godot/thirdparty/openssl/crypto/x509v3/v3_addr.c

1351 lines
42 KiB
C
Raw Normal View History

/*
* Contributed to the OpenSSL Project by the American Registry for
* Internet Numbers ("ARIN").
*/
/* ====================================================================
* Copyright (c) 2006 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
2016-04-10 13:18:59 +00:00
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* licensing@OpenSSL.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*/
/*
* Implementation of RFC 3779 section 2.2.
*/
#include <stdio.h>
#include <stdlib.h>
#include "cryptlib.h"
#include <openssl/conf.h>
#include <openssl/asn1.h>
#include <openssl/asn1t.h>
#include <openssl/buffer.h>
#include <openssl/x509v3.h>
#ifndef OPENSSL_NO_RFC3779
/*
* OpenSSL ASN.1 template translation of RFC 3779 2.2.3.
*/
ASN1_SEQUENCE(IPAddressRange) = {
ASN1_SIMPLE(IPAddressRange, min, ASN1_BIT_STRING),
ASN1_SIMPLE(IPAddressRange, max, ASN1_BIT_STRING)
} ASN1_SEQUENCE_END(IPAddressRange)
ASN1_CHOICE(IPAddressOrRange) = {
ASN1_SIMPLE(IPAddressOrRange, u.addressPrefix, ASN1_BIT_STRING),
ASN1_SIMPLE(IPAddressOrRange, u.addressRange, IPAddressRange)
} ASN1_CHOICE_END(IPAddressOrRange)
ASN1_CHOICE(IPAddressChoice) = {
ASN1_SIMPLE(IPAddressChoice, u.inherit, ASN1_NULL),
ASN1_SEQUENCE_OF(IPAddressChoice, u.addressesOrRanges, IPAddressOrRange)
} ASN1_CHOICE_END(IPAddressChoice)
ASN1_SEQUENCE(IPAddressFamily) = {
ASN1_SIMPLE(IPAddressFamily, addressFamily, ASN1_OCTET_STRING),
ASN1_SIMPLE(IPAddressFamily, ipAddressChoice, IPAddressChoice)
} ASN1_SEQUENCE_END(IPAddressFamily)
2016-04-10 13:18:59 +00:00
ASN1_ITEM_TEMPLATE(IPAddrBlocks) =
ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0,
2016-04-10 13:18:59 +00:00
IPAddrBlocks, IPAddressFamily)
ASN1_ITEM_TEMPLATE_END(IPAddrBlocks)
IMPLEMENT_ASN1_FUNCTIONS(IPAddressRange)
IMPLEMENT_ASN1_FUNCTIONS(IPAddressOrRange)
IMPLEMENT_ASN1_FUNCTIONS(IPAddressChoice)
IMPLEMENT_ASN1_FUNCTIONS(IPAddressFamily)
/*
* How much buffer space do we need for a raw address?
*/
2016-04-10 13:18:59 +00:00
# define ADDR_RAW_BUF_LEN 16
/*
* What's the address length associated with this AFI?
*/
static int length_from_afi(const unsigned afi)
{
2016-04-10 13:18:59 +00:00
switch (afi) {
case IANA_AFI_IPV4:
return 4;
case IANA_AFI_IPV6:
return 16;
default:
return 0;
}
}
/*
* Extract the AFI from an IPAddressFamily.
*/
unsigned int v3_addr_get_afi(const IPAddressFamily *f)
{
2016-04-10 13:18:59 +00:00
return ((f != NULL &&
f->addressFamily != NULL && f->addressFamily->data != NULL)
? ((f->addressFamily->data[0] << 8) | (f->addressFamily->data[1]))
: 0);
}
/*
* Expand the bitstring form of an address into a raw byte array.
* At the moment this is coded for simplicity, not speed.
*/
static int addr_expand(unsigned char *addr,
2016-04-10 13:18:59 +00:00
const ASN1_BIT_STRING *bs,
const int length, const unsigned char fill)
{
2016-04-10 13:18:59 +00:00
if (bs->length < 0 || bs->length > length)
return 0;
if (bs->length > 0) {
memcpy(addr, bs->data, bs->length);
if ((bs->flags & 7) != 0) {
unsigned char mask = 0xFF >> (8 - (bs->flags & 7));
if (fill == 0)
addr[bs->length - 1] &= ~mask;
else
addr[bs->length - 1] |= mask;
}
}
2016-04-10 13:18:59 +00:00
memset(addr + bs->length, fill, length - bs->length);
return 1;
}
/*
* Extract the prefix length from a bitstring.
*/
2016-04-10 13:18:59 +00:00
# define addr_prefixlen(bs) ((int) ((bs)->length * 8 - ((bs)->flags & 7)))
/*
* i2r handler for one address bitstring.
*/
static int i2r_address(BIO *out,
2016-04-10 13:18:59 +00:00
const unsigned afi,
const unsigned char fill, const ASN1_BIT_STRING *bs)
{
2016-04-10 13:18:59 +00:00
unsigned char addr[ADDR_RAW_BUF_LEN];
int i, n;
2016-04-10 13:18:59 +00:00
if (bs->length < 0)
return 0;
switch (afi) {
case IANA_AFI_IPV4:
if (!addr_expand(addr, bs, 4, fill))
return 0;
BIO_printf(out, "%d.%d.%d.%d", addr[0], addr[1], addr[2], addr[3]);
break;
case IANA_AFI_IPV6:
if (!addr_expand(addr, bs, 16, fill))
return 0;
for (n = 16; n > 1 && addr[n - 1] == 0x00 && addr[n - 2] == 0x00;
n -= 2) ;
for (i = 0; i < n; i += 2)
BIO_printf(out, "%x%s", (addr[i] << 8) | addr[i + 1],
(i < 14 ? ":" : ""));
if (i < 16)
BIO_puts(out, ":");
if (i == 0)
BIO_puts(out, ":");
break;
default:
for (i = 0; i < bs->length; i++)
BIO_printf(out, "%s%02x", (i > 0 ? ":" : ""), bs->data[i]);
BIO_printf(out, "[%d]", (int)(bs->flags & 7));
break;
}
return 1;
}
/*
* i2r handler for a sequence of addresses and ranges.
*/
static int i2r_IPAddressOrRanges(BIO *out,
2016-04-10 13:18:59 +00:00
const int indent,
const IPAddressOrRanges *aors,
const unsigned afi)
{
2016-04-10 13:18:59 +00:00
int i;
for (i = 0; i < sk_IPAddressOrRange_num(aors); i++) {
const IPAddressOrRange *aor = sk_IPAddressOrRange_value(aors, i);
BIO_printf(out, "%*s", indent, "");
switch (aor->type) {
case IPAddressOrRange_addressPrefix:
if (!i2r_address(out, afi, 0x00, aor->u.addressPrefix))
return 0;
BIO_printf(out, "/%d\n", addr_prefixlen(aor->u.addressPrefix));
continue;
case IPAddressOrRange_addressRange:
if (!i2r_address(out, afi, 0x00, aor->u.addressRange->min))
return 0;
BIO_puts(out, "-");
if (!i2r_address(out, afi, 0xFF, aor->u.addressRange->max))
return 0;
BIO_puts(out, "\n");
continue;
}
}
2016-04-10 13:18:59 +00:00
return 1;
}
/*
* i2r handler for an IPAddrBlocks extension.
*/
static int i2r_IPAddrBlocks(const X509V3_EXT_METHOD *method,
2016-04-10 13:18:59 +00:00
void *ext, BIO *out, int indent)
{
2016-04-10 13:18:59 +00:00
const IPAddrBlocks *addr = ext;
int i;
for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
const unsigned int afi = v3_addr_get_afi(f);
switch (afi) {
case IANA_AFI_IPV4:
BIO_printf(out, "%*sIPv4", indent, "");
break;
case IANA_AFI_IPV6:
BIO_printf(out, "%*sIPv6", indent, "");
break;
default:
BIO_printf(out, "%*sUnknown AFI %u", indent, "", afi);
break;
}
if (f->addressFamily->length > 2) {
switch (f->addressFamily->data[2]) {
case 1:
BIO_puts(out, " (Unicast)");
break;
case 2:
BIO_puts(out, " (Multicast)");
break;
case 3:
BIO_puts(out, " (Unicast/Multicast)");
break;
case 4:
BIO_puts(out, " (MPLS)");
break;
case 64:
BIO_puts(out, " (Tunnel)");
break;
case 65:
BIO_puts(out, " (VPLS)");
break;
case 66:
BIO_puts(out, " (BGP MDT)");
break;
case 128:
BIO_puts(out, " (MPLS-labeled VPN)");
break;
default:
BIO_printf(out, " (Unknown SAFI %u)",
(unsigned)f->addressFamily->data[2]);
break;
}
}
switch (f->ipAddressChoice->type) {
case IPAddressChoice_inherit:
BIO_puts(out, ": inherit\n");
break;
case IPAddressChoice_addressesOrRanges:
BIO_puts(out, ":\n");
if (!i2r_IPAddressOrRanges(out,
indent + 2,
f->ipAddressChoice->
u.addressesOrRanges, afi))
return 0;
break;
}
}
2016-04-10 13:18:59 +00:00
return 1;
}
/*
* Sort comparison function for a sequence of IPAddressOrRange
* elements.
*
* There's no sane answer we can give if addr_expand() fails, and an
* assertion failure on externally supplied data is seriously uncool,
* so we just arbitrarily declare that if given invalid inputs this
* function returns -1. If this messes up your preferred sort order
* for garbage input, tough noogies.
*/
static int IPAddressOrRange_cmp(const IPAddressOrRange *a,
2016-04-10 13:18:59 +00:00
const IPAddressOrRange *b, const int length)
{
2016-04-10 13:18:59 +00:00
unsigned char addr_a[ADDR_RAW_BUF_LEN], addr_b[ADDR_RAW_BUF_LEN];
int prefixlen_a = 0, prefixlen_b = 0;
int r;
switch (a->type) {
case IPAddressOrRange_addressPrefix:
if (!addr_expand(addr_a, a->u.addressPrefix, length, 0x00))
return -1;
prefixlen_a = addr_prefixlen(a->u.addressPrefix);
break;
case IPAddressOrRange_addressRange:
if (!addr_expand(addr_a, a->u.addressRange->min, length, 0x00))
return -1;
prefixlen_a = length * 8;
break;
}
switch (b->type) {
case IPAddressOrRange_addressPrefix:
if (!addr_expand(addr_b, b->u.addressPrefix, length, 0x00))
return -1;
prefixlen_b = addr_prefixlen(b->u.addressPrefix);
break;
case IPAddressOrRange_addressRange:
if (!addr_expand(addr_b, b->u.addressRange->min, length, 0x00))
return -1;
prefixlen_b = length * 8;
break;
}
if ((r = memcmp(addr_a, addr_b, length)) != 0)
return r;
else
return prefixlen_a - prefixlen_b;
}
/*
* IPv4-specific closure over IPAddressOrRange_cmp, since sk_sort()
* comparision routines are only allowed two arguments.
*/
2016-04-10 13:18:59 +00:00
static int v4IPAddressOrRange_cmp(const IPAddressOrRange *const *a,
const IPAddressOrRange *const *b)
{
2016-04-10 13:18:59 +00:00
return IPAddressOrRange_cmp(*a, *b, 4);
}
/*
* IPv6-specific closure over IPAddressOrRange_cmp, since sk_sort()
* comparision routines are only allowed two arguments.
*/
2016-04-10 13:18:59 +00:00
static int v6IPAddressOrRange_cmp(const IPAddressOrRange *const *a,
const IPAddressOrRange *const *b)
{
2016-04-10 13:18:59 +00:00
return IPAddressOrRange_cmp(*a, *b, 16);
}
/*
* Calculate whether a range collapses to a prefix.
* See last paragraph of RFC 3779 2.2.3.7.
*/
static int range_should_be_prefix(const unsigned char *min,
2016-04-10 13:18:59 +00:00
const unsigned char *max, const int length)
{
2016-04-10 13:18:59 +00:00
unsigned char mask;
int i, j;
OPENSSL_assert(memcmp(min, max, length) <= 0);
for (i = 0; i < length && min[i] == max[i]; i++) ;
for (j = length - 1; j >= 0 && min[j] == 0x00 && max[j] == 0xFF; j--) ;
if (i < j)
return -1;
if (i > j)
return i * 8;
mask = min[i] ^ max[i];
switch (mask) {
case 0x01:
j = 7;
break;
case 0x03:
j = 6;
break;
case 0x07:
j = 5;
break;
case 0x0F:
j = 4;
break;
case 0x1F:
j = 3;
break;
case 0x3F:
j = 2;
break;
case 0x7F:
j = 1;
break;
default:
return -1;
}
if ((min[i] & mask) != 0 || (max[i] & mask) != mask)
return -1;
else
return i * 8 + j;
}
/*
* Construct a prefix.
*/
static int make_addressPrefix(IPAddressOrRange **result,
2016-04-10 13:18:59 +00:00
unsigned char *addr, const int prefixlen)
{
2016-04-10 13:18:59 +00:00
int bytelen = (prefixlen + 7) / 8, bitlen = prefixlen % 8;
IPAddressOrRange *aor = IPAddressOrRange_new();
if (aor == NULL)
return 0;
aor->type = IPAddressOrRange_addressPrefix;
if (aor->u.addressPrefix == NULL &&
(aor->u.addressPrefix = ASN1_BIT_STRING_new()) == NULL)
goto err;
if (!ASN1_BIT_STRING_set(aor->u.addressPrefix, addr, bytelen))
goto err;
aor->u.addressPrefix->flags &= ~7;
aor->u.addressPrefix->flags |= ASN1_STRING_FLAG_BITS_LEFT;
if (bitlen > 0) {
aor->u.addressPrefix->data[bytelen - 1] &= ~(0xFF >> bitlen);
aor->u.addressPrefix->flags |= 8 - bitlen;
}
2016-04-10 13:18:59 +00:00
*result = aor;
return 1;
err:
2016-04-10 13:18:59 +00:00
IPAddressOrRange_free(aor);
return 0;
}
/*
* Construct a range. If it can be expressed as a prefix,
* return a prefix instead. Doing this here simplifies
* the rest of the code considerably.
*/
static int make_addressRange(IPAddressOrRange **result,
2016-04-10 13:18:59 +00:00
unsigned char *min,
unsigned char *max, const int length)
{
2016-04-10 13:18:59 +00:00
IPAddressOrRange *aor;
int i, prefixlen;
if ((prefixlen = range_should_be_prefix(min, max, length)) >= 0)
return make_addressPrefix(result, min, prefixlen);
if ((aor = IPAddressOrRange_new()) == NULL)
return 0;
aor->type = IPAddressOrRange_addressRange;
OPENSSL_assert(aor->u.addressRange == NULL);
if ((aor->u.addressRange = IPAddressRange_new()) == NULL)
goto err;
if (aor->u.addressRange->min == NULL &&
(aor->u.addressRange->min = ASN1_BIT_STRING_new()) == NULL)
goto err;
if (aor->u.addressRange->max == NULL &&
(aor->u.addressRange->max = ASN1_BIT_STRING_new()) == NULL)
goto err;
for (i = length; i > 0 && min[i - 1] == 0x00; --i) ;
if (!ASN1_BIT_STRING_set(aor->u.addressRange->min, min, i))
goto err;
aor->u.addressRange->min->flags &= ~7;
aor->u.addressRange->min->flags |= ASN1_STRING_FLAG_BITS_LEFT;
if (i > 0) {
unsigned char b = min[i - 1];
int j = 1;
while ((b & (0xFFU >> j)) != 0)
++j;
aor->u.addressRange->min->flags |= 8 - j;
}
2016-04-10 13:18:59 +00:00
for (i = length; i > 0 && max[i - 1] == 0xFF; --i) ;
if (!ASN1_BIT_STRING_set(aor->u.addressRange->max, max, i))
goto err;
aor->u.addressRange->max->flags &= ~7;
aor->u.addressRange->max->flags |= ASN1_STRING_FLAG_BITS_LEFT;
if (i > 0) {
unsigned char b = max[i - 1];
int j = 1;
while ((b & (0xFFU >> j)) != (0xFFU >> j))
++j;
aor->u.addressRange->max->flags |= 8 - j;
}
2016-04-10 13:18:59 +00:00
*result = aor;
return 1;
err:
2016-04-10 13:18:59 +00:00
IPAddressOrRange_free(aor);
return 0;
}
/*
* Construct a new address family or find an existing one.
*/
static IPAddressFamily *make_IPAddressFamily(IPAddrBlocks *addr,
2016-04-10 13:18:59 +00:00
const unsigned afi,
const unsigned *safi)
{
2016-04-10 13:18:59 +00:00
IPAddressFamily *f;
unsigned char key[3];
unsigned keylen;
int i;
key[0] = (afi >> 8) & 0xFF;
key[1] = afi & 0xFF;
if (safi != NULL) {
key[2] = *safi & 0xFF;
keylen = 3;
} else {
keylen = 2;
}
for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
f = sk_IPAddressFamily_value(addr, i);
OPENSSL_assert(f->addressFamily->data != NULL);
if (f->addressFamily->length == keylen &&
!memcmp(f->addressFamily->data, key, keylen))
return f;
}
if ((f = IPAddressFamily_new()) == NULL)
goto err;
if (f->ipAddressChoice == NULL &&
(f->ipAddressChoice = IPAddressChoice_new()) == NULL)
goto err;
if (f->addressFamily == NULL &&
(f->addressFamily = ASN1_OCTET_STRING_new()) == NULL)
goto err;
if (!ASN1_OCTET_STRING_set(f->addressFamily, key, keylen))
goto err;
if (!sk_IPAddressFamily_push(addr, f))
goto err;
return f;
err:
2016-04-10 13:18:59 +00:00
IPAddressFamily_free(f);
return NULL;
}
/*
* Add an inheritance element.
*/
int v3_addr_add_inherit(IPAddrBlocks *addr,
2016-04-10 13:18:59 +00:00
const unsigned afi, const unsigned *safi)
{
2016-04-10 13:18:59 +00:00
IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi);
if (f == NULL ||
f->ipAddressChoice == NULL ||
(f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges &&
f->ipAddressChoice->u.addressesOrRanges != NULL))
return 0;
if (f->ipAddressChoice->type == IPAddressChoice_inherit &&
f->ipAddressChoice->u.inherit != NULL)
return 1;
if (f->ipAddressChoice->u.inherit == NULL &&
(f->ipAddressChoice->u.inherit = ASN1_NULL_new()) == NULL)
return 0;
f->ipAddressChoice->type = IPAddressChoice_inherit;
return 1;
}
/*
* Construct an IPAddressOrRange sequence, or return an existing one.
*/
static IPAddressOrRanges *make_prefix_or_range(IPAddrBlocks *addr,
2016-04-10 13:18:59 +00:00
const unsigned afi,
const unsigned *safi)
{
2016-04-10 13:18:59 +00:00
IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi);
IPAddressOrRanges *aors = NULL;
if (f == NULL ||
f->ipAddressChoice == NULL ||
(f->ipAddressChoice->type == IPAddressChoice_inherit &&
f->ipAddressChoice->u.inherit != NULL))
return NULL;
if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges)
aors = f->ipAddressChoice->u.addressesOrRanges;
if (aors != NULL)
return aors;
if ((aors = sk_IPAddressOrRange_new_null()) == NULL)
return NULL;
switch (afi) {
case IANA_AFI_IPV4:
(void)sk_IPAddressOrRange_set_cmp_func(aors, v4IPAddressOrRange_cmp);
break;
case IANA_AFI_IPV6:
(void)sk_IPAddressOrRange_set_cmp_func(aors, v6IPAddressOrRange_cmp);
break;
}
f->ipAddressChoice->type = IPAddressChoice_addressesOrRanges;
f->ipAddressChoice->u.addressesOrRanges = aors;
return aors;
}
/*
* Add a prefix.
*/
int v3_addr_add_prefix(IPAddrBlocks *addr,
2016-04-10 13:18:59 +00:00
const unsigned afi,
const unsigned *safi,
unsigned char *a, const int prefixlen)
{
2016-04-10 13:18:59 +00:00
IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi);
IPAddressOrRange *aor;
if (aors == NULL || !make_addressPrefix(&aor, a, prefixlen))
return 0;
if (sk_IPAddressOrRange_push(aors, aor))
return 1;
IPAddressOrRange_free(aor);
return 0;
}
/*
* Add a range.
*/
int v3_addr_add_range(IPAddrBlocks *addr,
2016-04-10 13:18:59 +00:00
const unsigned afi,
const unsigned *safi,
unsigned char *min, unsigned char *max)
{
2016-04-10 13:18:59 +00:00
IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi);
IPAddressOrRange *aor;
int length = length_from_afi(afi);
if (aors == NULL)
return 0;
if (!make_addressRange(&aor, min, max, length))
return 0;
if (sk_IPAddressOrRange_push(aors, aor))
return 1;
IPAddressOrRange_free(aor);
return 0;
}
/*
* Extract min and max values from an IPAddressOrRange.
*/
static int extract_min_max(IPAddressOrRange *aor,
2016-04-10 13:18:59 +00:00
unsigned char *min, unsigned char *max, int length)
{
2016-04-10 13:18:59 +00:00
if (aor == NULL || min == NULL || max == NULL)
return 0;
switch (aor->type) {
case IPAddressOrRange_addressPrefix:
return (addr_expand(min, aor->u.addressPrefix, length, 0x00) &&
addr_expand(max, aor->u.addressPrefix, length, 0xFF));
case IPAddressOrRange_addressRange:
return (addr_expand(min, aor->u.addressRange->min, length, 0x00) &&
addr_expand(max, aor->u.addressRange->max, length, 0xFF));
}
return 0;
}
/*
* Public wrapper for extract_min_max().
*/
int v3_addr_get_range(IPAddressOrRange *aor,
2016-04-10 13:18:59 +00:00
const unsigned afi,
unsigned char *min,
unsigned char *max, const int length)
{
2016-04-10 13:18:59 +00:00
int afi_length = length_from_afi(afi);
if (aor == NULL || min == NULL || max == NULL ||
afi_length == 0 || length < afi_length ||
(aor->type != IPAddressOrRange_addressPrefix &&
aor->type != IPAddressOrRange_addressRange) ||
!extract_min_max(aor, min, max, afi_length))
return 0;
return afi_length;
}
/*
* Sort comparision function for a sequence of IPAddressFamily.
*
* The last paragraph of RFC 3779 2.2.3.3 is slightly ambiguous about
* the ordering: I can read it as meaning that IPv6 without a SAFI
* comes before IPv4 with a SAFI, which seems pretty weird. The
* examples in appendix B suggest that the author intended the
* null-SAFI rule to apply only within a single AFI, which is what I
* would have expected and is what the following code implements.
*/
2016-04-10 13:18:59 +00:00
static int IPAddressFamily_cmp(const IPAddressFamily *const *a_,
const IPAddressFamily *const *b_)
{
2016-04-10 13:18:59 +00:00
const ASN1_OCTET_STRING *a = (*a_)->addressFamily;
const ASN1_OCTET_STRING *b = (*b_)->addressFamily;
int len = ((a->length <= b->length) ? a->length : b->length);
int cmp = memcmp(a->data, b->data, len);
return cmp ? cmp : a->length - b->length;
}
/*
* Check whether an IPAddrBLocks is in canonical form.
*/
int v3_addr_is_canonical(IPAddrBlocks *addr)
{
2016-04-10 13:18:59 +00:00
unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN];
IPAddressOrRanges *aors;
int i, j, k;
/*
2016-04-10 13:18:59 +00:00
* Empty extension is cannonical.
*/
2016-04-10 13:18:59 +00:00
if (addr == NULL)
return 1;
/*
2016-04-10 13:18:59 +00:00
* Check whether the top-level list is in order.
*/
2016-04-10 13:18:59 +00:00
for (i = 0; i < sk_IPAddressFamily_num(addr) - 1; i++) {
const IPAddressFamily *a = sk_IPAddressFamily_value(addr, i);
const IPAddressFamily *b = sk_IPAddressFamily_value(addr, i + 1);
if (IPAddressFamily_cmp(&a, &b) >= 0)
return 0;
}
/*
2016-04-10 13:18:59 +00:00
* Top level's ok, now check each address family.
*/
2016-04-10 13:18:59 +00:00
for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
int length = length_from_afi(v3_addr_get_afi(f));
/*
* Inheritance is canonical. Anything other than inheritance or
* a SEQUENCE OF IPAddressOrRange is an ASN.1 error or something.
*/
if (f == NULL || f->ipAddressChoice == NULL)
return 0;
switch (f->ipAddressChoice->type) {
case IPAddressChoice_inherit:
continue;
case IPAddressChoice_addressesOrRanges:
break;
default:
return 0;
}
/*
* It's an IPAddressOrRanges sequence, check it.
*/
aors = f->ipAddressChoice->u.addressesOrRanges;
if (sk_IPAddressOrRange_num(aors) == 0)
return 0;
for (j = 0; j < sk_IPAddressOrRange_num(aors) - 1; j++) {
IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, j + 1);
if (!extract_min_max(a, a_min, a_max, length) ||
!extract_min_max(b, b_min, b_max, length))
return 0;
/*
* Punt misordered list, overlapping start, or inverted range.
*/
if (memcmp(a_min, b_min, length) >= 0 ||
memcmp(a_min, a_max, length) > 0 ||
memcmp(b_min, b_max, length) > 0)
return 0;
/*
* Punt if adjacent or overlapping. Check for adjacency by
* subtracting one from b_min first.
*/
for (k = length - 1; k >= 0 && b_min[k]-- == 0x00; k--) ;
if (memcmp(a_max, b_min, length) >= 0)
return 0;
/*
* Check for range that should be expressed as a prefix.
*/
if (a->type == IPAddressOrRange_addressRange &&
range_should_be_prefix(a_min, a_max, length) >= 0)
return 0;
}
/*
* Check range to see if it's inverted or should be a
* prefix.
*/
j = sk_IPAddressOrRange_num(aors) - 1;
{
IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
if (a != NULL && a->type == IPAddressOrRange_addressRange) {
if (!extract_min_max(a, a_min, a_max, length))
return 0;
if (memcmp(a_min, a_max, length) > 0 ||
range_should_be_prefix(a_min, a_max, length) >= 0)
return 0;
}
}
}
2016-04-10 13:18:59 +00:00
/*
* If we made it through all that, we're happy.
*/
return 1;
}
/*
* Whack an IPAddressOrRanges into canonical form.
*/
static int IPAddressOrRanges_canonize(IPAddressOrRanges *aors,
2016-04-10 13:18:59 +00:00
const unsigned afi)
{
2016-04-10 13:18:59 +00:00
int i, j, length = length_from_afi(afi);
/*
2016-04-10 13:18:59 +00:00
* Sort the IPAddressOrRanges sequence.
*/
2016-04-10 13:18:59 +00:00
sk_IPAddressOrRange_sort(aors);
/*
2016-04-10 13:18:59 +00:00
* Clean up representation issues, punt on duplicates or overlaps.
*/
2016-04-10 13:18:59 +00:00
for (i = 0; i < sk_IPAddressOrRange_num(aors) - 1; i++) {
IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, i);
IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, i + 1);
unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN];
if (!extract_min_max(a, a_min, a_max, length) ||
!extract_min_max(b, b_min, b_max, length))
return 0;
/*
* Punt inverted ranges.
*/
if (memcmp(a_min, a_max, length) > 0 ||
memcmp(b_min, b_max, length) > 0)
return 0;
/*
* Punt overlaps.
*/
if (memcmp(a_max, b_min, length) >= 0)
return 0;
/*
* Merge if a and b are adjacent. We check for
* adjacency by subtracting one from b_min first.
*/
for (j = length - 1; j >= 0 && b_min[j]-- == 0x00; j--) ;
if (memcmp(a_max, b_min, length) == 0) {
IPAddressOrRange *merged;
if (!make_addressRange(&merged, a_min, b_max, length))
return 0;
(void)sk_IPAddressOrRange_set(aors, i, merged);
(void)sk_IPAddressOrRange_delete(aors, i + 1);
IPAddressOrRange_free(a);
IPAddressOrRange_free(b);
--i;
continue;
}
}
/*
2016-04-10 13:18:59 +00:00
* Check for inverted final range.
*/
2016-04-10 13:18:59 +00:00
j = sk_IPAddressOrRange_num(aors) - 1;
{
IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
if (a != NULL && a->type == IPAddressOrRange_addressRange) {
unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
extract_min_max(a, a_min, a_max, length);
if (memcmp(a_min, a_max, length) > 0)
return 0;
}
}
2016-04-10 13:18:59 +00:00
return 1;
}
/*
* Whack an IPAddrBlocks extension into canonical form.
*/
int v3_addr_canonize(IPAddrBlocks *addr)
{
2016-04-10 13:18:59 +00:00
int i;
for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges &&
!IPAddressOrRanges_canonize(f->ipAddressChoice->
u.addressesOrRanges,
v3_addr_get_afi(f)))
return 0;
}
(void)sk_IPAddressFamily_set_cmp_func(addr, IPAddressFamily_cmp);
sk_IPAddressFamily_sort(addr);
OPENSSL_assert(v3_addr_is_canonical(addr));
return 1;
}
/*
* v2i handler for the IPAddrBlocks extension.
*/
static void *v2i_IPAddrBlocks(const struct v3_ext_method *method,
2016-04-10 13:18:59 +00:00
struct v3_ext_ctx *ctx,
STACK_OF(CONF_VALUE) *values)
{
2016-04-10 13:18:59 +00:00
static const char v4addr_chars[] = "0123456789.";
static const char v6addr_chars[] = "0123456789.:abcdefABCDEF";
IPAddrBlocks *addr = NULL;
char *s = NULL, *t;
int i;
if ((addr = sk_IPAddressFamily_new(IPAddressFamily_cmp)) == NULL) {
X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
return NULL;
}
2016-04-10 13:18:59 +00:00
for (i = 0; i < sk_CONF_VALUE_num(values); i++) {
CONF_VALUE *val = sk_CONF_VALUE_value(values, i);
unsigned char min[ADDR_RAW_BUF_LEN], max[ADDR_RAW_BUF_LEN];
unsigned afi, *safi = NULL, safi_;
const char *addr_chars;
int prefixlen, i1, i2, delim, length;
if (!name_cmp(val->name, "IPv4")) {
afi = IANA_AFI_IPV4;
} else if (!name_cmp(val->name, "IPv6")) {
afi = IANA_AFI_IPV6;
} else if (!name_cmp(val->name, "IPv4-SAFI")) {
afi = IANA_AFI_IPV4;
safi = &safi_;
} else if (!name_cmp(val->name, "IPv6-SAFI")) {
afi = IANA_AFI_IPV6;
safi = &safi_;
} else {
X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
X509V3_R_EXTENSION_NAME_ERROR);
X509V3_conf_err(val);
goto err;
}
switch (afi) {
case IANA_AFI_IPV4:
addr_chars = v4addr_chars;
break;
case IANA_AFI_IPV6:
addr_chars = v6addr_chars;
break;
}
length = length_from_afi(afi);
/*
* Handle SAFI, if any, and BUF_strdup() so we can null-terminate
* the other input values.
*/
if (safi != NULL) {
*safi = strtoul(val->value, &t, 0);
t += strspn(t, " \t");
if (*safi > 0xFF || *t++ != ':') {
X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_SAFI);
X509V3_conf_err(val);
goto err;
}
t += strspn(t, " \t");
s = BUF_strdup(t);
} else {
s = BUF_strdup(val->value);
}
if (s == NULL) {
X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
goto err;
}
/*
* Check for inheritance. Not worth additional complexity to
* optimize this (seldom-used) case.
*/
if (!strcmp(s, "inherit")) {
if (!v3_addr_add_inherit(addr, afi, safi)) {
X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
X509V3_R_INVALID_INHERITANCE);
X509V3_conf_err(val);
goto err;
}
OPENSSL_free(s);
s = NULL;
continue;
}
i1 = strspn(s, addr_chars);
i2 = i1 + strspn(s + i1, " \t");
delim = s[i2++];
s[i1] = '\0';
if (a2i_ipadd(min, s) != length) {
X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_IPADDRESS);
X509V3_conf_err(val);
goto err;
}
switch (delim) {
case '/':
prefixlen = (int)strtoul(s + i2, &t, 10);
if (t == s + i2 || *t != '\0') {
X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
X509V3_R_EXTENSION_VALUE_ERROR);
X509V3_conf_err(val);
goto err;
}
if (!v3_addr_add_prefix(addr, afi, safi, min, prefixlen)) {
X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
goto err;
}
break;
case '-':
i1 = i2 + strspn(s + i2, " \t");
i2 = i1 + strspn(s + i1, addr_chars);
if (i1 == i2 || s[i2] != '\0') {
X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
X509V3_R_EXTENSION_VALUE_ERROR);
X509V3_conf_err(val);
goto err;
}
if (a2i_ipadd(max, s + i1) != length) {
X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
X509V3_R_INVALID_IPADDRESS);
X509V3_conf_err(val);
goto err;
}
if (memcmp(min, max, length_from_afi(afi)) > 0) {
X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
X509V3_R_EXTENSION_VALUE_ERROR);
X509V3_conf_err(val);
goto err;
}
if (!v3_addr_add_range(addr, afi, safi, min, max)) {
X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
goto err;
}
break;
case '\0':
if (!v3_addr_add_prefix(addr, afi, safi, min, length * 8)) {
X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
goto err;
}
break;
default:
X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
X509V3_R_EXTENSION_VALUE_ERROR);
X509V3_conf_err(val);
goto err;
}
OPENSSL_free(s);
s = NULL;
}
/*
2016-04-10 13:18:59 +00:00
* Canonize the result, then we're done.
*/
2016-04-10 13:18:59 +00:00
if (!v3_addr_canonize(addr))
goto err;
return addr;
err:
2016-04-10 13:18:59 +00:00
OPENSSL_free(s);
sk_IPAddressFamily_pop_free(addr, IPAddressFamily_free);
return NULL;
}
/*
* OpenSSL dispatch
*/
const X509V3_EXT_METHOD v3_addr = {
2016-04-10 13:18:59 +00:00
NID_sbgp_ipAddrBlock, /* nid */
0, /* flags */
ASN1_ITEM_ref(IPAddrBlocks), /* template */
0, 0, 0, 0, /* old functions, ignored */
0, /* i2s */
0, /* s2i */
0, /* i2v */
v2i_IPAddrBlocks, /* v2i */
i2r_IPAddrBlocks, /* i2r */
0, /* r2i */
NULL /* extension-specific data */
};
/*
* Figure out whether extension sues inheritance.
*/
int v3_addr_inherits(IPAddrBlocks *addr)
{
2016-04-10 13:18:59 +00:00
int i;
if (addr == NULL)
return 0;
for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
if (f->ipAddressChoice->type == IPAddressChoice_inherit)
return 1;
}
return 0;
}
/*
* Figure out whether parent contains child.
*/
static int addr_contains(IPAddressOrRanges *parent,
2016-04-10 13:18:59 +00:00
IPAddressOrRanges *child, int length)
{
2016-04-10 13:18:59 +00:00
unsigned char p_min[ADDR_RAW_BUF_LEN], p_max[ADDR_RAW_BUF_LEN];
unsigned char c_min[ADDR_RAW_BUF_LEN], c_max[ADDR_RAW_BUF_LEN];
int p, c;
if (child == NULL || parent == child)
return 1;
if (parent == NULL)
return 0;
p = 0;
for (c = 0; c < sk_IPAddressOrRange_num(child); c++) {
if (!extract_min_max(sk_IPAddressOrRange_value(child, c),
c_min, c_max, length))
return -1;
for (;; p++) {
if (p >= sk_IPAddressOrRange_num(parent))
return 0;
if (!extract_min_max(sk_IPAddressOrRange_value(parent, p),
p_min, p_max, length))
return 0;
if (memcmp(p_max, c_max, length) < 0)
continue;
if (memcmp(p_min, c_min, length) > 0)
return 0;
break;
}
}
2016-04-10 13:18:59 +00:00
return 1;
}
/*
* Test whether a is a subset of b.
*/
int v3_addr_subset(IPAddrBlocks *a, IPAddrBlocks *b)
{
2016-04-10 13:18:59 +00:00
int i;
if (a == NULL || a == b)
return 1;
if (b == NULL || v3_addr_inherits(a) || v3_addr_inherits(b))
return 0;
(void)sk_IPAddressFamily_set_cmp_func(b, IPAddressFamily_cmp);
for (i = 0; i < sk_IPAddressFamily_num(a); i++) {
IPAddressFamily *fa = sk_IPAddressFamily_value(a, i);
int j = sk_IPAddressFamily_find(b, fa);
IPAddressFamily *fb;
fb = sk_IPAddressFamily_value(b, j);
if (fb == NULL)
return 0;
if (!addr_contains(fb->ipAddressChoice->u.addressesOrRanges,
fa->ipAddressChoice->u.addressesOrRanges,
length_from_afi(v3_addr_get_afi(fb))))
return 0;
}
return 1;
}
/*
* Validation error handling via callback.
*/
2016-04-10 13:18:59 +00:00
# define validation_err(_err_) \
do { \
if (ctx != NULL) { \
ctx->error = _err_; \
ctx->error_depth = i; \
ctx->current_cert = x; \
ret = ctx->verify_cb(0, ctx); \
} else { \
ret = 0; \
} \
if (!ret) \
goto done; \
} while (0)
/*
* Core code for RFC 3779 2.3 path validation.
*
* Returns 1 for success, 0 on error.
*
* When returning 0, ctx->error MUST be set to an appropriate value other than
* X509_V_OK.
*/
static int v3_addr_validate_path_internal(X509_STORE_CTX *ctx,
2016-04-10 13:18:59 +00:00
STACK_OF(X509) *chain,
IPAddrBlocks *ext)
{
2016-04-10 13:18:59 +00:00
IPAddrBlocks *child = NULL;
int i, j, ret = 1;
X509 *x;
OPENSSL_assert(chain != NULL && sk_X509_num(chain) > 0);
OPENSSL_assert(ctx != NULL || ext != NULL);
OPENSSL_assert(ctx == NULL || ctx->verify_cb != NULL);
/*
* Figure out where to start. If we don't have an extension to
* check, we're done. Otherwise, check canonical form and
* set up for walking up the chain.
*/
if (ext != NULL) {
i = -1;
x = NULL;
} else {
i = 0;
x = sk_X509_value(chain, i);
OPENSSL_assert(x != NULL);
if ((ext = x->rfc3779_addr) == NULL)
goto done;
}
2016-04-10 13:18:59 +00:00
if (!v3_addr_is_canonical(ext))
validation_err(X509_V_ERR_INVALID_EXTENSION);
(void)sk_IPAddressFamily_set_cmp_func(ext, IPAddressFamily_cmp);
if ((child = sk_IPAddressFamily_dup(ext)) == NULL) {
X509V3err(X509V3_F_V3_ADDR_VALIDATE_PATH_INTERNAL,
ERR_R_MALLOC_FAILURE);
ctx->error = X509_V_ERR_OUT_OF_MEM;
2016-04-10 13:18:59 +00:00
ret = 0;
goto done;
}
/*
* Now walk up the chain. No cert may list resources that its
* parent doesn't list.
*/
for (i++; i < sk_X509_num(chain); i++) {
x = sk_X509_value(chain, i);
OPENSSL_assert(x != NULL);
if (!v3_addr_is_canonical(x->rfc3779_addr))
validation_err(X509_V_ERR_INVALID_EXTENSION);
if (x->rfc3779_addr == NULL) {
for (j = 0; j < sk_IPAddressFamily_num(child); j++) {
IPAddressFamily *fc = sk_IPAddressFamily_value(child, j);
if (fc->ipAddressChoice->type != IPAddressChoice_inherit) {
validation_err(X509_V_ERR_UNNESTED_RESOURCE);
break;
}
}
continue;
}
(void)sk_IPAddressFamily_set_cmp_func(x->rfc3779_addr,
IPAddressFamily_cmp);
for (j = 0; j < sk_IPAddressFamily_num(child); j++) {
IPAddressFamily *fc = sk_IPAddressFamily_value(child, j);
int k = sk_IPAddressFamily_find(x->rfc3779_addr, fc);
IPAddressFamily *fp =
sk_IPAddressFamily_value(x->rfc3779_addr, k);
if (fp == NULL) {
if (fc->ipAddressChoice->type ==
IPAddressChoice_addressesOrRanges) {
validation_err(X509_V_ERR_UNNESTED_RESOURCE);
break;
}
continue;
}
if (fp->ipAddressChoice->type ==
IPAddressChoice_addressesOrRanges) {
if (fc->ipAddressChoice->type == IPAddressChoice_inherit
|| addr_contains(fp->ipAddressChoice->u.addressesOrRanges,
fc->ipAddressChoice->u.addressesOrRanges,
length_from_afi(v3_addr_get_afi(fc))))
sk_IPAddressFamily_set(child, j, fp);
else
validation_err(X509_V_ERR_UNNESTED_RESOURCE);
}
}
}
2016-04-10 13:18:59 +00:00
/*
* Trust anchor can't inherit.
*/
OPENSSL_assert(x != NULL);
if (x->rfc3779_addr != NULL) {
for (j = 0; j < sk_IPAddressFamily_num(x->rfc3779_addr); j++) {
IPAddressFamily *fp =
sk_IPAddressFamily_value(x->rfc3779_addr, j);
if (fp->ipAddressChoice->type == IPAddressChoice_inherit
&& sk_IPAddressFamily_find(child, fp) >= 0)
validation_err(X509_V_ERR_UNNESTED_RESOURCE);
}
}
done:
2016-04-10 13:18:59 +00:00
sk_IPAddressFamily_free(child);
return ret;
}
2016-04-10 13:18:59 +00:00
# undef validation_err
/*
* RFC 3779 2.3 path validation -- called from X509_verify_cert().
*/
int v3_addr_validate_path(X509_STORE_CTX *ctx)
{
2016-04-10 13:18:59 +00:00
return v3_addr_validate_path_internal(ctx, ctx->chain, NULL);
}
/*
* RFC 3779 2.3 path validation of an extension.
* Test whether chain covers extension.
*/
int v3_addr_validate_resource_set(STACK_OF(X509) *chain,
2016-04-10 13:18:59 +00:00
IPAddrBlocks *ext, int allow_inheritance)
{
2016-04-10 13:18:59 +00:00
if (ext == NULL)
return 1;
if (chain == NULL || sk_X509_num(chain) == 0)
return 0;
if (!allow_inheritance && v3_addr_inherits(ext))
return 0;
return v3_addr_validate_path_internal(NULL, chain, ext);
}
2016-04-10 13:18:59 +00:00
#endif /* OPENSSL_NO_RFC3779 */