. */
|
|
|
|
c = (int8_t)(aPoint & bPoint); /* Our three extra vertices are determined by the closest two. */
|
|
|
|
|
|
|
|
if ((c & 0x01) != 0) {
|
|
|
|
xsv_ext0 = xsv_ext2 = xsb + 1;
|
|
|
|
xsv_ext1 = xsb + 2;
|
|
|
|
dx_ext0 = dx0 - 1 - 2 * SQUISH_CONSTANT_4D;
|
|
|
|
dx_ext1 = dx0 - 2 - 3 * SQUISH_CONSTANT_4D;
|
|
|
|
dx_ext2 = dx0 - 1 - 3 * SQUISH_CONSTANT_4D;
|
|
|
|
} else {
|
|
|
|
xsv_ext0 = xsv_ext1 = xsv_ext2 = xsb;
|
|
|
|
dx_ext0 = dx0 - 2 * SQUISH_CONSTANT_4D;
|
|
|
|
dx_ext1 = dx_ext2 = dx0 - 3 * SQUISH_CONSTANT_4D;
|
|
|
|
}
|
|
|
|
|
|
|
|
if ((c & 0x02) != 0) {
|
|
|
|
ysv_ext0 = ysv_ext1 = ysv_ext2 = ysb + 1;
|
|
|
|
dy_ext0 = dy0 - 1 - 2 * SQUISH_CONSTANT_4D;
|
|
|
|
dy_ext1 = dy_ext2 = dy0 - 1 - 3 * SQUISH_CONSTANT_4D;
|
|
|
|
if ((c & 0x01) != 0) {
|
|
|
|
ysv_ext2 += 1;
|
|
|
|
dy_ext2 -= 1;
|
|
|
|
} else {
|
|
|
|
ysv_ext1 += 1;
|
|
|
|
dy_ext1 -= 1;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
ysv_ext0 = ysv_ext1 = ysv_ext2 = ysb;
|
|
|
|
dy_ext0 = dy0 - 2 * SQUISH_CONSTANT_4D;
|
|
|
|
dy_ext1 = dy_ext2 = dy0 - 3 * SQUISH_CONSTANT_4D;
|
|
|
|
}
|
|
|
|
|
|
|
|
if ((c & 0x04) != 0) {
|
|
|
|
zsv_ext0 = zsv_ext1 = zsv_ext2 = zsb + 1;
|
|
|
|
dz_ext0 = dz0 - 1 - 2 * SQUISH_CONSTANT_4D;
|
|
|
|
dz_ext1 = dz_ext2 = dz0 - 1 - 3 * SQUISH_CONSTANT_4D;
|
|
|
|
if ((c & 0x03) != 0) {
|
|
|
|
zsv_ext2 += 1;
|
|
|
|
dz_ext2 -= 1;
|
|
|
|
} else {
|
|
|
|
zsv_ext1 += 1;
|
|
|
|
dz_ext1 -= 1;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
zsv_ext0 = zsv_ext1 = zsv_ext2 = zsb;
|
|
|
|
dz_ext0 = dz0 - 2 * SQUISH_CONSTANT_4D;
|
|
|
|
dz_ext1 = dz_ext2 = dz0 - 3 * SQUISH_CONSTANT_4D;
|
|
|
|
}
|
|
|
|
|
|
|
|
if ((c & 0x08) != 0) {
|
|
|
|
wsv_ext0 = wsv_ext1 = wsb + 1;
|
|
|
|
wsv_ext2 = wsb + 2;
|
|
|
|
dw_ext0 = dw0 - 1 - 2 * SQUISH_CONSTANT_4D;
|
|
|
|
dw_ext1 = dw0 - 1 - 3 * SQUISH_CONSTANT_4D;
|
|
|
|
dw_ext2 = dw0 - 2 - 3 * SQUISH_CONSTANT_4D;
|
|
|
|
} else {
|
|
|
|
wsv_ext0 = wsv_ext1 = wsv_ext2 = wsb;
|
|
|
|
dw_ext0 = dw0 - 2 * SQUISH_CONSTANT_4D;
|
|
|
|
dw_ext1 = dw_ext2 = dw0 - 3 * SQUISH_CONSTANT_4D;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Contribution (1,1,1,0) */
|
|
|
|
dx4 = dx0 - 1 - 3 * SQUISH_CONSTANT_4D;
|
|
|
|
dy4 = dy0 - 1 - 3 * SQUISH_CONSTANT_4D;
|
|
|
|
dz4 = dz0 - 1 - 3 * SQUISH_CONSTANT_4D;
|
|
|
|
dw4 = dw0 - 3 * SQUISH_CONSTANT_4D;
|
|
|
|
attn4 = 2 - dx4 * dx4 - dy4 * dy4 - dz4 * dz4 - dw4 * dw4;
|
|
|
|
if (attn4 > 0) {
|
|
|
|
attn4 *= attn4;
|
|
|
|
value += attn4 * attn4 * extrapolate4(ctx, xsb + 1, ysb + 1, zsb + 1, wsb + 0, dx4, dy4, dz4, dw4);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Contribution (1,1,0,1) */
|
|
|
|
dx3 = dx4;
|
|
|
|
dy3 = dy4;
|
|
|
|
dz3 = dz0 - 3 * SQUISH_CONSTANT_4D;
|
|
|
|
dw3 = dw0 - 1 - 3 * SQUISH_CONSTANT_4D;
|
|
|
|
attn3 = 2 - dx3 * dx3 - dy3 * dy3 - dz3 * dz3 - dw3 * dw3;
|
|
|
|
if (attn3 > 0) {
|
|
|
|
attn3 *= attn3;
|
|
|
|
value += attn3 * attn3 * extrapolate4(ctx, xsb + 1, ysb + 1, zsb + 0, wsb + 1, dx3, dy3, dz3, dw3);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Contribution (1,0,1,1) */
|
|
|
|
dx2 = dx4;
|
|
|
|
dy2 = dy0 - 3 * SQUISH_CONSTANT_4D;
|
|
|
|
dz2 = dz4;
|
|
|
|
dw2 = dw3;
|
|
|
|
attn2 = 2 - dx2 * dx2 - dy2 * dy2 - dz2 * dz2 - dw2 * dw2;
|
|
|
|
if (attn2 > 0) {
|
|
|
|
attn2 *= attn2;
|
|
|
|
value += attn2 * attn2 * extrapolate4(ctx, xsb + 1, ysb + 0, zsb + 1, wsb + 1, dx2, dy2, dz2, dw2);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Contribution (0,1,1,1) */
|
|
|
|
dx1 = dx0 - 3 * SQUISH_CONSTANT_4D;
|
|
|
|
dz1 = dz4;
|
|
|
|
dy1 = dy4;
|
|
|
|
dw1 = dw3;
|
|
|
|
attn1 = 2 - dx1 * dx1 - dy1 * dy1 - dz1 * dz1 - dw1 * dw1;
|
|
|
|
if (attn1 > 0) {
|
|
|
|
attn1 *= attn1;
|
|
|
|
value += attn1 * attn1 * extrapolate4(ctx, xsb + 0, ysb + 1, zsb + 1, wsb + 1, dx1, dy1, dz1, dw1);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Contribution (1,1,1,1) */
|
|
|
|
dx0 = dx0 - 1 - 4 * SQUISH_CONSTANT_4D;
|
|
|
|
dy0 = dy0 - 1 - 4 * SQUISH_CONSTANT_4D;
|
|
|
|
dz0 = dz0 - 1 - 4 * SQUISH_CONSTANT_4D;
|
|
|
|
dw0 = dw0 - 1 - 4 * SQUISH_CONSTANT_4D;
|
|
|
|
attn0 = 2 - dx0 * dx0 - dy0 * dy0 - dz0 * dz0 - dw0 * dw0;
|
|
|
|
if (attn0 > 0) {
|
|
|
|
attn0 *= attn0;
|
|
|
|
value += attn0 * attn0 * extrapolate4(ctx, xsb + 1, ysb + 1, zsb + 1, wsb + 1, dx0, dy0, dz0, dw0);
|
|
|
|
}
|
|
|
|
} else if (inSum <= 2) { /* We're inside the first dispentachoron (Rectified 4-Simplex) */
|
|
|
|
aIsBiggerSide = 1;
|
|
|
|
bIsBiggerSide = 1;
|
|
|
|
|
|
|
|
/* Decide between (1,1,0,0) and (0,0,1,1) */
|
|
|
|
if (xins + yins > zins + wins) {
|
|
|
|
aScore = xins + yins;
|
|
|
|
aPoint = 0x03;
|
|
|
|
} else {
|
|
|
|
aScore = zins + wins;
|
|
|
|
aPoint = 0x0C;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Decide between (1,0,1,0) and (0,1,0,1) */
|
|
|
|
if (xins + zins > yins + wins) {
|
|
|
|
bScore = xins + zins;
|
|
|
|
bPoint = 0x05;
|
|
|
|
} else {
|
|
|
|
bScore = yins + wins;
|
|
|
|
bPoint = 0x0A;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Closer between (1,0,0,1) and (0,1,1,0) will replace the further of a and b, if closer. */
|
|
|
|
if (xins + wins > yins + zins) {
|
|
|
|
score = xins + wins;
|
|
|
|
if (aScore >= bScore && score > bScore) {
|
|
|
|
bScore = score;
|
|
|
|
bPoint = 0x09;
|
|
|
|
} else if (aScore < bScore && score > aScore) {
|
|
|
|
aScore = score;
|
|
|
|
aPoint = 0x09;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
score = yins + zins;
|
|
|
|
if (aScore >= bScore && score > bScore) {
|
|
|
|
bScore = score;
|
|
|
|
bPoint = 0x06;
|
|
|
|
} else if (aScore < bScore && score > aScore) {
|
|
|
|
aScore = score;
|
|
|
|
aPoint = 0x06;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Decide if (1,0,0,0) is closer. */
|
|
|
|
p1 = 2 - inSum + xins;
|
|
|
|
if (aScore >= bScore && p1 > bScore) {
|
|
|
|
bScore = p1;
|
|
|
|
bPoint = 0x01;
|
|
|
|
bIsBiggerSide = 0;
|
|
|
|
} else if (aScore < bScore && p1 > aScore) {
|
|
|
|
aScore = p1;
|
|
|
|
aPoint = 0x01;
|
|
|
|
aIsBiggerSide = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Decide if (0,1,0,0) is closer. */
|
|
|
|
p2 = 2 - inSum + yins;
|
|
|
|
if (aScore >= bScore && p2 > bScore) {
|
|
|
|
bScore = p2;
|
|
|
|
bPoint = 0x02;
|
|
|
|
bIsBiggerSide = 0;
|
|
|
|
} else if (aScore < bScore && p2 > aScore) {
|
|
|
|
aScore = p2;
|
|
|
|
aPoint = 0x02;
|
|
|
|
aIsBiggerSide = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Decide if (0,0,1,0) is closer. */
|
|
|
|
p3 = 2 - inSum + zins;
|
|
|
|
if (aScore >= bScore && p3 > bScore) {
|
|
|
|
bScore = p3;
|
|
|
|
bPoint = 0x04;
|
|
|
|
bIsBiggerSide = 0;
|
|
|
|
} else if (aScore < bScore && p3 > aScore) {
|
|
|
|
aScore = p3;
|
|
|
|
aPoint = 0x04;
|
|
|
|
aIsBiggerSide = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Decide if (0,0,0,1) is closer. */
|
|
|
|
p4 = 2 - inSum + wins;
|
|
|
|
if (aScore >= bScore && p4 > bScore) {
|
|
|
|
bScore = p4;
|
|
|
|
bPoint = 0x08;
|
|
|
|
bIsBiggerSide = 0;
|
|
|
|
} else if (aScore < bScore && p4 > aScore) {
|
|
|
|
aScore = p4;
|
|
|
|
aPoint = 0x08;
|
|
|
|
aIsBiggerSide = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Where each of the two closest points are determines how the extra three vertices are calculated. */
|
|
|
|
if (aIsBiggerSide == bIsBiggerSide) {
|
|
|
|
if (aIsBiggerSide) { /* Both closest points on the bigger side */
|
|
|
|
c1 = (int8_t)(aPoint | bPoint);
|
|
|
|
c2 = (int8_t)(aPoint & bPoint);
|
|
|
|
if ((c1 & 0x01) == 0) {
|
|
|
|
xsv_ext0 = xsb;
|
|
|
|
xsv_ext1 = xsb - 1;
|
|
|
|
dx_ext0 = dx0 - 3 * SQUISH_CONSTANT_4D;
|
|
|
|
dx_ext1 = dx0 + 1 - 2 * SQUISH_CONSTANT_4D;
|
|
|
|
} else {
|
|
|
|
xsv_ext0 = xsv_ext1 = xsb + 1;
|
|
|
|
dx_ext0 = dx0 - 1 - 3 * SQUISH_CONSTANT_4D;
|
|
|
|
dx_ext1 = dx0 - 1 - 2 * SQUISH_CONSTANT_4D;
|
|
|
|
}
|
|
|
|
|
|
|
|
if ((c1 & 0x02) == 0) {
|
|
|
|
ysv_ext0 = ysb;
|
|
|
|
ysv_ext1 = ysb - 1;
|
|
|
|
dy_ext0 = dy0 - 3 * SQUISH_CONSTANT_4D;
|
|
|
|
dy_ext1 = dy0 + 1 - 2 * SQUISH_CONSTANT_4D;
|
|
|
|
} else {
|
|
|
|
ysv_ext0 = ysv_ext1 = ysb + 1;
|
|
|
|
dy_ext0 = dy0 - 1 - 3 * SQUISH_CONSTANT_4D;
|
|
|
|
dy_ext1 = dy0 - 1 - 2 * SQUISH_CONSTANT_4D;
|
|
|
|
}
|
|
|
|
|
|
|
|
if ((c1 & 0x04) == 0) {
|
|
|
|
zsv_ext0 = zsb;
|
|
|
|
zsv_ext1 = zsb - 1;
|
|
|
|
dz_ext0 = dz0 - 3 * SQUISH_CONSTANT_4D;
|
|
|
|
dz_ext1 = dz0 + 1 - 2 * SQUISH_CONSTANT_4D;
|
|
|
|
} else {
|
|
|
|
zsv_ext0 = zsv_ext1 = zsb + 1;
|
|
|
|
dz_ext0 = dz0 - 1 - 3 * SQUISH_CONSTANT_4D;
|
|
|
|
dz_ext1 = dz0 - 1 - 2 * SQUISH_CONSTANT_4D;
|
|
|
|
}
|
|
|
|
|
|
|
|
if ((c1 & 0x08) == 0) {
|
|
|
|
wsv_ext0 = wsb;
|
|
|
|
wsv_ext1 = wsb - 1;
|
|
|
|
dw_ext0 = dw0 - 3 * SQUISH_CONSTANT_4D;
|
|
|
|
dw_ext1 = dw0 + 1 - 2 * SQUISH_CONSTANT_4D;
|
|
|
|
} else {
|
|
|
|
wsv_ext0 = wsv_ext1 = wsb + 1;
|
|
|
|
dw_ext0 = dw0 - 1 - 3 * SQUISH_CONSTANT_4D;
|
|
|
|
dw_ext1 = dw0 - 1 - 2 * SQUISH_CONSTANT_4D;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* One combination is a permutation of (0,0,0,2) based on c2 */
|
|
|
|
xsv_ext2 = xsb;
|
|
|
|
ysv_ext2 = ysb;
|
|
|
|
zsv_ext2 = zsb;
|
|
|
|
wsv_ext2 = wsb;
|
|
|
|
dx_ext2 = dx0 - 2 * SQUISH_CONSTANT_4D;
|
|
|
|
dy_ext2 = dy0 - 2 * SQUISH_CONSTANT_4D;
|
|
|
|
dz_ext2 = dz0 - 2 * SQUISH_CONSTANT_4D;
|
|
|
|
dw_ext2 = dw0 - 2 * SQUISH_CONSTANT_4D;
|
|
|
|
if ((c2 & 0x01) != 0) {
|
|
|
|
xsv_ext2 += 2;
|
|
|
|
dx_ext2 -= 2;
|
|
|
|
} else if ((c2 & 0x02) != 0) {
|
|
|
|
ysv_ext2 += 2;
|
|
|
|
dy_ext2 -= 2;
|
|
|
|
} else if ((c2 & 0x04) != 0) {
|
|
|
|
zsv_ext2 += 2;
|
|
|
|
dz_ext2 -= 2;
|
|
|
|
} else {
|
|
|
|
wsv_ext2 += 2;
|
|
|
|
dw_ext2 -= 2;
|
|
|
|
}
|
|
|
|
|
|
|
|
} else { /* Both closest points on the smaller side */
|
|
|
|
/* One of the two extra points is (0,0,0,0) */
|
|
|
|
xsv_ext2 = xsb;
|
|
|
|
ysv_ext2 = ysb;
|
|
|
|
zsv_ext2 = zsb;
|
|
|
|
wsv_ext2 = wsb;
|
|
|
|
dx_ext2 = dx0;
|
|
|
|
dy_ext2 = dy0;
|
|
|
|
dz_ext2 = dz0;
|
|
|
|
dw_ext2 = dw0;
|
|
|
|
|
|
|
|
/* Other two points are based on the omitted axes. */
|
|
|
|
c = (int8_t)(aPoint | bPoint);
|
|
|
|
|
|
|
|
if ((c & 0x01) == 0) {
|
|
|
|
xsv_ext0 = xsb - 1;
|
|
|
|
xsv_ext1 = xsb;
|
|
|
|
dx_ext0 = dx0 + 1 - SQUISH_CONSTANT_4D;
|
|
|
|
dx_ext1 = dx0 - SQUISH_CONSTANT_4D;
|
|
|
|
} else {
|
|
|
|
xsv_ext0 = xsv_ext1 = xsb + 1;
|
|
|
|
dx_ext0 = dx_ext1 = dx0 - 1 - SQUISH_CONSTANT_4D;
|
|
|
|
}
|
|
|
|
|
|
|
|
if ((c & 0x02) == 0) {
|
|
|
|
ysv_ext0 = ysv_ext1 = ysb;
|
|
|
|
dy_ext0 = dy_ext1 = dy0 - SQUISH_CONSTANT_4D;
|
|
|
|
if ((c & 0x01) == 0x01)
|
|
|
|
{
|
|
|
|
ysv_ext0 -= 1;
|
|
|
|
dy_ext0 += 1;
|
|
|
|
} else {
|
|
|
|
ysv_ext1 -= 1;
|
|
|
|
dy_ext1 += 1;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
ysv_ext0 = ysv_ext1 = ysb + 1;
|
|
|
|
dy_ext0 = dy_ext1 = dy0 - 1 - SQUISH_CONSTANT_4D;
|
|
|
|
}
|
|
|
|
|
|
|
|
if ((c & 0x04) == 0) {
|
|
|
|
zsv_ext0 = zsv_ext1 = zsb;
|
|
|
|
dz_ext0 = dz_ext1 = dz0 - SQUISH_CONSTANT_4D;
|
|
|
|
if ((c & 0x03) == 0x03)
|
|
|
|
{
|
|
|
|
zsv_ext0 -= 1;
|
|
|
|
dz_ext0 += 1;
|
|
|
|
} else {
|
|
|
|
zsv_ext1 -= 1;
|
|
|
|
dz_ext1 += 1;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
zsv_ext0 = zsv_ext1 = zsb + 1;
|
|
|
|
dz_ext0 = dz_ext1 = dz0 - 1 - SQUISH_CONSTANT_4D;
|
|
|
|
}
|
|
|
|
|
|
|
|
if ((c & 0x08) == 0)
|
|
|
|
{
|
|
|
|
wsv_ext0 = wsb;
|
|
|
|
wsv_ext1 = wsb - 1;
|
|
|
|
dw_ext0 = dw0 - SQUISH_CONSTANT_4D;
|
|
|
|
dw_ext1 = dw0 + 1 - SQUISH_CONSTANT_4D;
|
|
|
|
} else {
|
|
|
|
wsv_ext0 = wsv_ext1 = wsb + 1;
|
|
|
|
dw_ext0 = dw_ext1 = dw0 - 1 - SQUISH_CONSTANT_4D;
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
} else { /* One point on each "side" */
|
|
|
|
if (aIsBiggerSide) {
|
|
|
|
c1 = aPoint;
|
|
|
|
c2 = bPoint;
|
|
|
|
} else {
|
|
|
|
c1 = bPoint;
|
|
|
|
c2 = aPoint;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Two contributions are the bigger-sided point with each 0 replaced with -1. */
|
|
|
|
if ((c1 & 0x01) == 0) {
|
|
|
|
xsv_ext0 = xsb - 1;
|
|
|
|
xsv_ext1 = xsb;
|
|
|
|
dx_ext0 = dx0 + 1 - SQUISH_CONSTANT_4D;
|
|
|
|
dx_ext1 = dx0 - SQUISH_CONSTANT_4D;
|
|
|
|
} else {
|
|
|
|
xsv_ext0 = xsv_ext1 = xsb + 1;
|
|
|
|
dx_ext0 = dx_ext1 = dx0 - 1 - SQUISH_CONSTANT_4D;
|
|
|
|
}
|
|
|
|
|
|
|
|
if ((c1 & 0x02) == 0) {
|
|
|
|
ysv_ext0 = ysv_ext1 = ysb;
|
|
|
|
dy_ext0 = dy_ext1 = dy0 - SQUISH_CONSTANT_4D;
|
|
|
|
if ((c1 & 0x01) == 0x01) {
|
|
|
|
ysv_ext0 -= 1;
|
|
|
|
dy_ext0 += 1;
|
|
|
|
} else {
|
|
|
|
ysv_ext1 -= 1;
|
|
|
|
dy_ext1 += 1;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
ysv_ext0 = ysv_ext1 = ysb + 1;
|
|
|
|
dy_ext0 = dy_ext1 = dy0 - 1 - SQUISH_CONSTANT_4D;
|
|
|
|
}
|
|
|
|
|
|
|
|
if ((c1 & 0x04) == 0) {
|
|
|
|
zsv_ext0 = zsv_ext1 = zsb;
|
|
|
|
dz_ext0 = dz_ext1 = dz0 - SQUISH_CONSTANT_4D;
|
|
|
|
if ((c1 & 0x03) == 0x03) {
|
|
|
|
zsv_ext0 -= 1;
|
|
|
|
dz_ext0 += 1;
|
|
|
|
} else {
|
|
|
|
zsv_ext1 -= 1;
|
|
|
|
dz_ext1 += 1;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
zsv_ext0 = zsv_ext1 = zsb + 1;
|
|
|
|
dz_ext0 = dz_ext1 = dz0 - 1 - SQUISH_CONSTANT_4D;
|
|
|
|
}
|
|
|
|
|
|
|
|
if ((c1 & 0x08) == 0) {
|
|
|
|
wsv_ext0 = wsb;
|
|
|
|
wsv_ext1 = wsb - 1;
|
|
|
|
dw_ext0 = dw0 - SQUISH_CONSTANT_4D;
|
|
|
|
dw_ext1 = dw0 + 1 - SQUISH_CONSTANT_4D;
|
|
|
|
} else {
|
|
|
|
wsv_ext0 = wsv_ext1 = wsb + 1;
|
|
|
|
dw_ext0 = dw_ext1 = dw0 - 1 - SQUISH_CONSTANT_4D;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* One contribution is a permutation of (0,0,0,2) based on the smaller-sided point */
|
|
|
|
xsv_ext2 = xsb;
|
|
|
|
ysv_ext2 = ysb;
|
|
|
|
zsv_ext2 = zsb;
|
|
|
|
wsv_ext2 = wsb;
|
|
|
|
dx_ext2 = dx0 - 2 * SQUISH_CONSTANT_4D;
|
|
|
|
dy_ext2 = dy0 - 2 * SQUISH_CONSTANT_4D;
|
|
|
|
dz_ext2 = dz0 - 2 * SQUISH_CONSTANT_4D;
|
|
|
|
dw_ext2 = dw0 - 2 * SQUISH_CONSTANT_4D;
|
|
|
|
if ((c2 & 0x01) != 0) {
|
|
|
|
xsv_ext2 += 2;
|
|
|
|
dx_ext2 -= 2;
|
|
|
|
} else if ((c2 & 0x02) != 0) {
|
|
|
|
ysv_ext2 += 2;
|
|
|
|
dy_ext2 -= 2;
|
|
|
|
} else if ((c2 & 0x04) != 0) {
|
|
|
|
zsv_ext2 += 2;
|
|
|
|
dz_ext2 -= 2;
|
|
|
|
} else {
|
|
|
|
wsv_ext2 += 2;
|
|
|
|
dw_ext2 -= 2;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Contribution (1,0,0,0) */
|
|
|
|
dx1 = dx0 - 1 - SQUISH_CONSTANT_4D;
|
|
|
|
dy1 = dy0 - 0 - SQUISH_CONSTANT_4D;
|
|
|
|
dz1 = dz0 - 0 - SQUISH_CONSTANT_4D;
|
|
|
|
dw1 = dw0 - 0 - SQUISH_CONSTANT_4D;
|
|
|
|
attn1 = 2 - dx1 * dx1 - dy1 * dy1 - dz1 * dz1 - dw1 * dw1;
|
|
|
|
if (attn1 > 0) {
|
|
|
|
attn1 *= attn1;
|
|
|
|
value += attn1 * attn1 * extrapolate4(ctx, xsb + 1, ysb + 0, zsb + 0, wsb + 0, dx1, dy1, dz1, dw1);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Contribution (0,1,0,0) */
|
|
|
|
dx2 = dx0 - 0 - SQUISH_CONSTANT_4D;
|
|
|
|
dy2 = dy0 - 1 - SQUISH_CONSTANT_4D;
|
|
|
|
dz2 = dz1;
|
|
|
|
dw2 = dw1;
|
|
|
|
attn2 = 2 - dx2 * dx2 - dy2 * dy2 - dz2 * dz2 - dw2 * dw2;
|
|
|
|
if (attn2 > 0) {
|
|
|
|
attn2 *= attn2;
|
|
|
|
value += attn2 * attn2 * extrapolate4(ctx, xsb + 0, ysb + 1, zsb + 0, wsb + 0, dx2, dy2, dz2, dw2);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Contribution (0,0,1,0) */
|
|
|
|
dx3 = dx2;
|
|
|
|
dy3 = dy1;
|
|
|
|
dz3 = dz0 - 1 - SQUISH_CONSTANT_4D;
|
|
|
|
dw3 = dw1;
|
|
|
|
attn3 = 2 - dx3 * dx3 - dy3 * dy3 - dz3 * dz3 - dw3 * dw3;
|
|
|
|
if (attn3 > 0) {
|
|
|
|
attn3 *= attn3;
|
|
|
|
value += attn3 * attn3 * extrapolate4(ctx, xsb + 0, ysb + 0, zsb + 1, wsb + 0, dx3, dy3, dz3, dw3);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Contribution (0,0,0,1) */
|
|
|
|
dx4 = dx2;
|
|
|
|
dy4 = dy1;
|
|
|
|
dz4 = dz1;
|
|
|
|
dw4 = dw0 - 1 - SQUISH_CONSTANT_4D;
|
|
|
|
attn4 = 2 - dx4 * dx4 - dy4 * dy4 - dz4 * dz4 - dw4 * dw4;
|
|
|
|
if (attn4 > 0) {
|
|
|
|
attn4 *= attn4;
|
|
|
|
value += attn4 * attn4 * extrapolate4(ctx, xsb + 0, ysb + 0, zsb + 0, wsb + 1, dx4, dy4, dz4, dw4);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Contribution (1,1,0,0) */
|
|
|
|
dx5 = dx0 - 1 - 2 * SQUISH_CONSTANT_4D;
|
|
|
|
dy5 = dy0 - 1 - 2 * SQUISH_CONSTANT_4D;
|
|
|
|
dz5 = dz0 - 0 - 2 * SQUISH_CONSTANT_4D;
|
|
|
|
dw5 = dw0 - 0 - 2 * SQUISH_CONSTANT_4D;
|
|
|
|
attn5 = 2 - dx5 * dx5 - dy5 * dy5 - dz5 * dz5 - dw5 * dw5;
|
|
|
|
if (attn5 > 0) {
|
|
|
|
attn5 *= attn5;
|
|
|
|
value += attn5 * attn5 * extrapolate4(ctx, xsb + 1, ysb + 1, zsb + 0, wsb + 0, dx5, dy5, dz5, dw5);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Contribution (1,0,1,0) */
|
|
|
|
dx6 = dx0 - 1 - 2 * SQUISH_CONSTANT_4D;
|
|
|
|
dy6 = dy0 - 0 - 2 * SQUISH_CONSTANT_4D;
|
|
|
|
dz6 = dz0 - 1 - 2 * SQUISH_CONSTANT_4D;
|
|
|
|
dw6 = dw0 - 0 - 2 * SQUISH_CONSTANT_4D;
|
|
|
|
attn6 = 2 - dx6 * dx6 - dy6 * dy6 - dz6 * dz6 - dw6 * dw6;
|
|
|
|
if (attn6 > 0) {
|
|
|
|
attn6 *= attn6;
|
|
|
|
value += attn6 * attn6 * extrapolate4(ctx, xsb + 1, ysb + 0, zsb + 1, wsb + 0, dx6, dy6, dz6, dw6);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Contribution (1,0,0,1) */
|
|
|
|
dx7 = dx0 - 1 - 2 * SQUISH_CONSTANT_4D;
|
|
|
|
dy7 = dy0 - 0 - 2 * SQUISH_CONSTANT_4D;
|
|
|
|
dz7 = dz0 - 0 - 2 * SQUISH_CONSTANT_4D;
|
|
|
|
dw7 = dw0 - 1 - 2 * SQUISH_CONSTANT_4D;
|
|
|
|
attn7 = 2 - dx7 * dx7 - dy7 * dy7 - dz7 * dz7 - dw7 * dw7;
|
|
|
|
if (attn7 > 0) {
|
|
|
|
attn7 *= attn7;
|
|
|
|
value += attn7 * attn7 * extrapolate4(ctx, xsb + 1, ysb + 0, zsb + 0, wsb + 1, dx7, dy7, dz7, dw7);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Contribution (0,1,1,0) */
|
|
|
|
dx8 = dx0 - 0 - 2 * SQUISH_CONSTANT_4D;
|
|
|
|
dy8 = dy0 - 1 - 2 * SQUISH_CONSTANT_4D;
|
|
|
|
dz8 = dz0 - 1 - 2 * SQUISH_CONSTANT_4D;
|
|
|
|
dw8 = dw0 - 0 - 2 * SQUISH_CONSTANT_4D;
|
|
|
|
attn8 = 2 - dx8 * dx8 - dy8 * dy8 - dz8 * dz8 - dw8 * dw8;
|
|
|
|
if (attn8 > 0) {
|
|
|
|
attn8 *= attn8;
|
|
|
|
value += attn8 * attn8 * extrapolate4(ctx, xsb + 0, ysb + 1, zsb + 1, wsb + 0, dx8, dy8, dz8, dw8);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Contribution (0,1,0,1) */
|
|
|
|
dx9 = dx0 - 0 - 2 * SQUISH_CONSTANT_4D;
|
|
|
|
dy9 = dy0 - 1 - 2 * SQUISH_CONSTANT_4D;
|
|
|
|
dz9 = dz0 - 0 - 2 * SQUISH_CONSTANT_4D;
|
|
|
|
dw9 = dw0 - 1 - 2 * SQUISH_CONSTANT_4D;
|
|
|
|
attn9 = 2 - dx9 * dx9 - dy9 * dy9 - dz9 * dz9 - dw9 * dw9;
|
|
|
|
if (attn9 > 0) {
|
|
|
|
attn9 *= attn9;
|
|
|
|
value += attn9 * attn9 * extrapolate4(ctx, xsb + 0, ysb + 1, zsb + 0, wsb + 1, dx9, dy9, dz9, dw9);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Contribution (0,0,1,1) */
|
|
|
|
dx10 = dx0 - 0 - 2 * SQUISH_CONSTANT_4D;
|
|
|
|
dy10 = dy0 - 0 - 2 * SQUISH_CONSTANT_4D;
|
|
|
|
dz10 = dz0 - 1 - 2 * SQUISH_CONSTANT_4D;
|
|
|
|
dw10 = dw0 - 1 - 2 * SQUISH_CONSTANT_4D;
|
|
|
|
attn10 = 2 - dx10 * dx10 - dy10 * dy10 - dz10 * dz10 - dw10 * dw10;
|
|
|
|
if (attn10 > 0) {
|
|
|
|
attn10 *= attn10;
|
|
|
|
value += attn10 * attn10 * extrapolate4(ctx, xsb + 0, ysb + 0, zsb + 1, wsb + 1, dx10, dy10, dz10, dw10);
|
|
|
|
}
|
|
|
|
} else { /* We're inside the second dispentachoron (Rectified 4-Simplex) */
|
|
|
|
aIsBiggerSide = 1;
|
|
|
|
bIsBiggerSide = 1;
|
|
|
|
|
|
|
|
/* Decide between (0,0,1,1) and (1,1,0,0) */
|
|
|
|
if (xins + yins < zins + wins) {
|
|
|
|
aScore = xins + yins;
|
|
|
|
aPoint = 0x0C;
|
|
|
|
} else {
|
|
|
|
aScore = zins + wins;
|
|
|
|
aPoint = 0x03;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Decide between (0,1,0,1) and (1,0,1,0) */
|
|
|
|
if (xins + zins < yins + wins) {
|
|
|
|
bScore = xins + zins;
|
|
|
|
bPoint = 0x0A;
|
|
|
|
} else {
|
|
|
|
bScore = yins + wins;
|
|
|
|
bPoint = 0x05;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Closer between (0,1,1,0) and (1,0,0,1) will replace the further of a and b, if closer. */
|
|
|
|
if (xins + wins < yins + zins) {
|
|
|
|
score = xins + wins;
|
|
|
|
if (aScore <= bScore && score < bScore) {
|
|
|
|
bScore = score;
|
|
|
|
bPoint = 0x06;
|
|
|
|
} else if (aScore > bScore && score < aScore) {
|
|
|
|
aScore = score;
|
|
|
|
aPoint = 0x06;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
score = yins + zins;
|
|
|
|
if (aScore <= bScore && score < bScore) {
|
|
|
|
bScore = score;
|
|
|
|
bPoint = 0x09;
|
|
|
|
} else if (aScore > bScore && score < aScore) {
|
|
|
|
aScore = score;
|
|
|
|
aPoint = 0x09;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Decide if (0,1,1,1) is closer. */
|
|
|
|
p1 = 3 - inSum + xins;
|
|
|
|
if (aScore <= bScore && p1 < bScore) {
|
|
|
|
bScore = p1;
|
|
|
|
bPoint = 0x0E;
|
|
|
|
bIsBiggerSide = 0;
|
|
|
|
} else if (aScore > bScore && p1 < aScore) {
|
|
|
|
aScore = p1;
|
|
|
|
aPoint = 0x0E;
|
|
|
|
aIsBiggerSide = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Decide if (1,0,1,1) is closer. */
|
|
|
|
p2 = 3 - inSum + yins;
|
|
|
|
if (aScore <= bScore && p2 < bScore) {
|
|
|
|
bScore = p2;
|
|
|
|
bPoint = 0x0D;
|
|
|
|
bIsBiggerSide = 0;
|
|
|
|
} else if (aScore > bScore && p2 < aScore) {
|
|
|
|
aScore = p2;
|
|
|
|
aPoint = 0x0D;
|
|
|
|
aIsBiggerSide = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Decide if (1,1,0,1) is closer. */
|
|
|
|
p3 = 3 - inSum + zins;
|
|
|
|
if (aScore <= bScore && p3 < bScore) {
|
|
|
|
bScore = p3;
|
|
|
|
bPoint = 0x0B;
|
|
|
|
bIsBiggerSide = 0;
|
|
|
|
} else if (aScore > bScore && p3 < aScore) {
|
|
|
|
aScore = p3;
|
|
|
|
aPoint = 0x0B;
|
|
|
|
aIsBiggerSide = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Decide if (1,1,1,0) is closer. */
|
|
|
|
p4 = 3 - inSum + wins;
|
|
|
|
if (aScore <= bScore && p4 < bScore) {
|
|
|
|
bScore = p4;
|
|
|
|
bPoint = 0x07;
|
|
|
|
bIsBiggerSide = 0;
|
|
|
|
} else if (aScore > bScore && p4 < aScore) {
|
|
|
|
aScore = p4;
|
|
|
|
aPoint = 0x07;
|
|
|
|
aIsBiggerSide = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Where each of the two closest points are determines how the extra three vertices are calculated. */
|
|
|
|
if (aIsBiggerSide == bIsBiggerSide) {
|
|
|
|
if (aIsBiggerSide) { /* Both closest points on the bigger side */
|
|
|
|
c1 = (int8_t)(aPoint & bPoint);
|
|
|
|
c2 = (int8_t)(aPoint | bPoint);
|
|
|
|
|
|
|
|
/* Two contributions are permutations of (0,0,0,1) and (0,0,0,2) based on c1 */
|
|
|
|
xsv_ext0 = xsv_ext1 = xsb;
|
|
|
|
ysv_ext0 = ysv_ext1 = ysb;
|
|
|
|
zsv_ext0 = zsv_ext1 = zsb;
|
|
|
|
wsv_ext0 = wsv_ext1 = wsb;
|
|
|
|
dx_ext0 = dx0 - SQUISH_CONSTANT_4D;
|
|
|
|
dy_ext0 = dy0 - SQUISH_CONSTANT_4D;
|
|
|
|
dz_ext0 = dz0 - SQUISH_CONSTANT_4D;
|
|
|
|
dw_ext0 = dw0 - SQUISH_CONSTANT_4D;
|
|
|
|
dx_ext1 = dx0 - 2 * SQUISH_CONSTANT_4D;
|
|
|
|
dy_ext1 = dy0 - 2 * SQUISH_CONSTANT_4D;
|
|
|
|
dz_ext1 = dz0 - 2 * SQUISH_CONSTANT_4D;
|
|
|
|
dw_ext1 = dw0 - 2 * SQUISH_CONSTANT_4D;
|
|
|
|
if ((c1 & 0x01) != 0) {
|
|
|
|
xsv_ext0 += 1;
|
|
|
|
dx_ext0 -= 1;
|
|
|
|
xsv_ext1 += 2;
|
|
|
|
dx_ext1 -= 2;
|
|
|
|
} else if ((c1 & 0x02) != 0) {
|
|
|
|
ysv_ext0 += 1;
|
|
|
|
dy_ext0 -= 1;
|
|
|
|
ysv_ext1 += 2;
|
|
|
|
dy_ext1 -= 2;
|
|
|
|
} else if ((c1 & 0x04) != 0) {
|
|
|
|
zsv_ext0 += 1;
|
|
|
|
dz_ext0 -= 1;
|
|
|
|
zsv_ext1 += 2;
|
|
|
|
dz_ext1 -= 2;
|
|
|
|
} else {
|
|
|
|
wsv_ext0 += 1;
|
|
|
|
dw_ext0 -= 1;
|
|
|
|
wsv_ext1 += 2;
|
|
|
|
dw_ext1 -= 2;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* One contribution is a permutation of (1,1,1,-1) based on c2 */
|
|
|
|
xsv_ext2 = xsb + 1;
|
|
|
|
ysv_ext2 = ysb + 1;
|
|
|
|
zsv_ext2 = zsb + 1;
|
|
|
|
wsv_ext2 = wsb + 1;
|
|
|
|
dx_ext2 = dx0 - 1 - 2 * SQUISH_CONSTANT_4D;
|
|
|
|
dy_ext2 = dy0 - 1 - 2 * SQUISH_CONSTANT_4D;
|
|
|
|
dz_ext2 = dz0 - 1 - 2 * SQUISH_CONSTANT_4D;
|
|
|
|
dw_ext2 = dw0 - 1 - 2 * SQUISH_CONSTANT_4D;
|
|
|
|
if ((c2 & 0x01) == 0) {
|
|
|
|
xsv_ext2 -= 2;
|
|
|
|
dx_ext2 += 2;
|
|
|
|
} else if ((c2 & 0x02) == 0) {
|
|
|
|
ysv_ext2 -= 2;
|
|
|
|
dy_ext2 += 2;
|
|
|
|
} else if ((c2 & 0x04) == 0) {
|
|
|
|
zsv_ext2 -= 2;
|
|
|
|
dz_ext2 += 2;
|
|
|
|
} else {
|
|
|
|
wsv_ext2 -= 2;
|
|
|
|
dw_ext2 += 2;
|
|
|
|
}
|
|
|
|
} else { /* Both closest points on the smaller side */
|
|
|
|
/* One of the two extra points is (1,1,1,1) */
|
|
|
|
xsv_ext2 = xsb + 1;
|
|
|
|
ysv_ext2 = ysb + 1;
|
|
|
|
zsv_ext2 = zsb + 1;
|
|
|
|
wsv_ext2 = wsb + 1;
|
|
|
|
dx_ext2 = dx0 - 1 - 4 * SQUISH_CONSTANT_4D;
|
|
|
|
dy_ext2 = dy0 - 1 - 4 * SQUISH_CONSTANT_4D;
|
|
|
|
dz_ext2 = dz0 - 1 - 4 * SQUISH_CONSTANT_4D;
|
|
|
|
dw_ext2 = dw0 - 1 - 4 * SQUISH_CONSTANT_4D;
|
|
|
|
|
|
|
|
/* Other two points are based on the shared axes. */
|
|
|
|
c = (int8_t)(aPoint & bPoint);
|
|
|
|
|
|
|
|
if ((c & 0x01) != 0) {
|
|
|
|
xsv_ext0 = xsb + 2;
|
|
|
|
xsv_ext1 = xsb + 1;
|
|
|
|
dx_ext0 = dx0 - 2 - 3 * SQUISH_CONSTANT_4D;
|
|
|
|
dx_ext1 = dx0 - 1 - 3 * SQUISH_CONSTANT_4D;
|
|
|
|
} else {
|
|
|
|
xsv_ext0 = xsv_ext1 = xsb;
|
|
|
|
dx_ext0 = dx_ext1 = dx0 - 3 * SQUISH_CONSTANT_4D;
|
|
|
|
}
|
|
|
|
|
|
|
|
if ((c & 0x02) != 0) {
|
|
|
|
ysv_ext0 = ysv_ext1 = ysb + 1;
|
|
|
|
dy_ext0 = dy_ext1 = dy0 - 1 - 3 * SQUISH_CONSTANT_4D;
|
|
|
|
if ((c & 0x01) == 0)
|
|
|
|
{
|
|
|
|
ysv_ext0 += 1;
|
|
|
|
dy_ext0 -= 1;
|
|
|
|
} else {
|
|
|
|
ysv_ext1 += 1;
|
|
|
|
dy_ext1 -= 1;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
ysv_ext0 = ysv_ext1 = ysb;
|
|
|
|
dy_ext0 = dy_ext1 = dy0 - 3 * SQUISH_CONSTANT_4D;
|
|
|
|
}
|
|
|
|
|
|
|
|
if ((c & 0x04) != 0) {
|
|
|
|
zsv_ext0 = zsv_ext1 = zsb + 1;
|
|
|
|
dz_ext0 = dz_ext1 = dz0 - 1 - 3 * SQUISH_CONSTANT_4D;
|
|
|
|
if ((c & 0x03) == 0)
|
|
|
|
{
|
|
|
|
zsv_ext0 += 1;
|
|
|
|
dz_ext0 -= 1;
|
|
|
|
} else {
|
|
|
|
zsv_ext1 += 1;
|
|
|
|
dz_ext1 -= 1;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
zsv_ext0 = zsv_ext1 = zsb;
|
|
|
|
dz_ext0 = dz_ext1 = dz0 - 3 * SQUISH_CONSTANT_4D;
|
|
|
|
}
|
|
|
|
|
|
|
|
if ((c & 0x08) != 0)
|
|
|
|
{
|
|
|
|
wsv_ext0 = wsb + 1;
|
|
|
|
wsv_ext1 = wsb + 2;
|
|
|
|
dw_ext0 = dw0 - 1 - 3 * SQUISH_CONSTANT_4D;
|
|
|
|
dw_ext1 = dw0 - 2 - 3 * SQUISH_CONSTANT_4D;
|
|
|
|
} else {
|
|
|
|
wsv_ext0 = wsv_ext1 = wsb;
|
|
|
|
dw_ext0 = dw_ext1 = dw0 - 3 * SQUISH_CONSTANT_4D;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else { /* One point on each "side" */
|
|
|
|
if (aIsBiggerSide) {
|
|
|
|
c1 = aPoint;
|
|
|
|
c2 = bPoint;
|
|
|
|
} else {
|
|
|
|
c1 = bPoint;
|
|
|
|
c2 = aPoint;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Two contributions are the bigger-sided point with each 1 replaced with 2. */
|
|
|
|
if ((c1 & 0x01) != 0) {
|
|
|
|
xsv_ext0 = xsb + 2;
|
|
|
|
xsv_ext1 = xsb + 1;
|
|
|
|
dx_ext0 = dx0 - 2 - 3 * SQUISH_CONSTANT_4D;
|
|
|
|
dx_ext1 = dx0 - 1 - 3 * SQUISH_CONSTANT_4D;
|
|
|
|
} else {
|
|
|
|
xsv_ext0 = xsv_ext1 = xsb;
|
|
|
|
dx_ext0 = dx_ext1 = dx0 - 3 * SQUISH_CONSTANT_4D;
|
|
|
|
}
|
|
|
|
|
|
|
|
if ((c1 & 0x02) != 0) {
|
|
|
|
ysv_ext0 = ysv_ext1 = ysb + 1;
|
|
|
|
dy_ext0 = dy_ext1 = dy0 - 1 - 3 * SQUISH_CONSTANT_4D;
|
|
|
|
if ((c1 & 0x01) == 0) {
|
|
|
|
ysv_ext0 += 1;
|
|
|
|
dy_ext0 -= 1;
|
|
|
|
} else {
|
|
|
|
ysv_ext1 += 1;
|
|
|
|
dy_ext1 -= 1;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
ysv_ext0 = ysv_ext1 = ysb;
|
|
|
|
dy_ext0 = dy_ext1 = dy0 - 3 * SQUISH_CONSTANT_4D;
|
|
|
|
}
|
|
|
|
|
|
|
|
if ((c1 & 0x04) != 0) {
|
|
|
|
zsv_ext0 = zsv_ext1 = zsb + 1;
|
|
|
|
dz_ext0 = dz_ext1 = dz0 - 1 - 3 * SQUISH_CONSTANT_4D;
|
|
|
|
if ((c1 & 0x03) == 0) {
|
|
|
|
zsv_ext0 += 1;
|
|
|
|
dz_ext0 -= 1;
|
|
|
|
} else {
|
|
|
|
zsv_ext1 += 1;
|
|
|
|
dz_ext1 -= 1;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
zsv_ext0 = zsv_ext1 = zsb;
|
|
|
|
dz_ext0 = dz_ext1 = dz0 - 3 * SQUISH_CONSTANT_4D;
|
|
|
|
}
|
|
|
|
|
|
|
|
if ((c1 & 0x08) != 0) {
|
|
|
|
wsv_ext0 = wsb + 1;
|
|
|
|
wsv_ext1 = wsb + 2;
|
|
|
|
dw_ext0 = dw0 - 1 - 3 * SQUISH_CONSTANT_4D;
|
|
|
|
dw_ext1 = dw0 - 2 - 3 * SQUISH_CONSTANT_4D;
|
|
|
|
} else {
|
|
|
|
wsv_ext0 = wsv_ext1 = wsb;
|
|
|
|
dw_ext0 = dw_ext1 = dw0 - 3 * SQUISH_CONSTANT_4D;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* One contribution is a permutation of (1,1,1,-1) based on the smaller-sided point */
|
|
|
|
xsv_ext2 = xsb + 1;
|
|
|
|
ysv_ext2 = ysb + 1;
|
|
|
|
zsv_ext2 = zsb + 1;
|
|
|
|
wsv_ext2 = wsb + 1;
|
|
|
|
dx_ext2 = dx0 - 1 - 2 * SQUISH_CONSTANT_4D;
|
|
|
|
dy_ext2 = dy0 - 1 - 2 * SQUISH_CONSTANT_4D;
|
|
|
|
dz_ext2 = dz0 - 1 - 2 * SQUISH_CONSTANT_4D;
|
|
|
|
dw_ext2 = dw0 - 1 - 2 * SQUISH_CONSTANT_4D;
|
|
|
|
if ((c2 & 0x01) == 0) {
|
|
|
|
xsv_ext2 -= 2;
|
|
|
|
dx_ext2 += 2;
|
|
|
|
} else if ((c2 & 0x02) == 0) {
|
|
|
|
ysv_ext2 -= 2;
|
|
|
|
dy_ext2 += 2;
|
|
|
|
} else if ((c2 & 0x04) == 0) {
|
|
|
|
zsv_ext2 -= 2;
|
|
|
|
dz_ext2 += 2;
|
|
|
|
} else {
|
|
|
|
wsv_ext2 -= 2;
|
|
|
|
dw_ext2 += 2;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Contribution (1,1,1,0) */
|
|
|
|
dx4 = dx0 - 1 - 3 * SQUISH_CONSTANT_4D;
|
|
|
|
dy4 = dy0 - 1 - 3 * SQUISH_CONSTANT_4D;
|
|
|
|
dz4 = dz0 - 1 - 3 * SQUISH_CONSTANT_4D;
|
|
|
|
dw4 = dw0 - 3 * SQUISH_CONSTANT_4D;
|
|
|
|
attn4 = 2 - dx4 * dx4 - dy4 * dy4 - dz4 * dz4 - dw4 * dw4;
|
|
|
|
if (attn4 > 0) {
|
|
|
|
attn4 *= attn4;
|
|
|
|
value += attn4 * attn4 * extrapolate4(ctx, xsb + 1, ysb + 1, zsb + 1, wsb + 0, dx4, dy4, dz4, dw4);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Contribution (1,1,0,1) */
|
|
|
|
dx3 = dx4;
|
|
|
|
dy3 = dy4;
|
|
|
|
dz3 = dz0 - 3 * SQUISH_CONSTANT_4D;
|
|
|
|
dw3 = dw0 - 1 - 3 * SQUISH_CONSTANT_4D;
|
|
|
|
attn3 = 2 - dx3 * dx3 - dy3 * dy3 - dz3 * dz3 - dw3 * dw3;
|
|
|
|
if (attn3 > 0) {
|
|
|
|
attn3 *= attn3;
|
|
|
|
value += attn3 * attn3 * extrapolate4(ctx, xsb + 1, ysb + 1, zsb + 0, wsb + 1, dx3, dy3, dz3, dw3);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Contribution (1,0,1,1) */
|
|
|
|
dx2 = dx4;
|
|
|
|
dy2 = dy0 - 3 * SQUISH_CONSTANT_4D;
|
|
|
|
dz2 = dz4;
|
|
|
|
dw2 = dw3;
|
|
|
|
attn2 = 2 - dx2 * dx2 - dy2 * dy2 - dz2 * dz2 - dw2 * dw2;
|
|
|
|
if (attn2 > 0) {
|
|
|
|
attn2 *= attn2;
|
|
|
|
value += attn2 * attn2 * extrapolate4(ctx, xsb + 1, ysb + 0, zsb + 1, wsb + 1, dx2, dy2, dz2, dw2);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Contribution (0,1,1,1) */
|
|
|
|
dx1 = dx0 - 3 * SQUISH_CONSTANT_4D;
|
|
|
|
dz1 = dz4;
|
|
|
|
dy1 = dy4;
|
|
|
|
dw1 = dw3;
|
|
|
|
attn1 = 2 - dx1 * dx1 - dy1 * dy1 - dz1 * dz1 - dw1 * dw1;
|
|
|
|
if (attn1 > 0) {
|
|
|
|
attn1 *= attn1;
|
|
|
|
value += attn1 * attn1 * extrapolate4(ctx, xsb + 0, ysb + 1, zsb + 1, wsb + 1, dx1, dy1, dz1, dw1);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Contribution (1,1,0,0) */
|
|
|
|
dx5 = dx0 - 1 - 2 * SQUISH_CONSTANT_4D;
|
|
|
|
dy5 = dy0 - 1 - 2 * SQUISH_CONSTANT_4D;
|
|
|
|
dz5 = dz0 - 0 - 2 * SQUISH_CONSTANT_4D;
|
|
|
|
dw5 = dw0 - 0 - 2 * SQUISH_CONSTANT_4D;
|
|
|
|
attn5 = 2 - dx5 * dx5 - dy5 * dy5 - dz5 * dz5 - dw5 * dw5;
|
|
|
|
if (attn5 > 0) {
|
|
|
|
attn5 *= attn5;
|
|
|
|
value += attn5 * attn5 * extrapolate4(ctx, xsb + 1, ysb + 1, zsb + 0, wsb + 0, dx5, dy5, dz5, dw5);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Contribution (1,0,1,0) */
|
|
|
|
dx6 = dx0 - 1 - 2 * SQUISH_CONSTANT_4D;
|
|
|
|
dy6 = dy0 - 0 - 2 * SQUISH_CONSTANT_4D;
|
|
|
|
dz6 = dz0 - 1 - 2 * SQUISH_CONSTANT_4D;
|
|
|
|
dw6 = dw0 - 0 - 2 * SQUISH_CONSTANT_4D;
|
|
|
|
attn6 = 2 - dx6 * dx6 - dy6 * dy6 - dz6 * dz6 - dw6 * dw6;
|
|
|
|
if (attn6 > 0) {
|
|
|
|
attn6 *= attn6;
|
|
|
|
value += attn6 * attn6 * extrapolate4(ctx, xsb + 1, ysb + 0, zsb + 1, wsb + 0, dx6, dy6, dz6, dw6);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Contribution (1,0,0,1) */
|
|
|
|
dx7 = dx0 - 1 - 2 * SQUISH_CONSTANT_4D;
|
|
|
|
dy7 = dy0 - 0 - 2 * SQUISH_CONSTANT_4D;
|
|
|
|
dz7 = dz0 - 0 - 2 * SQUISH_CONSTANT_4D;
|
|
|
|
dw7 = dw0 - 1 - 2 * SQUISH_CONSTANT_4D;
|
|
|
|
attn7 = 2 - dx7 * dx7 - dy7 * dy7 - dz7 * dz7 - dw7 * dw7;
|
|
|
|
if (attn7 > 0) {
|
|
|
|
attn7 *= attn7;
|
|
|
|
value += attn7 * attn7 * extrapolate4(ctx, xsb + 1, ysb + 0, zsb + 0, wsb + 1, dx7, dy7, dz7, dw7);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Contribution (0,1,1,0) */
|
|
|
|
dx8 = dx0 - 0 - 2 * SQUISH_CONSTANT_4D;
|
|
|
|
dy8 = dy0 - 1 - 2 * SQUISH_CONSTANT_4D;
|
|
|
|
dz8 = dz0 - 1 - 2 * SQUISH_CONSTANT_4D;
|
|
|
|
dw8 = dw0 - 0 - 2 * SQUISH_CONSTANT_4D;
|
|
|
|
attn8 = 2 - dx8 * dx8 - dy8 * dy8 - dz8 * dz8 - dw8 * dw8;
|
|
|
|
if (attn8 > 0) {
|
|
|
|
attn8 *= attn8;
|
|
|
|
value += attn8 * attn8 * extrapolate4(ctx, xsb + 0, ysb + 1, zsb + 1, wsb + 0, dx8, dy8, dz8, dw8);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Contribution (0,1,0,1) */
|
|
|
|
dx9 = dx0 - 0 - 2 * SQUISH_CONSTANT_4D;
|
|
|
|
dy9 = dy0 - 1 - 2 * SQUISH_CONSTANT_4D;
|
|
|
|
dz9 = dz0 - 0 - 2 * SQUISH_CONSTANT_4D;
|
|
|
|
dw9 = dw0 - 1 - 2 * SQUISH_CONSTANT_4D;
|
|
|
|
attn9 = 2 - dx9 * dx9 - dy9 * dy9 - dz9 * dz9 - dw9 * dw9;
|
|
|
|
if (attn9 > 0) {
|
|
|
|
attn9 *= attn9;
|
|
|
|
value += attn9 * attn9 * extrapolate4(ctx, xsb + 0, ysb + 1, zsb + 0, wsb + 1, dx9, dy9, dz9, dw9);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Contribution (0,0,1,1) */
|
|
|
|
dx10 = dx0 - 0 - 2 * SQUISH_CONSTANT_4D;
|
|
|
|
dy10 = dy0 - 0 - 2 * SQUISH_CONSTANT_4D;
|
|
|
|
dz10 = dz0 - 1 - 2 * SQUISH_CONSTANT_4D;
|
|
|
|
dw10 = dw0 - 1 - 2 * SQUISH_CONSTANT_4D;
|
|
|
|
attn10 = 2 - dx10 * dx10 - dy10 * dy10 - dz10 * dz10 - dw10 * dw10;
|
|
|
|
if (attn10 > 0) {
|
|
|
|
attn10 *= attn10;
|
|
|
|
value += attn10 * attn10 * extrapolate4(ctx, xsb + 0, ysb + 0, zsb + 1, wsb + 1, dx10, dy10, dz10, dw10);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* First extra vertex */
|
|
|
|
attn_ext0 = 2 - dx_ext0 * dx_ext0 - dy_ext0 * dy_ext0 - dz_ext0 * dz_ext0 - dw_ext0 * dw_ext0;
|
|
|
|
if (attn_ext0 > 0)
|
|
|
|
{
|
|
|
|
attn_ext0 *= attn_ext0;
|
|
|
|
value += attn_ext0 * attn_ext0 * extrapolate4(ctx, xsv_ext0, ysv_ext0, zsv_ext0, wsv_ext0, dx_ext0, dy_ext0, dz_ext0, dw_ext0);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Second extra vertex */
|
|
|
|
attn_ext1 = 2 - dx_ext1 * dx_ext1 - dy_ext1 * dy_ext1 - dz_ext1 * dz_ext1 - dw_ext1 * dw_ext1;
|
|
|
|
if (attn_ext1 > 0)
|
|
|
|
{
|
|
|
|
attn_ext1 *= attn_ext1;
|
|
|
|
value += attn_ext1 * attn_ext1 * extrapolate4(ctx, xsv_ext1, ysv_ext1, zsv_ext1, wsv_ext1, dx_ext1, dy_ext1, dz_ext1, dw_ext1);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Third extra vertex */
|
|
|
|
attn_ext2 = 2 - dx_ext2 * dx_ext2 - dy_ext2 * dy_ext2 - dz_ext2 * dz_ext2 - dw_ext2 * dw_ext2;
|
|
|
|
if (attn_ext2 > 0)
|
|
|
|
{
|
|
|
|
attn_ext2 *= attn_ext2;
|
|
|
|
value += attn_ext2 * attn_ext2 * extrapolate4(ctx, xsv_ext2, ysv_ext2, zsv_ext2, wsv_ext2, dx_ext2, dy_ext2, dz_ext2, dw_ext2);
|
|
|
|
}
|
|
|
|
|
|
|
|
return value / NORM_CONSTANT_4D;
|
|
|
|
}
|
|
|
|
|