godot/thirdparty/cvtt/ConvectionKernels_IndexSele...

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

148 lines
6.7 KiB
C++
Raw Normal View History

#pragma once
#ifndef __CVTT_INDEXSELECTOR_H__
#define __CVTT_INDEXSELECTOR_H__
#include "ConvectionKernels_ParallelMath.h"
namespace cvtt
{
namespace Internal
{
extern const ParallelMath::UInt16 g_weightReciprocals[17];
template<int TVectorSize>
class IndexSelector
{
public:
typedef ParallelMath::Float MFloat;
typedef ParallelMath::UInt16 MUInt16;
typedef ParallelMath::UInt15 MUInt15;
typedef ParallelMath::SInt16 MSInt16;
typedef ParallelMath::AInt16 MAInt16;
typedef ParallelMath::SInt32 MSInt32;
typedef ParallelMath::UInt31 MUInt31;
template<class TInterpolationEPType, class TColorEPType>
void Init(const float *channelWeights, const TInterpolationEPType interpolationEndPoints[2][TVectorSize], const TColorEPType colorSpaceEndpoints[2][TVectorSize], int range)
{
// In BC6H, the interpolation endpoints are higher-precision than the endpoints in color space.
// We need to select indexes using the color-space endpoints.
m_isUniform = true;
for (int ch = 1; ch < TVectorSize; ch++)
{
if (channelWeights[ch] != channelWeights[0])
m_isUniform = false;
}
// To work with channel weights, we need something where:
// pxDiff = px - ep[0]
// epDiff = ep[1] - ep[0]
//
// weightedEPDiff = epDiff * channelWeights
// normalizedWeightedAxis = weightedEPDiff / len(weightedEPDiff)
// normalizedIndex = dot(pxDiff * channelWeights, normalizedWeightedAxis) / len(weightedEPDiff)
// index = normalizedIndex * maxValue
//
// Equivalent to:
// axis = channelWeights * maxValue * epDiff * channelWeights / lenSquared(epDiff * channelWeights)
// index = dot(axis, pxDiff)
for (int ep = 0; ep < 2; ep++)
for (int ch = 0; ch < TVectorSize; ch++)
m_endPoint[ep][ch] = ParallelMath::LosslessCast<MAInt16>::Cast(interpolationEndPoints[ep][ch]);
m_range = range;
m_maxValue = static_cast<float>(range - 1);
MFloat epDiffWeighted[TVectorSize];
for (int ch = 0; ch < TVectorSize; ch++)
{
m_origin[ch] = ParallelMath::ToFloat(colorSpaceEndpoints[0][ch]);
MFloat opposingOriginCh = ParallelMath::ToFloat(colorSpaceEndpoints[1][ch]);
epDiffWeighted[ch] = (opposingOriginCh - m_origin[ch]) * channelWeights[ch];
}
MFloat lenSquared = epDiffWeighted[0] * epDiffWeighted[0];
for (int ch = 1; ch < TVectorSize; ch++)
lenSquared = lenSquared + epDiffWeighted[ch] * epDiffWeighted[ch];
ParallelMath::MakeSafeDenominator(lenSquared);
MFloat maxValueDividedByLengthSquared = ParallelMath::MakeFloat(m_maxValue) / lenSquared;
for (int ch = 0; ch < TVectorSize; ch++)
m_axis[ch] = epDiffWeighted[ch] * channelWeights[ch] * maxValueDividedByLengthSquared;
}
template<bool TSigned>
void Init(const float channelWeights[TVectorSize], const MUInt15 endPoints[2][TVectorSize], int range)
{
MAInt16 converted[2][TVectorSize];
for (int epi = 0; epi < 2; epi++)
for (int ch = 0; ch < TVectorSize; ch++)
converted[epi][ch] = ParallelMath::LosslessCast<MAInt16>::Cast(endPoints[epi][ch]);
Init<MUInt15, MUInt15>(channelWeights, endPoints, endPoints, range);
}
void ReconstructLDR_BC7(const MUInt15 &index, MUInt15* pixel, int numRealChannels)
{
MUInt15 weight = ParallelMath::LosslessCast<MUInt15>::Cast(ParallelMath::RightShift(ParallelMath::CompactMultiply(g_weightReciprocals[m_range], index) + 256, 9));
for (int ch = 0; ch < numRealChannels; ch++)
{
MUInt15 ep0f = ParallelMath::LosslessCast<MUInt15>::Cast(ParallelMath::CompactMultiply((ParallelMath::MakeUInt15(64) - weight), ParallelMath::LosslessCast<MUInt15>::Cast(m_endPoint[0][ch])));
MUInt15 ep1f = ParallelMath::LosslessCast<MUInt15>::Cast(ParallelMath::CompactMultiply(weight, ParallelMath::LosslessCast<MUInt15>::Cast(m_endPoint[1][ch])));
pixel[ch] = ParallelMath::LosslessCast<MUInt15>::Cast(ParallelMath::RightShift(ep0f + ep1f + ParallelMath::MakeUInt15(32), 6));
}
}
void ReconstructLDRPrecise(const MUInt15 &index, MUInt15* pixel, int numRealChannels)
{
MUInt15 weight = ParallelMath::LosslessCast<MUInt15>::Cast(ParallelMath::RightShift(ParallelMath::CompactMultiply(g_weightReciprocals[m_range], index) + 64, 7));
for (int ch = 0; ch < numRealChannels; ch++)
{
MUInt15 ep0f = ParallelMath::LosslessCast<MUInt15>::Cast(ParallelMath::CompactMultiply((ParallelMath::MakeUInt15(256) - weight), ParallelMath::LosslessCast<MUInt15>::Cast(m_endPoint[0][ch])));
MUInt15 ep1f = ParallelMath::LosslessCast<MUInt15>::Cast(ParallelMath::CompactMultiply(weight, ParallelMath::LosslessCast<MUInt15>::Cast(m_endPoint[1][ch])));
pixel[ch] = ParallelMath::LosslessCast<MUInt15>::Cast(ParallelMath::RightShift(ep0f + ep1f + ParallelMath::MakeUInt15(128), 8));
}
}
void ReconstructLDR_BC7(const MUInt15 &index, MUInt15* pixel)
{
ReconstructLDR_BC7(index, pixel, TVectorSize);
}
void ReconstructLDRPrecise(const MUInt15 &index, MUInt15* pixel)
{
ReconstructLDRPrecise(index, pixel, TVectorSize);
}
MUInt15 SelectIndexLDR(const MFloat* pixel, const ParallelMath::RoundTowardNearestForScope* rtn) const
{
MFloat dist = (pixel[0] - m_origin[0]) * m_axis[0];
for (int ch = 1; ch < TVectorSize; ch++)
dist = dist + (pixel[ch] - m_origin[ch]) * m_axis[ch];
return ParallelMath::RoundAndConvertToU15(ParallelMath::Clamp(dist, 0.0f, m_maxValue), rtn);
}
protected:
MAInt16 m_endPoint[2][TVectorSize];
private:
MFloat m_origin[TVectorSize];
MFloat m_axis[TVectorSize];
int m_range;
float m_maxValue;
bool m_isUniform;
};
}
}
#endif