godot/scene/3d/baked_light_instance.cpp

1838 lines
43 KiB
C++
Raw Normal View History

/*************************************************************************/
/* baked_light_instance.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* http://www.godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "baked_light_instance.h"
#include "scene/scene_string_names.h"
2016-12-20 03:21:07 +00:00
#include "mesh_instance.h"
#include "light.h"
#include "math.h"
2016-12-20 03:21:07 +00:00
#define FINDMINMAX(x0,x1,x2,min,max) \
min = max = x0; \
if(x1<min) min=x1;\
if(x1>max) max=x1;\
if(x2<min) min=x2;\
if(x2>max) max=x2;
2016-12-20 03:21:07 +00:00
static bool planeBoxOverlap(Vector3 normal,float d, Vector3 maxbox)
{
int q;
Vector3 vmin,vmax;
for(q=0;q<=2;q++)
{
if(normal[q]>0.0f)
{
vmin[q]=-maxbox[q];
vmax[q]=maxbox[q];
}
else
{
vmin[q]=maxbox[q];
vmax[q]=-maxbox[q];
}
}
if(normal.dot(vmin)+d>0.0f) return false;
if(normal.dot(vmax)+d>=0.0f) return true;
2016-12-20 03:21:07 +00:00
return false;
}
/*======================== X-tests ========================*/
#define AXISTEST_X01(a, b, fa, fb) \
p0 = a*v0.y - b*v0.z; \
p2 = a*v2.y - b*v2.z; \
if(p0<p2) {min=p0; max=p2;} else {min=p2; max=p0;} \
rad = fa * boxhalfsize.y + fb * boxhalfsize.z; \
if(min>rad || max<-rad) return false;
#define AXISTEST_X2(a, b, fa, fb) \
p0 = a*v0.y - b*v0.z; \
p1 = a*v1.y - b*v1.z; \
if(p0<p1) {min=p0; max=p1;} else {min=p1; max=p0;} \
rad = fa * boxhalfsize.y + fb * boxhalfsize.z; \
if(min>rad || max<-rad) return false;
/*======================== Y-tests ========================*/
#define AXISTEST_Y02(a, b, fa, fb) \
p0 = -a*v0.x + b*v0.z; \
p2 = -a*v2.x + b*v2.z; \
if(p0<p2) {min=p0; max=p2;} else {min=p2; max=p0;} \
rad = fa * boxhalfsize.x + fb * boxhalfsize.z; \
if(min>rad || max<-rad) return false;
#define AXISTEST_Y1(a, b, fa, fb) \
p0 = -a*v0.x + b*v0.z; \
p1 = -a*v1.x + b*v1.z; \
if(p0<p1) {min=p0; max=p1;} else {min=p1; max=p0;} \
rad = fa * boxhalfsize.x + fb * boxhalfsize.z; \
if(min>rad || max<-rad) return false;
/*======================== Z-tests ========================*/
#define AXISTEST_Z12(a, b, fa, fb) \
p1 = a*v1.x - b*v1.y; \
p2 = a*v2.x - b*v2.y; \
if(p2<p1) {min=p2; max=p1;} else {min=p1; max=p2;} \
rad = fa * boxhalfsize.x + fb * boxhalfsize.y; \
if(min>rad || max<-rad) return false;
#define AXISTEST_Z0(a, b, fa, fb) \
p0 = a*v0.x - b*v0.y; \
p1 = a*v1.x - b*v1.y; \
if(p0<p1) {min=p0; max=p1;} else {min=p1; max=p0;} \
rad = fa * boxhalfsize.x + fb * boxhalfsize.y; \
if(min>rad || max<-rad) return false;
static bool fast_tri_box_overlap(const Vector3& boxcenter,const Vector3 boxhalfsize,const Vector3 *triverts) {
/* use separating axis theorem to test overlap between triangle and box */
/* need to test for overlap in these directions: */
/* 1) the {x,y,z}-directions (actually, since we use the AABB of the triangle */
/* we do not even need to test these) */
/* 2) normal of the triangle */
/* 3) crossproduct(edge from tri, {x,y,z}-directin) */
/* this gives 3x3=9 more tests */
Vector3 v0,v1,v2;
float min,max,d,p0,p1,p2,rad,fex,fey,fez;
Vector3 normal,e0,e1,e2;
/* This is the fastest branch on Sun */
/* move everything so that the boxcenter is in (0,0,0) */
v0=triverts[0]-boxcenter;
v1=triverts[1]-boxcenter;
v2=triverts[2]-boxcenter;
/* compute triangle edges */
e0=v1-v0; /* tri edge 0 */
e1=v2-v1; /* tri edge 1 */
e2=v0-v2; /* tri edge 2 */
/* Bullet 3: */
/* test the 9 tests first (this was faster) */
fex = Math::abs(e0.x);
fey = Math::abs(e0.y);
fez = Math::abs(e0.z);
AXISTEST_X01(e0.z, e0.y, fez, fey);
AXISTEST_Y02(e0.z, e0.x, fez, fex);
AXISTEST_Z12(e0.y, e0.x, fey, fex);
fex = Math::abs(e1.x);
fey = Math::abs(e1.y);
fez = Math::abs(e1.z);
AXISTEST_X01(e1.z, e1.y, fez, fey);
AXISTEST_Y02(e1.z, e1.x, fez, fex);
AXISTEST_Z0(e1.y, e1.x, fey, fex);
fex = Math::abs(e2.x);
fey = Math::abs(e2.y);
fez = Math::abs(e2.z);
AXISTEST_X2(e2.z, e2.y, fez, fey);
AXISTEST_Y1(e2.z, e2.x, fez, fex);
AXISTEST_Z12(e2.y, e2.x, fey, fex);
/* Bullet 1: */
/* first test overlap in the {x,y,z}-directions */
/* find min, max of the triangle each direction, and test for overlap in */
/* that direction -- this is equivalent to testing a minimal AABB around */
/* the triangle against the AABB */
/* test in X-direction */
FINDMINMAX(v0.x,v1.x,v2.x,min,max);
if(min>boxhalfsize.x || max<-boxhalfsize.x) return false;
/* test in Y-direction */
FINDMINMAX(v0.y,v1.y,v2.y,min,max);
if(min>boxhalfsize.y || max<-boxhalfsize.y) return false;
/* test in Z-direction */
FINDMINMAX(v0.z,v1.z,v2.z,min,max);
if(min>boxhalfsize.z || max<-boxhalfsize.z) return false;
/* Bullet 2: */
/* test if the box intersects the plane of the triangle */
/* compute plane equation of triangle: normal*x+d=0 */
normal=e0.cross(e1);
d=-normal.dot(v0); /* plane eq: normal.x+d=0 */
if(!planeBoxOverlap(normal,d,boxhalfsize)) return false;
return true; /* box and triangle overlaps */
}
Vector<Color> BakedLight::_get_bake_texture(Image &p_image,const Color& p_color) {
Vector<Color> ret;
if (p_image.empty()) {
ret.resize(bake_texture_size*bake_texture_size);
for(int i=0;i<bake_texture_size*bake_texture_size;i++) {
ret[i]=p_color;
}
return ret;
}
p_image.convert(Image::FORMAT_RGBA8);
p_image.resize(bake_texture_size,bake_texture_size,Image::INTERPOLATE_CUBIC);
PoolVector<uint8_t>::Read r = p_image.get_data().read();
2016-12-20 03:21:07 +00:00
ret.resize(bake_texture_size*bake_texture_size);
for(int i=0;i<bake_texture_size*bake_texture_size;i++) {
Color c;
c.r = r[i*4+0]/255.0;
c.g = r[i*4+1]/255.0;
c.b = r[i*4+2]/255.0;
c.a = r[i*4+3]/255.0;
ret[i]=c;
}
return ret;
}
BakedLight::MaterialCache BakedLight::_get_material_cache(Ref<Material> p_material) {
//this way of obtaining materials is inaccurate and also does not support some compressed formats very well
Ref<FixedSpatialMaterial> mat = p_material;
Ref<Material> material = mat; //hack for now
if (material_cache.has(material)) {
return material_cache[material];
}
MaterialCache mc;
if (mat.is_valid()) {
Ref<ImageTexture> albedo_tex = mat->get_texture(FixedSpatialMaterial::TEXTURE_ALBEDO);
Image img_albedo;
if (albedo_tex.is_valid()) {
img_albedo = albedo_tex->get_data();
}
mc.albedo=_get_bake_texture(img_albedo,mat->get_albedo());
Ref<ImageTexture> emission_tex = mat->get_texture(FixedSpatialMaterial::TEXTURE_EMISSION);
Color emission_col = mat->get_emission();
emission_col.r*=mat->get_emission_energy();
emission_col.g*=mat->get_emission_energy();
emission_col.b*=mat->get_emission_energy();
Image img_emission;
if (emission_tex.is_valid()) {
img_emission = emission_tex->get_data();
}
mc.emission=_get_bake_texture(img_emission,emission_col);
} else {
Image empty;
mc.albedo=_get_bake_texture(empty,Color(0.7,0.7,0.7));
mc.emission=_get_bake_texture(empty,Color(0,0,0));
}
material_cache[p_material]=mc;
return mc;
}
static _FORCE_INLINE_ Vector2 get_uv(const Vector3& p_pos, const Vector3 *p_vtx, const Vector2* p_uv) {
if (p_pos.distance_squared_to(p_vtx[0])<CMP_EPSILON2)
return p_uv[0];
if (p_pos.distance_squared_to(p_vtx[1])<CMP_EPSILON2)
return p_uv[1];
if (p_pos.distance_squared_to(p_vtx[2])<CMP_EPSILON2)
return p_uv[2];
Vector3 v0 = p_vtx[1] - p_vtx[0];
Vector3 v1 = p_vtx[2] - p_vtx[0];
Vector3 v2 = p_pos - p_vtx[0];
float d00 = v0.dot( v0);
float d01 = v0.dot( v1);
float d11 = v1.dot( v1);
float d20 = v2.dot( v0);
float d21 = v2.dot( v1);
float denom = (d00 * d11 - d01 * d01);
if (denom==0)
return p_uv[0];
float v = (d11 * d20 - d01 * d21) / denom;
float w = (d00 * d21 - d01 * d20) / denom;
float u = 1.0f - v - w;
return p_uv[0]*u + p_uv[1]*v + p_uv[2]*w;
}
void BakedLight::_plot_face(int p_idx, int p_level, const Vector3 *p_vtx, const Vector2* p_uv, const MaterialCache& p_material, const AABB &p_aabb) {
if (p_level==cell_subdiv-1) {
//plot the face by guessing it's albedo and emission value
//find best axis to map to, for scanning values
int closest_axis;
float closest_dot;
Vector3 normal = Plane(p_vtx[0],p_vtx[1],p_vtx[2]).normal;
for(int i=0;i<3;i++) {
Vector3 axis;
axis[i]=1.0;
float dot=ABS(normal.dot(axis));
if (i==0 || dot>closest_dot) {
closest_axis=i;
closest_dot=dot;
}
}
Vector3 axis;
axis[closest_axis]=1.0;
Vector3 t1;
t1[(closest_axis+1)%3]=1.0;
Vector3 t2;
t2[(closest_axis+2)%3]=1.0;
t1*=p_aabb.size[(closest_axis+1)%3]/float(color_scan_cell_width);
t2*=p_aabb.size[(closest_axis+2)%3]/float(color_scan_cell_width);
Color albedo_accum;
Color emission_accum;
float alpha=0.0;
//map to a grid average in the best axis for this face
for(int i=0;i<color_scan_cell_width;i++) {
Vector3 ofs_i=float(i)*t1;
for(int j=0;j<color_scan_cell_width;j++) {
Vector3 ofs_j=float(j)*t2;
Vector3 from = p_aabb.pos+ofs_i+ofs_j;
Vector3 to = from + t1 + t2 + axis * p_aabb.size[closest_axis];
Vector3 half = (to-from)*0.5;
//is in this cell?
if (!fast_tri_box_overlap(from+half,half,p_vtx)) {
continue; //face does not span this cell
}
//go from -size to +size*2 to avoid skipping collisions
Vector3 ray_from = from + (t1+t2)*0.5 - axis * p_aabb.size[closest_axis];
Vector3 ray_to = ray_from + axis * p_aabb.size[closest_axis]*2;
Vector3 intersection;
if (!Geometry::ray_intersects_triangle(ray_from,ray_to,p_vtx[0],p_vtx[1],p_vtx[2],&intersection)) {
//no intersect? look in edges
float closest_dist=1e20;
for(int j=0;j<3;j++) {
Vector3 c;
Vector3 inters;
Geometry::get_closest_points_between_segments(p_vtx[j],p_vtx[(j+1)%3],ray_from,ray_to,inters,c);
float d=c.distance_to(intersection);
if (j==0 || d<closest_dist) {
closest_dist=d;
intersection=inters;
}
}
}
Vector2 uv = get_uv(intersection,p_vtx,p_uv);
int uv_x = CLAMP(Math::fposmod(uv.x,1.0)*bake_texture_size,0,bake_texture_size-1);
int uv_y = CLAMP(Math::fposmod(uv.y,1.0)*bake_texture_size,0,bake_texture_size-1);
int ofs = uv_y*bake_texture_size+uv_x;
albedo_accum.r+=p_material.albedo[ofs].r;
albedo_accum.g+=p_material.albedo[ofs].g;
albedo_accum.b+=p_material.albedo[ofs].b;
albedo_accum.a+=p_material.albedo[ofs].a;
emission_accum.r+=p_material.emission[ofs].r;
emission_accum.g+=p_material.emission[ofs].g;
emission_accum.b+=p_material.emission[ofs].b;
alpha+=1.0;
}
}
if (alpha==0) {
//could not in any way get texture information.. so use closest point to center
Face3 f( p_vtx[0],p_vtx[1],p_vtx[2]);
Vector3 inters = f.get_closest_point_to(p_aabb.pos+p_aabb.size*0.5);
Vector2 uv = get_uv(inters,p_vtx,p_uv);
int uv_x = CLAMP(Math::fposmod(uv.x,1.0)*bake_texture_size,0,bake_texture_size-1);
int uv_y = CLAMP(Math::fposmod(uv.y,1.0)*bake_texture_size,0,bake_texture_size-1);
int ofs = uv_y*bake_texture_size+uv_x;
alpha = 1.0/(color_scan_cell_width*color_scan_cell_width);
albedo_accum.r=p_material.albedo[ofs].r*alpha;
albedo_accum.g=p_material.albedo[ofs].g*alpha;
albedo_accum.b=p_material.albedo[ofs].b*alpha;
albedo_accum.a=p_material.albedo[ofs].a*alpha;
emission_accum.r=p_material.emission[ofs].r*alpha;
emission_accum.g=p_material.emission[ofs].g*alpha;
emission_accum.b=p_material.emission[ofs].b*alpha;
zero_alphas++;
} else {
float accdiv = 1.0/(color_scan_cell_width*color_scan_cell_width);
alpha*=accdiv;
albedo_accum.r*=accdiv;
albedo_accum.g*=accdiv;
albedo_accum.b*=accdiv;
albedo_accum.a*=accdiv;
emission_accum.r*=accdiv;
emission_accum.g*=accdiv;
emission_accum.b*=accdiv;
}
//put this temporarily here, corrected in a later step
bake_cells_write[p_idx].albedo[0]+=albedo_accum.r;
bake_cells_write[p_idx].albedo[1]+=albedo_accum.g;
bake_cells_write[p_idx].albedo[2]+=albedo_accum.b;
bake_cells_write[p_idx].light[0]+=emission_accum.r;
bake_cells_write[p_idx].light[1]+=emission_accum.g;
bake_cells_write[p_idx].light[2]+=emission_accum.b;
bake_cells_write[p_idx].alpha+=alpha;
static const Vector3 side_normals[6]={
Vector3(-1, 0, 0),
Vector3( 1, 0, 0),
Vector3( 0,-1, 0),
Vector3( 0, 1, 0),
Vector3( 0, 0,-1),
Vector3( 0, 0, 1),
};
for(int i=0;i<6;i++) {
if (normal.dot(side_normals[i])>CMP_EPSILON) {
bake_cells_write[p_idx].used_sides|=(1<<i);
}
}
} else {
//go down
for(int i=0;i<8;i++) {
AABB aabb=p_aabb;
aabb.size*=0.5;
if (i&1)
aabb.pos.x+=aabb.size.x;
if (i&2)
aabb.pos.y+=aabb.size.y;
if (i&4)
aabb.pos.z+=aabb.size.z;
{
AABB test_aabb=aabb;
//test_aabb.grow_by(test_aabb.get_longest_axis_size()*0.05); //grow a bit to avoid numerical error in real-time
Vector3 qsize = test_aabb.size*0.5; //quarter size, for fast aabb test
if (!fast_tri_box_overlap(test_aabb.pos+qsize,qsize,p_vtx)) {
//if (!Face3(p_vtx[0],p_vtx[1],p_vtx[2]).intersects_aabb2(aabb)) {
//does not fit in child, go on
continue;
}
}
if (bake_cells_write[p_idx].childs[i]==CHILD_EMPTY) {
//sub cell must be created
if (bake_cells_used==(1<<bake_cells_alloc)) {
//exhausted cells, creating more space
bake_cells_alloc++;
bake_cells_write=PoolVector<BakeCell>::Write();
2016-12-20 03:21:07 +00:00
bake_cells.resize(1<<bake_cells_alloc);
bake_cells_write=bake_cells.write();
}
bake_cells_write[p_idx].childs[i]=bake_cells_used;
bake_cells_level_used[p_level+1]++;
bake_cells_used++;
}
_plot_face(bake_cells_write[p_idx].childs[i],p_level+1,p_vtx,p_uv,p_material,aabb);
}
}
}
void BakedLight::_fixup_plot(int p_idx, int p_level,int p_x,int p_y, int p_z) {
if (p_level==cell_subdiv-1) {
float alpha = bake_cells_write[p_idx].alpha;
bake_cells_write[p_idx].albedo[0]/=alpha;
bake_cells_write[p_idx].albedo[1]/=alpha;
bake_cells_write[p_idx].albedo[2]/=alpha;
//transfer emission to light
bake_cells_write[p_idx].light[0]/=alpha;
bake_cells_write[p_idx].light[1]/=alpha;
bake_cells_write[p_idx].light[2]/=alpha;
bake_cells_write[p_idx].alpha=1.0;
//remove neighbours from used sides
for(int n=0;n<6;n++) {
int ofs[3]={0,0,0};
ofs[n/2]=(n&1)?1:-1;
//convert to x,y,z on this level
int x=p_x;
int y=p_y;
int z=p_z;
x+=ofs[0];
y+=ofs[1];
z+=ofs[2];
int ofs_x=0;
int ofs_y=0;
int ofs_z=0;
int size = 1<<p_level;
int half=size/2;
if (x<0 || x>=size || y<0 || y>=size || z<0 || z>=size) {
//neighbour is out, can't use it
bake_cells_write[p_idx].used_sides&=~(1<<uint32_t(n));
continue;
}
uint32_t neighbour=0;
for(int i=0;i<cell_subdiv-1;i++) {
BakeCell *bc = &bake_cells_write[neighbour];
int child = 0;
if (x >= ofs_x + half) {
child|=1;
ofs_x+=half;
}
if (y >= ofs_y + half) {
child|=2;
ofs_y+=half;
}
if (z >= ofs_z + half) {
child|=4;
ofs_z+=half;
}
neighbour = bc->childs[child];
if (neighbour==CHILD_EMPTY) {
break;
}
half>>=1;
}
if (neighbour!=CHILD_EMPTY) {
bake_cells_write[p_idx].used_sides&=~(1<<uint32_t(n));
}
}
} else {
//go down
float alpha_average=0;
int half = cells_per_axis >> (p_level+1);
for(int i=0;i<8;i++) {
uint32_t child = bake_cells_write[p_idx].childs[i];
if (child==CHILD_EMPTY)
continue;
int nx=p_x;
int ny=p_y;
int nz=p_z;
if (i&1)
nx+=half;
if (i&2)
ny+=half;
if (i&4)
nz+=half;
_fixup_plot(child,p_level+1,nx,ny,nz);
alpha_average+=bake_cells_write[child].alpha;
}
bake_cells_write[p_idx].alpha=alpha_average/8.0;
bake_cells_write[p_idx].light[0]=0;
bake_cells_write[p_idx].light[1]=0;
bake_cells_write[p_idx].light[2]=0;
bake_cells_write[p_idx].albedo[0]=0;
bake_cells_write[p_idx].albedo[1]=0;
bake_cells_write[p_idx].albedo[2]=0;
}
//clean up light
bake_cells_write[p_idx].light_pass=0;
//find neighbours
}
void BakedLight::_bake_add_mesh(const Transform& p_xform,Ref<Mesh>& p_mesh) {
for(int i=0;i<p_mesh->get_surface_count();i++) {
if (p_mesh->surface_get_primitive_type(i)!=Mesh::PRIMITIVE_TRIANGLES)
continue; //only triangles
MaterialCache material = _get_material_cache(p_mesh->surface_get_material(i));
Array a = p_mesh->surface_get_arrays(i);
PoolVector<Vector3> vertices = a[Mesh::ARRAY_VERTEX];
PoolVector<Vector3>::Read vr=vertices.read();
PoolVector<Vector2> uv = a[Mesh::ARRAY_TEX_UV];
PoolVector<Vector2>::Read uvr;
PoolVector<int> index = a[Mesh::ARRAY_INDEX];
2016-12-20 03:21:07 +00:00
bool read_uv=false;
if (uv.size()) {
uvr=uv.read();
read_uv=true;
}
if (index.size()) {
int facecount = index.size()/3;
PoolVector<int>::Read ir=index.read();
2016-12-20 03:21:07 +00:00
for(int j=0;j<facecount;j++) {
Vector3 vtxs[3];
Vector2 uvs[3];
for(int k=0;k<3;k++) {
vtxs[k]=p_xform.xform(vr[ir[j*3+k]]);
}
if (read_uv) {
for(int k=0;k<3;k++) {
uvs[k]=uvr[ir[j*3+k]];
}
}
//plot face
_plot_face(0,0,vtxs,uvs,material,bounds);
}
} else {
int facecount = vertices.size()/3;
for(int j=0;j<facecount;j++) {
Vector3 vtxs[3];
Vector2 uvs[3];
for(int k=0;k<3;k++) {
vtxs[k]=p_xform.xform(vr[j*3+k]);
}
if (read_uv) {
for(int k=0;k<3;k++) {
uvs[k]=uvr[j*3+k];
}
}
//plot face
_plot_face(0,0,vtxs,uvs,material,bounds);
}
}
}
}
void BakedLight::_bake_add_to_aabb(const Transform& p_xform,Ref<Mesh>& p_mesh,bool &first) {
for(int i=0;i<p_mesh->get_surface_count();i++) {
if (p_mesh->surface_get_primitive_type(i)!=Mesh::PRIMITIVE_TRIANGLES)
continue; //only triangles
Array a = p_mesh->surface_get_arrays(i);
PoolVector<Vector3> vertices = a[Mesh::ARRAY_VERTEX];
2016-12-20 03:21:07 +00:00
int vc = vertices.size();
PoolVector<Vector3>::Read vr=vertices.read();
2016-12-20 03:21:07 +00:00
if (first) {
bounds.pos=p_xform.xform(vr[0]);
first=false;
}
for(int j=0;j<vc;j++) {
bounds.expand_to(p_xform.xform(vr[j]));
}
}
}
void BakedLight::bake() {
bake_cells_alloc=16;
bake_cells.resize(1<<bake_cells_alloc);
bake_cells_used=1;
cells_per_axis=(1<<(cell_subdiv-1));
zero_alphas=0;
bool aabb_first=true;
print_line("Generating AABB");
bake_cells_level_used.resize(cell_subdiv);
for(int i=0;i<cell_subdiv;i++) {
bake_cells_level_used[i]=0;
}
int count=0;
for (Set<GeometryInstance*>::Element *E=geometries.front();E;E=E->next()) {
print_line("aabb geom "+itos(count)+"/"+itos(geometries.size()));
GeometryInstance *geom = E->get();
if (geom->cast_to<MeshInstance>()) {
MeshInstance *mesh_instance = geom->cast_to<MeshInstance>();
Ref<Mesh> mesh = mesh_instance->get_mesh();
if (mesh.is_valid()) {
_bake_add_to_aabb(geom->get_relative_transform(this),mesh,aabb_first);
}
}
count++;
}
print_line("AABB: "+bounds);
ERR_FAIL_COND(aabb_first);
bake_cells_write = bake_cells.write();
count=0;
for (Set<GeometryInstance*>::Element *E=geometries.front();E;E=E->next()) {
GeometryInstance *geom = E->get();
print_line("plot geom "+itos(count)+"/"+itos(geometries.size()));
if (geom->cast_to<MeshInstance>()) {
MeshInstance *mesh_instance = geom->cast_to<MeshInstance>();
Ref<Mesh> mesh = mesh_instance->get_mesh();
if (mesh.is_valid()) {
_bake_add_mesh(geom->get_relative_transform(this),mesh);
}
}
count++;
}
_fixup_plot(0, 0,0,0,0);
bake_cells_write=PoolVector<BakeCell>::Write();
2016-12-20 03:21:07 +00:00
bake_cells.resize(bake_cells_used);
print_line("total bake cells used: "+itos(bake_cells_used));
for(int i=0;i<cell_subdiv;i++) {
print_line("level "+itos(i)+": "+itos(bake_cells_level_used[i]));
}
print_line("zero alphas: "+itos(zero_alphas));
}
void BakedLight::_bake_directional(int p_idx, int p_level, int p_x,int p_y,int p_z,const Vector3& p_dir,const Color& p_color,int p_sign) {
if (p_level==cell_subdiv-1) {
Vector3 end;
end.x = float(p_x+0.5) / cells_per_axis;
end.y = float(p_y+0.5) / cells_per_axis;
end.z = float(p_z+0.5) / cells_per_axis;
end = bounds.pos + bounds.size*end;
float max_ray_len = (bounds.size).length()*1.2;
Vector3 begin = end + max_ray_len*-p_dir;
//clip begin
for(int i=0;i<3;i++) {
if (ABS(p_dir[i])<CMP_EPSILON) {
continue; // parallel to axis, don't clip
}
Plane p;
p.normal[i]=1.0;
p.d=bounds.pos[i];
if (p_dir[i]<0) {
p.d+=bounds.size[i];
}
Vector3 inters;
if (p.intersects_segment(end,begin,&inters)) {
begin=inters;
}
}
int idx = _plot_ray(begin,end);
if (idx>=0 && light_pass!=bake_cells_write[idx].light_pass) {
//hit something, add or remove light to it
Color albedo = Color(bake_cells_write[idx].albedo[0],bake_cells_write[idx].albedo[1],bake_cells_write[idx].albedo[2]);
bake_cells_write[idx].light[0]+=albedo.r*p_color.r*p_sign;
bake_cells_write[idx].light[1]+=albedo.g*p_color.g*p_sign;
bake_cells_write[idx].light[2]+=albedo.b*p_color.b*p_sign;
bake_cells_write[idx].light_pass=light_pass;
}
} else {
int half = cells_per_axis >> (p_level+1);
//go down
for(int i=0;i<8;i++) {
uint32_t child = bake_cells_write[p_idx].childs[i];
if (child==CHILD_EMPTY)
continue;
int nx=p_x;
int ny=p_y;
int nz=p_z;
if (i&1)
nx+=half;
if (i&2)
ny+=half;
if (i&4)
nz+=half;
_bake_directional(child,p_level+1,nx,ny,nz,p_dir,p_color,p_sign);
}
}
}
void BakedLight::_bake_light(Light* p_light) {
if (p_light->cast_to<DirectionalLight>()) {
DirectionalLight * dl = p_light->cast_to<DirectionalLight>();
Transform rel_xf = dl->get_relative_transform(this);
Vector3 light_dir = -rel_xf.basis.get_axis(2);
Color color = dl->get_color();
float nrg = dl->get_param(Light::PARAM_ENERGY);;
color.r*=nrg;
color.g*=nrg;
color.b*=nrg;
light_pass++;
_bake_directional(0,0,0,0,0,light_dir,color,1);
}
}
void BakedLight::_upscale_light(int p_idx,int p_level) {
//go down
float light_accum[3]={0,0,0};
float alpha_accum=0;
bool check_children = p_level < (cell_subdiv -2);
for(int i=0;i<8;i++) {
uint32_t child = bake_cells_write[p_idx].childs[i];
if (child==CHILD_EMPTY)
continue;
if (check_children) {
_upscale_light(child,p_level+1);
}
light_accum[0]+=bake_cells_write[child].light[0];
light_accum[1]+=bake_cells_write[child].light[1];
light_accum[2]+=bake_cells_write[child].light[2];
alpha_accum+=bake_cells_write[child].alpha;
}
bake_cells_write[p_idx].light[0]=light_accum[0]/8.0;
bake_cells_write[p_idx].light[1]=light_accum[1]/8.0;
bake_cells_write[p_idx].light[2]=light_accum[2]/8.0;
bake_cells_write[p_idx].alpha=alpha_accum/8.0;
}
void BakedLight::bake_lights() {
ERR_FAIL_COND(bake_cells.size()==0);
bake_cells_write = bake_cells.write();
for(Set<Light*>::Element *E=lights.front();E;E=E->next()) {
_bake_light(E->get());
}
_upscale_light(0,0);
bake_cells_write=PoolVector<BakeCell>::Write();
2016-12-20 03:21:07 +00:00
}
Color BakedLight::_cone_trace(const Vector3& p_from, const Vector3& p_dir, float p_half_angle) {
Color color(0,0,0,0);
float tha = Math::tan(p_half_angle);//tan half angle
Vector3 from =(p_from-bounds.pos)/bounds.size; //convert to 0..1
from/=cells_per_axis; //convert to voxels of size 1
Vector3 dir = (p_dir/bounds.size).normalized();
float max_dist = Vector3(cells_per_axis,cells_per_axis,cells_per_axis).length();
float dist = 1.0;
// self occlusion in flat surfaces
float alpha=0;
while(dist < max_dist && alpha < 0.95) {
#if 0
// smallest sample diameter possible is the voxel size
float diameter = MAX(1.0, 2.0 * tha * dist);
float lod = log2(diameter);
Vector3 sample_pos = from + dist * dir;
Color samples_base[2][8]={{Color(0,0,0,0),Color(0,0,0,0),Color(0,0,0,0),Color(0,0,0,0),Color(0,0,0,0),Color(0,0,0,0),Color(0,0,0,0),Color(0,0,0,0)},
{Color(0,0,0,0),Color(0,0,0,0),Color(0,0,0,0),Color(0,0,0,0),Color(0,0,0,0),Color(0,0,0,0),Color(0,0,0,0),Color(0,0,0,0)}};
float levelf = Math::fposmod(lod,1.0);
float fx = Math::fposmod(sample_pos.x,1.0);
float fy = Math::fposmod(sample_pos.y,1.0);
float fz = Math::fposmod(sample_pos.z,1.0);
for(int l=0;l<2;l++){
int bx = Math::floor(sample_pos.x);
int by = Math::floor(sample_pos.y);
int bz = Math::floor(sample_pos.z);
int lodn=int(Math::floor(lod))-l;
bx>>=lodn;
by>>=lodn;
bz>>=lodn;
int limit = MAX(0,cell_subdiv-lodn-1);
for(int c=0;c<8;c++) {
int x = bx;
int y = by;
int z = bz;
if (c&1) {
x+=1;
}
if (c&2) {
y+=1;
}
if (c&4) {
z+=1;
}
int ofs_x=0;
int ofs_y=0;
int ofs_z=0;
int size = cells_per_axis>>lodn;
int half=size/2;
bool outside=x<0 || x>=size || y<0 || y>=size || z<0 || z>=size;
if (outside)
continue;
uint32_t cell=0;
for(int i=0;i<limit;i++) {
BakeCell *bc = &bake_cells_write[cell];
int child = 0;
if (x >= ofs_x + half) {
child|=1;
ofs_x+=half;
}
if (y >= ofs_y + half) {
child|=2;
ofs_y+=half;
}
if (z >= ofs_z + half) {
child|=4;
ofs_z+=half;
}
cell = bc->childs[child];
if (cell==CHILD_EMPTY)
break;
half>>=1;
}
if (cell!=CHILD_EMPTY) {
samples_base[l][c].r=bake_cells_write[cell].light[0];
samples_base[l][c].g=bake_cells_write[cell].light[1];
samples_base[l][c].b=bake_cells_write[cell].light[2];
samples_base[l][c].a=bake_cells_write[cell].alpha;
}
}
}
Color m0x0 = samples_base[0][0].linear_interpolate(samples_base[0][1],fx);
Color m0x1 = samples_base[0][2].linear_interpolate(samples_base[0][3],fx);
Color m0y0 = m0x0.linear_interpolate(m0x1,fy);
m0x0 = samples_base[0][4].linear_interpolate(samples_base[0][5],fx);
m0x1 = samples_base[0][6].linear_interpolate(samples_base[0][7],fx);
Color m0y1 = m0x0.linear_interpolate(m0x1,fy);
Color m0z = m0y0.linear_interpolate(m0y1,fz);
Color m1x0 = samples_base[1][0].linear_interpolate(samples_base[1][1],fx);
Color m1x1 = samples_base[1][2].linear_interpolate(samples_base[1][3],fx);
Color m1y0 = m1x0.linear_interpolate(m1x1,fy);
m1x0 = samples_base[1][4].linear_interpolate(samples_base[1][5],fx);
m1x1 = samples_base[1][6].linear_interpolate(samples_base[1][7],fx);
Color m1y1 = m1x0.linear_interpolate(m1x1,fy);
Color m1z = m1y0.linear_interpolate(m1y1,fz);
Color m = m0z.linear_interpolate(m1z,levelf);
#else
float diameter = 1.0;
Vector3 sample_pos = from + dist * dir;
Color m(0,0,0,0);
{
int x = Math::floor(sample_pos.x);
int y = Math::floor(sample_pos.y);
int z = Math::floor(sample_pos.z);
int ofs_x=0;
int ofs_y=0;
int ofs_z=0;
int size = cells_per_axis;
int half=size/2;
bool outside=x<0 || x>=size || y<0 || y>=size || z<0 || z>=size;
if (!outside) {
uint32_t cell=0;
for(int i=0;i<cell_subdiv-1;i++) {
BakeCell *bc = &bake_cells_write[cell];
int child = 0;
if (x >= ofs_x + half) {
child|=1;
ofs_x+=half;
}
if (y >= ofs_y + half) {
child|=2;
ofs_y+=half;
}
if (z >= ofs_z + half) {
child|=4;
ofs_z+=half;
}
cell = bc->childs[child];
if (cell==CHILD_EMPTY)
break;
half>>=1;
}
if (cell!=CHILD_EMPTY) {
m.r=bake_cells_write[cell].light[0];
m.g=bake_cells_write[cell].light[1];
m.b=bake_cells_write[cell].light[2];
m.a=bake_cells_write[cell].alpha;
}
}
}
#endif
// front-to-back compositing
float a = (1.0 - alpha);
color.r += a * m.r;
color.g += a * m.g;
color.b += a * m.b;
alpha += a * m.a;
//occlusion += a * voxelColor.a;
//occlusion += (a * voxelColor.a) / (1.0 + 0.03 * diameter);
dist += diameter * 0.5; // smoother
//dist += diameter; // faster but misses more voxels
}
return color;
}
void BakedLight::_bake_radiance(int p_idx, int p_level, int p_x,int p_y,int p_z) {
if (p_level==cell_subdiv-1) {
const int NUM_CONES = 6;
Vector3 cone_directions[6] = {
Vector3(1, 0, 0),
Vector3(0.5, 0.866025, 0),
Vector3( 0.5, 0.267617, 0.823639),
Vector3( 0.5, -0.700629, 0.509037),
Vector3( 0.5, -0.700629, -0.509037),
Vector3( 0.5, 0.267617, -0.823639)
};
float coneWeights[6] = {0.25, 0.15, 0.15, 0.15, 0.15, 0.15};
Vector3 pos = (Vector3(p_x,p_y,p_z)/float(cells_per_axis))*bounds.size+bounds.pos;
Vector3 voxel_size = bounds.size/float(cells_per_axis);
pos+=voxel_size*0.5;
Color accum;
bake_cells_write[p_idx].light[0]=0;
bake_cells_write[p_idx].light[1]=0;
bake_cells_write[p_idx].light[2]=0;
int freepix=0;
for(int i=0;i<6;i++) {
if (!(bake_cells_write[p_idx].used_sides&(1<<i)))
continue;
if ((i&1)==0)
bake_cells_write[p_idx].light[i/2]=1.0;
freepix++;
continue;
int ofs = i/2;
Vector3 dir;
if ((i&1)==0)
dir[ofs]=1.0;
else
dir[ofs]=-1.0;
for(int j=0;j<1;j++) {
Vector3 cone_dir;
cone_dir.x = cone_directions[j][(ofs+0)%3];
cone_dir.y = cone_directions[j][(ofs+1)%3];
cone_dir.z = cone_directions[j][(ofs+2)%3];
cone_dir[ofs]*=dir[ofs];
Color res = _cone_trace(pos+dir*voxel_size,cone_dir,Math::deg2rad(29.9849));
accum.r+=res.r;//*coneWeights[j];
accum.g+=res.g;//*coneWeights[j];
accum.b+=res.b;//*coneWeights[j];
}
}
#if 0
2016-12-20 03:21:07 +00:00
if (freepix==0) {
bake_cells_write[p_idx].light[0]=0;
bake_cells_write[p_idx].light[1]=0;
bake_cells_write[p_idx].light[2]=0;
}
if (freepix==1) {
bake_cells_write[p_idx].light[0]=1;
bake_cells_write[p_idx].light[1]=0;
bake_cells_write[p_idx].light[2]=0;
}
if (freepix==2) {
bake_cells_write[p_idx].light[0]=0;
bake_cells_write[p_idx].light[1]=1;
bake_cells_write[p_idx].light[2]=0;
}
if (freepix==3) {
bake_cells_write[p_idx].light[0]=1;
bake_cells_write[p_idx].light[1]=1;
bake_cells_write[p_idx].light[2]=0;
}
if (freepix==4) {
bake_cells_write[p_idx].light[0]=0;
bake_cells_write[p_idx].light[1]=0;
bake_cells_write[p_idx].light[2]=1;
}
if (freepix==5) {
bake_cells_write[p_idx].light[0]=1;
bake_cells_write[p_idx].light[1]=0;
bake_cells_write[p_idx].light[2]=1;
}
if (freepix==6) {
bake_cells_write[p_idx].light[0]=0;
bake_cells_write[p_idx].light[0]=1;
bake_cells_write[p_idx].light[0]=1;
}
#endif
//bake_cells_write[p_idx].radiance[0]=accum.r;
//bake_cells_write[p_idx].radiance[1]=accum.g;
//bake_cells_write[p_idx].radiance[2]=accum.b;
} else {
int half = cells_per_axis >> (p_level+1);
//go down
for(int i=0;i<8;i++) {
uint32_t child = bake_cells_write[p_idx].childs[i];
if (child==CHILD_EMPTY)
continue;
int nx=p_x;
int ny=p_y;
int nz=p_z;
if (i&1)
nx+=half;
if (i&2)
ny+=half;
if (i&4)
nz+=half;
_bake_radiance(child,p_level+1,nx,ny,nz);
}
}
}
void BakedLight::bake_radiance() {
ERR_FAIL_COND(bake_cells.size()==0);
bake_cells_write = bake_cells.write();
_bake_radiance(0,0,0,0,0);
bake_cells_write=PoolVector<BakeCell>::Write();
2016-12-20 03:21:07 +00:00
}
int BakedLight::_find_cell(int x,int y, int z) {
uint32_t cell=0;
int ofs_x=0;
int ofs_y=0;
int ofs_z=0;
int size = cells_per_axis;
int half=size/2;
if (x<0 || x>=size)
return -1;
if (y<0 || y>=size)
return -1;
if (z<0 || z>=size)
return -1;
for(int i=0;i<cell_subdiv-1;i++) {
BakeCell *bc = &bake_cells_write[cell];
int child = 0;
if (x >= ofs_x + half) {
child|=1;
ofs_x+=half;
}
if (y >= ofs_y + half) {
child|=2;
ofs_y+=half;
}
if (z >= ofs_z + half) {
child|=4;
ofs_z+=half;
}
2016-12-20 03:21:07 +00:00
cell = bc->childs[child];
if (cell==CHILD_EMPTY)
return -1;
half>>=1;
}
return cell;
}
2016-12-20 03:21:07 +00:00
int BakedLight::_plot_ray(const Vector3& p_from, const Vector3& p_to) {
2016-12-20 03:21:07 +00:00
Vector3 from = (p_from - bounds.pos) / bounds.size;
Vector3 to = (p_to - bounds.pos) / bounds.size;
2016-12-20 03:21:07 +00:00
int x1 = Math::floor(from.x*cells_per_axis);
int y1 = Math::floor(from.y*cells_per_axis);
int z1 = Math::floor(from.z*cells_per_axis);
2016-12-20 03:21:07 +00:00
int x2 = Math::floor(to.x*cells_per_axis);
int y2 = Math::floor(to.y*cells_per_axis);
int z2 = Math::floor(to.z*cells_per_axis);
2016-12-20 03:21:07 +00:00
int i, dx, dy, dz, l, m, n, x_inc, y_inc, z_inc, err_1, err_2, dx2, dy2, dz2;
int point[3];
2016-12-20 03:21:07 +00:00
point[0] = x1;
point[1] = y1;
point[2] = z1;
dx = x2 - x1;
dy = y2 - y1;
dz = z2 - z1;
x_inc = (dx < 0) ? -1 : 1;
l = ABS(dx);
y_inc = (dy < 0) ? -1 : 1;
m = ABS(dy);
z_inc = (dz < 0) ? -1 : 1;
n = ABS(dz);
dx2 = l << 1;
dy2 = m << 1;
dz2 = n << 1;
2016-12-20 03:21:07 +00:00
if ((l >= m) && (l >= n)) {
err_1 = dy2 - l;
err_2 = dz2 - l;
for (i = 0; i < l; i++) {
int cell = _find_cell(point[0],point[1],point[2]);
if (cell>=0)
return cell;
if (err_1 > 0) {
point[1] += y_inc;
err_1 -= dx2;
}
if (err_2 > 0) {
point[2] += z_inc;
err_2 -= dx2;
}
err_1 += dy2;
err_2 += dz2;
point[0] += x_inc;
}
} else if ((m >= l) && (m >= n)) {
err_1 = dx2 - m;
err_2 = dz2 - m;
for (i = 0; i < m; i++) {
int cell = _find_cell(point[0],point[1],point[2]);
if (cell>=0)
return cell;
if (err_1 > 0) {
point[0] += x_inc;
err_1 -= dy2;
}
if (err_2 > 0) {
point[2] += z_inc;
err_2 -= dy2;
}
err_1 += dx2;
err_2 += dz2;
point[1] += y_inc;
}
} else {
err_1 = dy2 - n;
err_2 = dx2 - n;
for (i = 0; i < n; i++) {
int cell = _find_cell(point[0],point[1],point[2]);
if (cell>=0)
return cell;
if (err_1 > 0) {
point[1] += y_inc;
err_1 -= dz2;
}
if (err_2 > 0) {
point[0] += x_inc;
err_2 -= dz2;
}
err_1 += dy2;
err_2 += dx2;
point[2] += z_inc;
}
}
2016-12-20 03:21:07 +00:00
return _find_cell(point[0],point[1],point[2]);
}
2016-12-20 03:21:07 +00:00
void BakedLight::set_cell_subdiv(int p_subdiv) {
cell_subdiv=p_subdiv;
2016-12-20 03:21:07 +00:00
// VS::get_singleton()->baked_light_set_subdivision(baked_light,p_subdiv);
}
2016-12-20 03:21:07 +00:00
int BakedLight::get_cell_subdiv() const {
2016-12-20 03:21:07 +00:00
return cell_subdiv;
}
2016-12-20 03:21:07 +00:00
AABB BakedLight::get_aabb() const {
return AABB(Vector3(0,0,0),Vector3(1,1,1));
}
PoolVector<Face3> BakedLight::get_faces(uint32_t p_usage_flags) const {
return PoolVector<Face3>();
}
2016-12-20 03:21:07 +00:00
String BakedLight::get_configuration_warning() const {
return String();
}
2016-12-20 03:21:07 +00:00
void BakedLight::_debug_mesh(int p_idx, int p_level, const AABB &p_aabb,DebugMode p_mode,Ref<MultiMesh> &p_multimesh,int &idx) {
if (p_level==cell_subdiv-1) {
Vector3 center = p_aabb.pos+p_aabb.size*0.5;
Transform xform;
xform.origin=center;
xform.basis.scale(p_aabb.size*0.5);
p_multimesh->set_instance_transform(idx,xform);
Color col;
switch(p_mode) {
case DEBUG_ALBEDO: {
col=Color(bake_cells_write[p_idx].albedo[0],bake_cells_write[p_idx].albedo[1],bake_cells_write[p_idx].albedo[2]);
} break;
case DEBUG_LIGHT: {
col=Color(bake_cells_write[p_idx].light[0],bake_cells_write[p_idx].light[1],bake_cells_write[p_idx].light[2]);
Color colr=Color(bake_cells_write[p_idx].radiance[0],bake_cells_write[p_idx].radiance[1],bake_cells_write[p_idx].radiance[2]);
col.r+=colr.r;
col.g+=colr.g;
col.b+=colr.b;
} break;
}
p_multimesh->set_instance_color(idx,col);
idx++;
} else {
for(int i=0;i<8;i++) {
if (bake_cells_write[p_idx].childs[i]==CHILD_EMPTY)
continue;
AABB aabb=p_aabb;
aabb.size*=0.5;
if (i&1)
aabb.pos.x+=aabb.size.x;
if (i&2)
aabb.pos.y+=aabb.size.y;
if (i&4)
aabb.pos.z+=aabb.size.z;
_debug_mesh(bake_cells_write[p_idx].childs[i],p_level+1,aabb,p_mode,p_multimesh,idx);
}
}
}
void BakedLight::create_debug_mesh(DebugMode p_mode) {
Ref<MultiMesh> mm;
mm.instance();
mm->set_transform_format(MultiMesh::TRANSFORM_3D);
mm->set_color_format(MultiMesh::COLOR_8BIT);
mm->set_instance_count(bake_cells_level_used[cell_subdiv-1]);
Ref<Mesh> mesh;
mesh.instance();
{
Array arr;
arr.resize(Mesh::ARRAY_MAX);
PoolVector<Vector3> vertices;
PoolVector<Color> colors;
2016-12-20 03:21:07 +00:00
int vtx_idx=0;
#define ADD_VTX(m_idx);\
vertices.push_back( face_points[m_idx] );\
colors.push_back( Color(1,1,1,1) );\
vtx_idx++;\
for (int i=0;i<6;i++) {
Vector3 face_points[4];
for (int j=0;j<4;j++) {
float v[3];
v[0]=1.0;
v[1]=1-2*((j>>1)&1);
v[2]=v[1]*(1-2*(j&1));
for (int k=0;k<3;k++) {
if (i<3)
face_points[j][(i+k)%3]=v[k]*(i>=3?-1:1);
else
face_points[3-j][(i+k)%3]=v[k]*(i>=3?-1:1);
}
}
//tri 1
ADD_VTX(0);
ADD_VTX(1);
ADD_VTX(2);
//tri 2
ADD_VTX(2);
ADD_VTX(3);
ADD_VTX(0);
}
arr[Mesh::ARRAY_VERTEX]=vertices;
arr[Mesh::ARRAY_COLOR]=colors;
mesh->add_surface_from_arrays(Mesh::PRIMITIVE_TRIANGLES,arr);
}
{
Ref<FixedSpatialMaterial> fsm;
fsm.instance();
fsm->set_flag(FixedSpatialMaterial::FLAG_SRGB_VERTEX_COLOR,true);
fsm->set_flag(FixedSpatialMaterial::FLAG_ALBEDO_FROM_VERTEX_COLOR,true);
fsm->set_flag(FixedSpatialMaterial::FLAG_UNSHADED,true);
fsm->set_albedo(Color(1,1,1,1));
mesh->surface_set_material(0,fsm);
}
mm->set_mesh(mesh);
bake_cells_write = bake_cells.write();
int idx=0;
_debug_mesh(0,0,bounds,p_mode,mm,idx);
print_line("written: "+itos(idx)+" total: "+itos(bake_cells_level_used[cell_subdiv-1]));
MultiMeshInstance *mmi = memnew( MultiMeshInstance );
mmi->set_multimesh(mm);
add_child(mmi);
if (get_tree()->get_edited_scene_root()==this){
mmi->set_owner(this);
} else {
mmi->set_owner(get_owner());
}
}
void BakedLight::_debug_mesh_albedo() {
create_debug_mesh(DEBUG_ALBEDO);
}
void BakedLight::_debug_mesh_light() {
create_debug_mesh(DEBUG_LIGHT);
}
void BakedLight::_bind_methods() {
ClassDB::bind_method(_MD("set_cell_subdiv","steps"),&BakedLight::set_cell_subdiv);
ClassDB::bind_method(_MD("get_cell_subdiv"),&BakedLight::get_cell_subdiv);
2016-12-20 03:21:07 +00:00
ClassDB::bind_method(_MD("bake"),&BakedLight::bake);
ClassDB::set_method_flags(get_class_static(),_SCS("bake"),METHOD_FLAGS_DEFAULT|METHOD_FLAG_EDITOR);
2016-12-20 03:21:07 +00:00
ClassDB::bind_method(_MD("bake_lights"),&BakedLight::bake_lights);
ClassDB::set_method_flags(get_class_static(),_SCS("bake_lights"),METHOD_FLAGS_DEFAULT|METHOD_FLAG_EDITOR);
2016-12-20 03:21:07 +00:00
ClassDB::bind_method(_MD("bake_radiance"),&BakedLight::bake_radiance);
ClassDB::set_method_flags(get_class_static(),_SCS("bake_radiance"),METHOD_FLAGS_DEFAULT|METHOD_FLAG_EDITOR);
2016-12-20 03:21:07 +00:00
ClassDB::bind_method(_MD("debug_mesh_albedo"),&BakedLight::_debug_mesh_albedo);
ClassDB::set_method_flags(get_class_static(),_SCS("debug_mesh_albedo"),METHOD_FLAGS_DEFAULT|METHOD_FLAG_EDITOR);
ClassDB::bind_method(_MD("debug_mesh_light"),&BakedLight::_debug_mesh_light);
ClassDB::set_method_flags(get_class_static(),_SCS("debug_mesh_light"),METHOD_FLAGS_DEFAULT|METHOD_FLAG_EDITOR);
2016-12-20 03:21:07 +00:00
ADD_PROPERTY(PropertyInfo(Variant::INT,"cell_subdiv"),_SCS("set_cell_subdiv"),_SCS("get_cell_subdiv"));
ADD_SIGNAL( MethodInfo("baked_light_changed"));
2016-12-20 03:21:07 +00:00
}
2016-12-20 03:21:07 +00:00
BakedLight::BakedLight() {
2016-12-20 03:21:07 +00:00
// baked_light=VisualServer::get_singleton()->baked_light_create();
VS::get_singleton()->instance_set_base(get_instance(),baked_light);
2016-12-20 03:21:07 +00:00
cell_subdiv=8;
bake_texture_size=128;
color_scan_cell_width=8;
light_pass=0;
}
2016-12-20 03:21:07 +00:00
BakedLight::~BakedLight() {
VS::get_singleton()->free(baked_light);
}
/////////////////////////
#if 0
void BakedLightSampler::set_param(Param p_param,float p_value) {
ERR_FAIL_INDEX(p_param,PARAM_MAX);
params[p_param]=p_value;
VS::get_singleton()->baked_light_sampler_set_param(base,VS::BakedLightSamplerParam(p_param),p_value);
}
float BakedLightSampler::get_param(Param p_param) const{
ERR_FAIL_INDEX_V(p_param,PARAM_MAX,0);
return params[p_param];
}
void BakedLightSampler::set_resolution(int p_resolution){
2015-10-17 13:29:54 +00:00
ERR_FAIL_COND(p_resolution<4 || p_resolution>32);
resolution=p_resolution;
VS::get_singleton()->baked_light_sampler_set_resolution(base,resolution);
}
int BakedLightSampler::get_resolution() const {
return resolution;
}
AABB BakedLightSampler::get_aabb() const {
float r = get_param(PARAM_RADIUS);
return AABB( Vector3(-r,-r,-r),Vector3(r*2,r*2,r*2));
}
DVector<Face3> BakedLightSampler::get_faces(uint32_t p_usage_flags) const {
return DVector<Face3>();
}
void BakedLightSampler::_bind_methods() {
ClassDB::bind_method(_MD("set_param","param","value"),&BakedLightSampler::set_param);
ClassDB::bind_method(_MD("get_param","param"),&BakedLightSampler::get_param);
ClassDB::bind_method(_MD("set_resolution","resolution"),&BakedLightSampler::set_resolution);
ClassDB::bind_method(_MD("get_resolution"),&BakedLightSampler::get_resolution);
BIND_CONSTANT( PARAM_RADIUS );
BIND_CONSTANT( PARAM_STRENGTH );
BIND_CONSTANT( PARAM_ATTENUATION );
BIND_CONSTANT( PARAM_DETAIL_RATIO );
BIND_CONSTANT( PARAM_MAX );
ADD_PROPERTYI( PropertyInfo(Variant::REAL,"params/radius",PROPERTY_HINT_RANGE,"0.01,1024,0.01"),_SCS("set_param"),_SCS("get_param"),PARAM_RADIUS);
ADD_PROPERTYI( PropertyInfo(Variant::REAL,"params/strength",PROPERTY_HINT_RANGE,"0.01,16,0.01"),_SCS("set_param"),_SCS("get_param"),PARAM_STRENGTH);
ADD_PROPERTYI( PropertyInfo(Variant::REAL,"params/attenuation",PROPERTY_HINT_EXP_EASING),_SCS("set_param"),_SCS("get_param"),PARAM_ATTENUATION);
ADD_PROPERTYI( PropertyInfo(Variant::REAL,"params/detail_ratio",PROPERTY_HINT_RANGE,"0.01,1.0,0.01"),_SCS("set_param"),_SCS("get_param"),PARAM_DETAIL_RATIO);
// ADD_PROPERTYI( PropertyInfo(Variant::REAL,"params/detail_ratio",PROPERTY_HINT_RANGE,"0,20,1"),_SCS("set_param"),_SCS("get_param"),PARAM_DETAIL_RATIO);
ADD_PROPERTY( PropertyInfo(Variant::REAL,"params/resolution",PROPERTY_HINT_RANGE,"4,32,1"),_SCS("set_resolution"),_SCS("get_resolution"));
}
BakedLightSampler::BakedLightSampler() {
base = VS::get_singleton()->baked_light_sampler_create();
set_base(base);
params[PARAM_RADIUS]=1.0;
params[PARAM_STRENGTH]=1.0;
params[PARAM_ATTENUATION]=1.0;
params[PARAM_DETAIL_RATIO]=0.1;
resolution=16;
}
BakedLightSampler::~BakedLightSampler(){
VS::get_singleton()->free(base);
}
#endif