2020-05-14 11:20:05 +00:00
/**************************************************************************/
/* lightmapper_rd.cpp */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
2020-05-01 12:34:23 +00:00
# include "lightmapper_rd.h"
2022-03-28 13:24:14 +00:00
2020-05-01 12:34:23 +00:00
# include "lm_blendseams.glsl.gen.h"
# include "lm_compute.glsl.gen.h"
# include "lm_raster.glsl.gen.h"
2023-06-13 14:56:21 +00:00
# include "core/config/project_settings.h"
2023-10-04 19:32:39 +00:00
# include "core/io/dir_access.h"
2023-06-13 14:56:21 +00:00
# include "core/math/geometry_2d.h"
2023-10-04 19:32:39 +00:00
# include "editor/editor_paths.h"
# include "editor/editor_settings.h"
2020-05-01 12:34:23 +00:00
# include "servers/rendering/rendering_device_binds.h"
//uncomment this if you want to see textures from all the process saved
//#define DEBUG_TEXTURES
void LightmapperRD : : add_mesh ( const MeshData & p_mesh ) {
2020-12-15 12:04:21 +00:00
ERR_FAIL_COND ( p_mesh . albedo_on_uv2 . is_null ( ) | | p_mesh . albedo_on_uv2 - > is_empty ( ) ) ;
ERR_FAIL_COND ( p_mesh . emission_on_uv2 . is_null ( ) | | p_mesh . emission_on_uv2 - > is_empty ( ) ) ;
2020-05-01 12:34:23 +00:00
ERR_FAIL_COND ( p_mesh . albedo_on_uv2 - > get_width ( ) ! = p_mesh . emission_on_uv2 - > get_width ( ) ) ;
ERR_FAIL_COND ( p_mesh . albedo_on_uv2 - > get_height ( ) ! = p_mesh . emission_on_uv2 - > get_height ( ) ) ;
ERR_FAIL_COND ( p_mesh . points . size ( ) = = 0 ) ;
MeshInstance mi ;
mi . data = p_mesh ;
mesh_instances . push_back ( mi ) ;
}
2023-10-13 17:32:22 +00:00
void LightmapperRD : : add_directional_light ( bool p_static , const Vector3 & p_direction , const Color & p_color , float p_energy , float p_indirect_energy , float p_angular_distance , float p_shadow_blur ) {
2020-05-01 12:34:23 +00:00
Light l ;
l . type = LIGHT_TYPE_DIRECTIONAL ;
l . direction [ 0 ] = p_direction . x ;
l . direction [ 1 ] = p_direction . y ;
l . direction [ 2 ] = p_direction . z ;
l . color [ 0 ] = p_color . r ;
l . color [ 1 ] = p_color . g ;
l . color [ 2 ] = p_color . b ;
l . energy = p_energy ;
2023-10-13 17:32:22 +00:00
l . indirect_energy = p_indirect_energy ;
2020-05-01 12:34:23 +00:00
l . static_bake = p_static ;
2022-08-13 15:45:42 +00:00
l . size = Math : : tan ( Math : : deg_to_rad ( p_angular_distance ) ) ;
2022-06-14 22:55:53 +00:00
l . shadow_blur = p_shadow_blur ;
2020-05-01 12:34:23 +00:00
lights . push_back ( l ) ;
}
2020-05-14 12:29:06 +00:00
2023-10-13 17:32:22 +00:00
void LightmapperRD : : add_omni_light ( bool p_static , const Vector3 & p_position , const Color & p_color , float p_energy , float p_indirect_energy , float p_range , float p_attenuation , float p_size , float p_shadow_blur ) {
2020-05-01 12:34:23 +00:00
Light l ;
l . type = LIGHT_TYPE_OMNI ;
l . position [ 0 ] = p_position . x ;
l . position [ 1 ] = p_position . y ;
l . position [ 2 ] = p_position . z ;
l . range = p_range ;
l . attenuation = p_attenuation ;
l . color [ 0 ] = p_color . r ;
l . color [ 1 ] = p_color . g ;
l . color [ 2 ] = p_color . b ;
l . energy = p_energy ;
2023-10-13 17:32:22 +00:00
l . indirect_energy = p_indirect_energy ;
2020-05-01 12:34:23 +00:00
l . static_bake = p_static ;
l . size = p_size ;
2022-06-14 22:55:53 +00:00
l . shadow_blur = p_shadow_blur ;
2020-05-01 12:34:23 +00:00
lights . push_back ( l ) ;
}
2020-05-14 12:29:06 +00:00
2023-10-13 17:32:22 +00:00
void LightmapperRD : : add_spot_light ( bool p_static , const Vector3 & p_position , const Vector3 p_direction , const Color & p_color , float p_energy , float p_indirect_energy , float p_range , float p_attenuation , float p_spot_angle , float p_spot_attenuation , float p_size , float p_shadow_blur ) {
2020-05-01 12:34:23 +00:00
Light l ;
l . type = LIGHT_TYPE_SPOT ;
l . position [ 0 ] = p_position . x ;
l . position [ 1 ] = p_position . y ;
l . position [ 2 ] = p_position . z ;
l . direction [ 0 ] = p_direction . x ;
l . direction [ 1 ] = p_direction . y ;
l . direction [ 2 ] = p_direction . z ;
l . range = p_range ;
l . attenuation = p_attenuation ;
2022-08-13 15:45:42 +00:00
l . cos_spot_angle = Math : : cos ( Math : : deg_to_rad ( p_spot_angle ) ) ;
2021-02-06 20:39:08 +00:00
l . inv_spot_attenuation = 1.0f / p_spot_attenuation ;
2020-05-01 12:34:23 +00:00
l . color [ 0 ] = p_color . r ;
l . color [ 1 ] = p_color . g ;
l . color [ 2 ] = p_color . b ;
l . energy = p_energy ;
2023-10-13 17:32:22 +00:00
l . indirect_energy = p_indirect_energy ;
2020-05-01 12:34:23 +00:00
l . static_bake = p_static ;
l . size = p_size ;
2022-06-14 22:55:53 +00:00
l . shadow_blur = p_shadow_blur ;
2020-05-01 12:34:23 +00:00
lights . push_back ( l ) ;
}
void LightmapperRD : : add_probe ( const Vector3 & p_position ) {
Probe probe ;
probe . position [ 0 ] = p_position . x ;
probe . position [ 1 ] = p_position . y ;
probe . position [ 2 ] = p_position . z ;
probe . position [ 3 ] = 0 ;
probe_positions . push_back ( probe ) ;
}
2023-10-13 14:39:48 +00:00
void LightmapperRD : : _plot_triangle_into_triangle_index_list ( int p_size , const Vector3i & p_ofs , const AABB & p_bounds , const Vector3 p_points [ 3 ] , uint32_t p_triangle_index , LocalVector < TriangleSort > & p_triangles_sort , uint32_t p_grid_size ) {
2020-05-01 12:34:23 +00:00
int half_size = p_size / 2 ;
for ( int i = 0 ; i < 8 ; i + + ) {
AABB aabb = p_bounds ;
aabb . size * = 0.5 ;
Vector3i n = p_ofs ;
if ( i & 1 ) {
aabb . position . x + = aabb . size . x ;
n . x + = half_size ;
}
if ( i & 2 ) {
aabb . position . y + = aabb . size . y ;
n . y + = half_size ;
}
if ( i & 4 ) {
aabb . position . z + = aabb . size . z ;
n . z + = half_size ;
}
{
Vector3 qsize = aabb . size * 0.5 ; //quarter size, for fast aabb test
2020-05-25 17:20:45 +00:00
if ( ! Geometry3D : : triangle_box_overlap ( aabb . position + qsize , qsize , p_points ) ) {
2020-05-01 12:34:23 +00:00
//does not fit in child, go on
continue ;
}
}
if ( half_size = = 1 ) {
//got to the end
TriangleSort ts ;
ts . cell_index = n . x + ( n . y * p_grid_size ) + ( n . z * p_grid_size * p_grid_size ) ;
ts . triangle_index = p_triangle_index ;
2023-10-13 14:39:48 +00:00
ts . triangle_aabb . position = p_points [ 0 ] ;
ts . triangle_aabb . size = Vector3 ( ) ;
ts . triangle_aabb . expand_to ( p_points [ 1 ] ) ;
ts . triangle_aabb . expand_to ( p_points [ 2 ] ) ;
p_triangles_sort . push_back ( ts ) ;
2020-05-01 12:34:23 +00:00
} else {
2023-10-13 14:39:48 +00:00
_plot_triangle_into_triangle_index_list ( half_size , n , aabb , p_points , p_triangle_index , p_triangles_sort , p_grid_size ) ;
2020-05-01 12:34:23 +00:00
}
}
}
2023-10-13 14:39:48 +00:00
void LightmapperRD : : _sort_triangle_clusters ( uint32_t p_cluster_size , uint32_t p_cluster_index , uint32_t p_index_start , uint32_t p_count , LocalVector < TriangleSort > & p_triangle_sort , LocalVector < ClusterAABB > & p_cluster_aabb ) {
if ( p_count = = 0 ) {
return ;
}
// Compute AABB for all triangles in the range.
SortArray < TriangleSort , TriangleSortAxis < 0 > > triangle_sorter_x ;
SortArray < TriangleSort , TriangleSortAxis < 1 > > triangle_sorter_y ;
SortArray < TriangleSort , TriangleSortAxis < 2 > > triangle_sorter_z ;
AABB cluster_aabb = p_triangle_sort [ p_index_start ] . triangle_aabb ;
for ( uint32_t i = 1 ; i < p_count ; i + + ) {
cluster_aabb . merge_with ( p_triangle_sort [ p_index_start + i ] . triangle_aabb ) ;
}
if ( p_count > p_cluster_size ) {
int longest_axis_index = cluster_aabb . get_longest_axis_index ( ) ;
switch ( longest_axis_index ) {
case 0 :
triangle_sorter_x . sort ( & p_triangle_sort [ p_index_start ] , p_count ) ;
break ;
case 1 :
triangle_sorter_y . sort ( & p_triangle_sort [ p_index_start ] , p_count ) ;
break ;
case 2 :
triangle_sorter_z . sort ( & p_triangle_sort [ p_index_start ] , p_count ) ;
break ;
default :
DEV_ASSERT ( false & & " Invalid axis returned by AABB. " ) ;
break ;
}
uint32_t left_cluster_count = next_power_of_2 ( p_count / 2 ) ;
left_cluster_count = MAX ( left_cluster_count , p_cluster_size ) ;
left_cluster_count = MIN ( left_cluster_count , p_count ) ;
_sort_triangle_clusters ( p_cluster_size , p_cluster_index , p_index_start , left_cluster_count , p_triangle_sort , p_cluster_aabb ) ;
if ( left_cluster_count < p_count ) {
uint32_t cluster_index_right = p_cluster_index + ( left_cluster_count / p_cluster_size ) ;
_sort_triangle_clusters ( p_cluster_size , cluster_index_right , p_index_start + left_cluster_count , p_count - left_cluster_count , p_triangle_sort , p_cluster_aabb ) ;
}
} else {
ClusterAABB & aabb = p_cluster_aabb [ p_cluster_index ] ;
Vector3 aabb_end = cluster_aabb . get_end ( ) ;
aabb . min_bounds [ 0 ] = cluster_aabb . position . x ;
aabb . min_bounds [ 1 ] = cluster_aabb . position . y ;
aabb . min_bounds [ 2 ] = cluster_aabb . position . z ;
aabb . max_bounds [ 0 ] = aabb_end . x ;
aabb . max_bounds [ 1 ] = aabb_end . y ;
aabb . max_bounds [ 2 ] = aabb_end . z ;
}
}
2020-05-01 12:34:23 +00:00
Lightmapper : : BakeError LightmapperRD : : _blit_meshes_into_atlas ( int p_max_texture_size , Vector < Ref < Image > > & albedo_images , Vector < Ref < Image > > & emission_images , AABB & bounds , Size2i & atlas_size , int & atlas_slices , BakeStepFunc p_step_function , void * p_bake_userdata ) {
Vector < Size2i > sizes ;
for ( int m_i = 0 ; m_i < mesh_instances . size ( ) ; m_i + + ) {
MeshInstance & mi = mesh_instances . write [ m_i ] ;
Size2i s = Size2i ( mi . data . albedo_on_uv2 - > get_width ( ) , mi . data . albedo_on_uv2 - > get_height ( ) ) ;
sizes . push_back ( s ) ;
2021-04-25 21:36:39 +00:00
atlas_size . width = MAX ( atlas_size . width , s . width + 2 ) ;
atlas_size . height = MAX ( atlas_size . height , s . height + 2 ) ;
2020-05-01 12:34:23 +00:00
}
int max = nearest_power_of_2_templated ( atlas_size . width ) ;
max = MAX ( max , nearest_power_of_2_templated ( atlas_size . height ) ) ;
if ( max > p_max_texture_size ) {
return BAKE_ERROR_LIGHTMAP_TOO_SMALL ;
}
if ( p_step_function ) {
2022-03-28 13:24:14 +00:00
p_step_function ( 0.1 , RTR ( " Determining optimal atlas size " ) , p_bake_userdata , true ) ;
2020-05-01 12:34:23 +00:00
}
atlas_size = Size2i ( max , max ) ;
Size2i best_atlas_size ;
int best_atlas_slices = 0 ;
int best_atlas_memory = 0x7FFFFFFF ;
Vector < Vector3i > best_atlas_offsets ;
//determine best texture array atlas size by bruteforce fitting
while ( atlas_size . x < = p_max_texture_size & & atlas_size . y < = p_max_texture_size ) {
2021-04-25 21:36:39 +00:00
Vector < Vector2i > source_sizes ;
2020-05-01 12:34:23 +00:00
Vector < int > source_indices ;
2021-04-25 21:36:39 +00:00
source_sizes . resize ( sizes . size ( ) ) ;
source_indices . resize ( sizes . size ( ) ) ;
2020-05-01 12:34:23 +00:00
for ( int i = 0 ; i < source_indices . size ( ) ; i + + ) {
2021-04-25 21:36:39 +00:00
source_sizes . write [ i ] = sizes [ i ] + Vector2i ( 2 , 2 ) ; // Add padding between lightmaps
2020-05-01 12:34:23 +00:00
source_indices . write [ i ] = i ;
}
Vector < Vector3i > atlas_offsets ;
atlas_offsets . resize ( source_sizes . size ( ) ) ;
int slices = 0 ;
while ( source_sizes . size ( ) > 0 ) {
2020-05-25 17:20:45 +00:00
Vector < Vector3i > offsets = Geometry2D : : partial_pack_rects ( source_sizes , atlas_size ) ;
2020-05-01 12:34:23 +00:00
Vector < int > new_indices ;
Vector < Vector2i > new_sources ;
for ( int i = 0 ; i < offsets . size ( ) ; i + + ) {
Vector3i ofs = offsets [ i ] ;
int sidx = source_indices [ i ] ;
if ( ofs . z > 0 ) {
//valid
ofs . z = slices ;
2021-04-25 21:36:39 +00:00
atlas_offsets . write [ sidx ] = ofs + Vector3i ( 1 , 1 , 0 ) ; // Center lightmap in the reserved oversized region
2020-05-01 12:34:23 +00:00
} else {
new_indices . push_back ( sidx ) ;
new_sources . push_back ( source_sizes [ i ] ) ;
}
}
source_sizes = new_sources ;
source_indices = new_indices ;
slices + + ;
}
int mem_used = atlas_size . x * atlas_size . y * slices ;
if ( mem_used < best_atlas_memory ) {
best_atlas_size = atlas_size ;
best_atlas_offsets = atlas_offsets ;
best_atlas_slices = slices ;
best_atlas_memory = mem_used ;
}
if ( atlas_size . width = = atlas_size . height ) {
atlas_size . width * = 2 ;
} else {
atlas_size . height * = 2 ;
}
}
atlas_size = best_atlas_size ;
atlas_slices = best_atlas_slices ;
// apply the offsets and slice to all images, and also blit albedo and emission
albedo_images . resize ( atlas_slices ) ;
emission_images . resize ( atlas_slices ) ;
if ( p_step_function ) {
2022-03-28 13:24:14 +00:00
p_step_function ( 0.2 , RTR ( " Blitting albedo and emission " ) , p_bake_userdata , true ) ;
2020-05-01 12:34:23 +00:00
}
for ( int i = 0 ; i < atlas_slices ; i + + ) {
2022-07-22 18:06:19 +00:00
Ref < Image > albedo = Image : : create_empty ( atlas_size . width , atlas_size . height , false , Image : : FORMAT_RGBA8 ) ;
2020-05-01 12:34:23 +00:00
albedo - > set_as_black ( ) ;
albedo_images . write [ i ] = albedo ;
2022-07-22 18:06:19 +00:00
Ref < Image > emission = Image : : create_empty ( atlas_size . width , atlas_size . height , false , Image : : FORMAT_RGBAH ) ;
2020-05-01 12:34:23 +00:00
emission - > set_as_black ( ) ;
emission_images . write [ i ] = emission ;
}
//assign uv positions
for ( int m_i = 0 ; m_i < mesh_instances . size ( ) ; m_i + + ) {
MeshInstance & mi = mesh_instances . write [ m_i ] ;
mi . offset . x = best_atlas_offsets [ m_i ] . x ;
mi . offset . y = best_atlas_offsets [ m_i ] . y ;
mi . slice = best_atlas_offsets [ m_i ] . z ;
2022-07-09 20:43:34 +00:00
albedo_images . write [ mi . slice ] - > blit_rect ( mi . data . albedo_on_uv2 , Rect2i ( Vector2i ( ) , mi . data . albedo_on_uv2 - > get_size ( ) ) , mi . offset ) ;
emission_images . write [ mi . slice ] - > blit_rect ( mi . data . emission_on_uv2 , Rect2 ( Vector2i ( ) , mi . data . emission_on_uv2 - > get_size ( ) ) , mi . offset ) ;
2020-05-01 12:34:23 +00:00
}
return BAKE_OK ;
}
2023-10-13 14:39:48 +00:00
void LightmapperRD : : _create_acceleration_structures ( RenderingDevice * rd , Size2i atlas_size , int atlas_slices , AABB & bounds , int grid_size , uint32_t p_cluster_size , Vector < Probe > & p_probe_positions , GenerateProbes p_generate_probes , Vector < int > & slice_triangle_count , Vector < int > & slice_seam_count , RID & vertex_buffer , RID & triangle_buffer , RID & lights_buffer , RID & r_triangle_indices_buffer , RID & r_cluster_indices_buffer , RID & r_cluster_aabbs_buffer , RID & probe_positions_buffer , RID & grid_texture , RID & seams_buffer , BakeStepFunc p_step_function , void * p_bake_userdata ) {
2020-05-01 12:34:23 +00:00
HashMap < Vertex , uint32_t , VertexHash > vertex_map ;
//fill triangles array and vertex array
LocalVector < Triangle > triangles ;
LocalVector < Vertex > vertex_array ;
LocalVector < Seam > seams ;
slice_triangle_count . resize ( atlas_slices ) ;
slice_seam_count . resize ( atlas_slices ) ;
for ( int i = 0 ; i < atlas_slices ; i + + ) {
slice_triangle_count . write [ i ] = 0 ;
slice_seam_count . write [ i ] = 0 ;
}
bounds = AABB ( ) ;
for ( int m_i = 0 ; m_i < mesh_instances . size ( ) ; m_i + + ) {
if ( p_step_function ) {
float p = float ( m_i + 1 ) / mesh_instances . size ( ) * 0.1 ;
2022-03-28 13:24:14 +00:00
p_step_function ( 0.3 + p , vformat ( RTR ( " Plotting mesh into acceleration structure %d/%d " ) , m_i + 1 , mesh_instances . size ( ) ) , p_bake_userdata , false ) ;
2020-05-01 12:34:23 +00:00
}
HashMap < Edge , EdgeUV2 , EdgeHash > edges ;
MeshInstance & mi = mesh_instances . write [ m_i ] ;
Vector2 uv_scale = Vector2 ( mi . data . albedo_on_uv2 - > get_width ( ) , mi . data . albedo_on_uv2 - > get_height ( ) ) / Vector2 ( atlas_size ) ;
Vector2 uv_offset = Vector2 ( mi . offset ) / Vector2 ( atlas_size ) ;
if ( m_i = = 0 ) {
bounds . position = mi . data . points [ 0 ] ;
}
for ( int i = 0 ; i < mi . data . points . size ( ) ; i + = 3 ) {
Vector3 vtxs [ 3 ] = { mi . data . points [ i + 0 ] , mi . data . points [ i + 1 ] , mi . data . points [ i + 2 ] } ;
Vector2 uvs [ 3 ] = { mi . data . uv2 [ i + 0 ] * uv_scale + uv_offset , mi . data . uv2 [ i + 1 ] * uv_scale + uv_offset , mi . data . uv2 [ i + 2 ] * uv_scale + uv_offset } ;
Vector3 normal [ 3 ] = { mi . data . normal [ i + 0 ] , mi . data . normal [ i + 1 ] , mi . data . normal [ i + 2 ] } ;
AABB taabb ;
Triangle t ;
t . slice = mi . slice ;
for ( int k = 0 ; k < 3 ; k + + ) {
bounds . expand_to ( vtxs [ k ] ) ;
Vertex v ;
v . position [ 0 ] = vtxs [ k ] . x ;
v . position [ 1 ] = vtxs [ k ] . y ;
v . position [ 2 ] = vtxs [ k ] . z ;
v . uv [ 0 ] = uvs [ k ] . x ;
v . uv [ 1 ] = uvs [ k ] . y ;
v . normal_xy [ 0 ] = normal [ k ] . x ;
v . normal_xy [ 1 ] = normal [ k ] . y ;
v . normal_z = normal [ k ] . z ;
uint32_t * indexptr = vertex_map . getptr ( v ) ;
if ( indexptr ) {
t . indices [ k ] = * indexptr ;
} else {
uint32_t new_index = vertex_map . size ( ) ;
t . indices [ k ] = new_index ;
vertex_map [ v ] = new_index ;
vertex_array . push_back ( v ) ;
}
if ( k = = 0 ) {
taabb . position = vtxs [ k ] ;
} else {
taabb . expand_to ( vtxs [ k ] ) ;
}
}
//compute seams that will need to be blended later
for ( int k = 0 ; k < 3 ; k + + ) {
int n = ( k + 1 ) % 3 ;
Edge edge ( vtxs [ k ] , vtxs [ n ] , normal [ k ] , normal [ n ] ) ;
Vector2i edge_indices ( t . indices [ k ] , t . indices [ n ] ) ;
EdgeUV2 uv2 ( uvs [ k ] , uvs [ n ] , edge_indices ) ;
if ( edge . b = = edge . a ) {
continue ; //degenerate, somehow
}
if ( edge . b < edge . a ) {
SWAP ( edge . a , edge . b ) ;
SWAP ( edge . na , edge . nb ) ;
SWAP ( uv2 . a , uv2 . b ) ;
SWAP ( edge_indices . x , edge_indices . y ) ;
}
EdgeUV2 * euv2 = edges . getptr ( edge ) ;
if ( ! euv2 ) {
edges [ edge ] = uv2 ;
} else {
if ( * euv2 = = uv2 ) {
continue ; // seam shared UV space, no need to blend
}
if ( euv2 - > seam_found ) {
continue ; //bad geometry
}
Seam seam ;
seam . a = edge_indices ;
seam . b = euv2 - > indices ;
seam . slice = mi . slice ;
seams . push_back ( seam ) ;
slice_seam_count . write [ mi . slice ] + + ;
euv2 - > seam_found = true ;
}
}
2021-09-11 12:02:37 +00:00
t . min_bounds [ 0 ] = taabb . position . x ;
t . min_bounds [ 1 ] = taabb . position . y ;
t . min_bounds [ 2 ] = taabb . position . z ;
t . max_bounds [ 0 ] = taabb . position . x + MAX ( taabb . size . x , 0.0001 ) ;
t . max_bounds [ 1 ] = taabb . position . y + MAX ( taabb . size . y , 0.0001 ) ;
t . max_bounds [ 2 ] = taabb . position . z + MAX ( taabb . size . z , 0.0001 ) ;
t . pad0 = t . pad1 = 0 ; //make valgrind not complain
2020-05-01 12:34:23 +00:00
triangles . push_back ( t ) ;
slice_triangle_count . write [ t . slice ] + + ;
}
}
//also consider probe positions for bounds
2022-09-29 09:53:28 +00:00
for ( int i = 0 ; i < p_probe_positions . size ( ) ; i + + ) {
Vector3 pp ( p_probe_positions [ i ] . position [ 0 ] , p_probe_positions [ i ] . position [ 1 ] , p_probe_positions [ i ] . position [ 2 ] ) ;
2020-05-01 12:34:23 +00:00
bounds . expand_to ( pp ) ;
}
bounds . grow_by ( 0.1 ) ; //grow a bit to avoid numerical error
triangles . sort ( ) ; //sort by slice
seams . sort ( ) ;
if ( p_step_function ) {
2022-03-28 13:24:14 +00:00
p_step_function ( 0.4 , RTR ( " Optimizing acceleration structure " ) , p_bake_userdata , true ) ;
2020-05-01 12:34:23 +00:00
}
//fill list of triangles in grid
LocalVector < TriangleSort > triangle_sort ;
for ( uint32_t i = 0 ; i < triangles . size ( ) ; i + + ) {
const Triangle & t = triangles [ i ] ;
Vector3 face [ 3 ] = {
Vector3 ( vertex_array [ t . indices [ 0 ] ] . position [ 0 ] , vertex_array [ t . indices [ 0 ] ] . position [ 1 ] , vertex_array [ t . indices [ 0 ] ] . position [ 2 ] ) ,
Vector3 ( vertex_array [ t . indices [ 1 ] ] . position [ 0 ] , vertex_array [ t . indices [ 1 ] ] . position [ 1 ] , vertex_array [ t . indices [ 1 ] ] . position [ 2 ] ) ,
Vector3 ( vertex_array [ t . indices [ 2 ] ] . position [ 0 ] , vertex_array [ t . indices [ 2 ] ] . position [ 1 ] , vertex_array [ t . indices [ 2 ] ] . position [ 2 ] )
} ;
_plot_triangle_into_triangle_index_list ( grid_size , Vector3i ( ) , bounds , face , i , triangle_sort , grid_size ) ;
}
//sort it
triangle_sort . sort ( ) ;
2023-10-13 14:39:48 +00:00
LocalVector < uint32_t > cluster_indices ;
LocalVector < ClusterAABB > cluster_aabbs ;
2020-05-01 12:34:23 +00:00
Vector < uint32_t > triangle_indices ;
triangle_indices . resize ( triangle_sort . size ( ) ) ;
Vector < uint32_t > grid_indices ;
grid_indices . resize ( grid_size * grid_size * grid_size * 2 ) ;
2021-04-27 14:19:21 +00:00
memset ( grid_indices . ptrw ( ) , 0 , grid_indices . size ( ) * sizeof ( uint32_t ) ) ;
2020-05-01 12:34:23 +00:00
{
2023-10-13 14:39:48 +00:00
// Fill grid with cell indices.
2020-05-01 12:34:23 +00:00
uint32_t last_cell = 0xFFFFFFFF ;
uint32_t * giw = grid_indices . ptrw ( ) ;
2023-10-13 14:39:48 +00:00
uint32_t cluster_count = 0 ;
uint32_t solid_cell_count = 0 ;
2020-05-01 12:34:23 +00:00
for ( uint32_t i = 0 ; i < triangle_sort . size ( ) ; i + + ) {
uint32_t cell = triangle_sort [ i ] . cell_index ;
if ( cell ! = last_cell ) {
2023-10-13 14:39:48 +00:00
giw [ cell * 2 + 1 ] = solid_cell_count ;
solid_cell_count + + ;
}
if ( ( giw [ cell * 2 ] % p_cluster_size ) = = 0 ) {
// Add an extra cluster every time the triangle counter reaches a multiple of the cluster size.
cluster_count + + ;
2020-05-01 12:34:23 +00:00
}
2023-10-13 14:39:48 +00:00
giw [ cell * 2 ] + + ;
2020-05-01 12:34:23 +00:00
last_cell = cell ;
}
2023-10-13 14:39:48 +00:00
// Build fixed-size triangle clusters for all the cells to speed up the traversal. A cell can hold multiple clusters that each contain a fixed
// amount of triangles and an AABB. The tracer will check against the AABBs first to know whether it needs to visit the cell's triangles.
//
// The building algorithm will divide the triangles recursively contained inside each cell, sorting by the longest axis of the AABB on each step.
//
// - If the amount of triangles is less or equal to the cluster size, the AABB will be stored and the algorithm stops.
//
// - The division by two is increased to the next power of two of half the amount of triangles (with cluster size as the minimum value) to
// ensure the first half always fills the cluster.
cluster_indices . resize ( solid_cell_count * 2 ) ;
cluster_aabbs . resize ( cluster_count ) ;
uint32_t i = 0 ;
uint32_t cluster_index = 0 ;
uint32_t solid_cell_index = 0 ;
uint32_t * tiw = triangle_indices . ptrw ( ) ;
while ( i < triangle_sort . size ( ) ) {
cluster_indices [ solid_cell_index * 2 ] = cluster_index ;
cluster_indices [ solid_cell_index * 2 + 1 ] = i ;
uint32_t cell = triangle_sort [ i ] . cell_index ;
uint32_t triangle_count = giw [ cell * 2 ] ;
uint32_t cell_cluster_count = ( triangle_count + p_cluster_size - 1 ) / p_cluster_size ;
_sort_triangle_clusters ( p_cluster_size , cluster_index , i , triangle_count , triangle_sort , cluster_aabbs ) ;
for ( uint32_t j = 0 ; j < triangle_count ; j + + ) {
tiw [ i + j ] = triangle_sort [ i + j ] . triangle_index ;
}
i + = triangle_count ;
cluster_index + = cell_cluster_count ;
solid_cell_index + + ;
}
2020-05-01 12:34:23 +00:00
}
#if 0
for ( int i = 0 ; i < grid_size ; i + + ) {
for ( int j = 0 ; j < grid_size ; j + + ) {
for ( int k = 0 ; k < grid_size ; k + + ) {
uint32_t index = i * ( grid_size * grid_size ) + j * grid_size + k ;
grid_indices . write [ index * 2 ] = float ( i ) / grid_size * 255 ;
grid_indices . write [ index * 2 + 1 ] = float ( j ) / grid_size * 255 ;
}
}
}
# endif
#if 0
for ( int i = 0 ; i < grid_size ; i + + ) {
Vector < uint8_t > grid_usage ;
grid_usage . resize ( grid_size * grid_size ) ;
for ( int j = 0 ; j < grid_usage . size ( ) ; j + + ) {
uint32_t ofs = i * grid_size * grid_size + j ;
uint32_t count = grid_indices [ ofs * 2 ] ;
grid_usage . write [ j ] = count > 0 ? 255 : 0 ;
}
2022-07-22 18:06:19 +00:00
Ref < Image > img = Image : : create_from_data ( grid_size , grid_size , false , Image : : FORMAT_L8 , grid_usage ) ;
2020-05-01 12:34:23 +00:00
img - > save_png ( " res://grid_layer_ " + itos ( 1000 + i ) . substr ( 1 , 3 ) + " .png " ) ;
}
# endif
/*****************************/
/*** CREATE GPU STRUCTURES ***/
/*****************************/
lights . sort ( ) ;
Vector < Vector2i > seam_buffer_vec ;
seam_buffer_vec . resize ( seams . size ( ) * 2 ) ;
for ( uint32_t i = 0 ; i < seams . size ( ) ; i + + ) {
seam_buffer_vec . write [ i * 2 + 0 ] = seams [ i ] . a ;
seam_buffer_vec . write [ i * 2 + 1 ] = seams [ i ] . b ;
}
{ //buffers
Vector < uint8_t > vb = vertex_array . to_byte_array ( ) ;
vertex_buffer = rd - > storage_buffer_create ( vb . size ( ) , vb ) ;
Vector < uint8_t > tb = triangles . to_byte_array ( ) ;
triangle_buffer = rd - > storage_buffer_create ( tb . size ( ) , tb ) ;
Vector < uint8_t > tib = triangle_indices . to_byte_array ( ) ;
2023-10-13 14:39:48 +00:00
r_triangle_indices_buffer = rd - > storage_buffer_create ( tib . size ( ) , tib ) ;
Vector < uint8_t > cib = cluster_indices . to_byte_array ( ) ;
r_cluster_indices_buffer = rd - > storage_buffer_create ( cib . size ( ) , cib ) ;
Vector < uint8_t > cab = cluster_aabbs . to_byte_array ( ) ;
r_cluster_aabbs_buffer = rd - > storage_buffer_create ( cab . size ( ) , cab ) ;
2020-05-01 12:34:23 +00:00
Vector < uint8_t > lb = lights . to_byte_array ( ) ;
if ( lb . size ( ) = = 0 ) {
lb . resize ( sizeof ( Light ) ) ; //even if no lights, the buffer must exist
}
lights_buffer = rd - > storage_buffer_create ( lb . size ( ) , lb ) ;
Vector < uint8_t > sb = seam_buffer_vec . to_byte_array ( ) ;
if ( sb . size ( ) = = 0 ) {
sb . resize ( sizeof ( Vector2i ) * 2 ) ; //even if no seams, the buffer must exist
}
seams_buffer = rd - > storage_buffer_create ( sb . size ( ) , sb ) ;
2022-09-29 09:53:28 +00:00
Vector < uint8_t > pb = p_probe_positions . to_byte_array ( ) ;
2020-05-01 12:34:23 +00:00
if ( pb . size ( ) = = 0 ) {
pb . resize ( sizeof ( Probe ) ) ;
}
probe_positions_buffer = rd - > storage_buffer_create ( pb . size ( ) , pb ) ;
}
{ //grid
RD : : TextureFormat tf ;
tf . width = grid_size ;
tf . height = grid_size ;
tf . depth = grid_size ;
2020-11-27 03:50:05 +00:00
tf . texture_type = RD : : TEXTURE_TYPE_3D ;
2020-05-01 12:34:23 +00:00
tf . usage_bits = RD : : TEXTURE_USAGE_SAMPLING_BIT | RD : : TEXTURE_USAGE_CAN_UPDATE_BIT ;
Vector < Vector < uint8_t > > texdata ;
texdata . resize ( 1 ) ;
//grid and indices
tf . format = RD : : DATA_FORMAT_R32G32_UINT ;
texdata . write [ 0 ] = grid_indices . to_byte_array ( ) ;
grid_texture = rd - > texture_create ( tf , RD : : TextureView ( ) , texdata ) ;
}
}
void LightmapperRD : : _raster_geometry ( RenderingDevice * rd , Size2i atlas_size , int atlas_slices , int grid_size , AABB bounds , float p_bias , Vector < int > slice_triangle_count , RID position_tex , RID unocclude_tex , RID normal_tex , RID raster_depth_buffer , RID rasterize_shader , RID raster_base_uniform ) {
Vector < RID > framebuffers ;
for ( int i = 0 ; i < atlas_slices ; i + + ) {
RID slice_pos_tex = rd - > texture_create_shared_from_slice ( RD : : TextureView ( ) , position_tex , i , 0 ) ;
RID slice_unoc_tex = rd - > texture_create_shared_from_slice ( RD : : TextureView ( ) , unocclude_tex , i , 0 ) ;
RID slice_norm_tex = rd - > texture_create_shared_from_slice ( RD : : TextureView ( ) , normal_tex , i , 0 ) ;
Vector < RID > fb ;
fb . push_back ( slice_pos_tex ) ;
fb . push_back ( slice_norm_tex ) ;
fb . push_back ( slice_unoc_tex ) ;
fb . push_back ( raster_depth_buffer ) ;
framebuffers . push_back ( rd - > framebuffer_create ( fb ) ) ;
}
RD : : PipelineDepthStencilState ds ;
ds . enable_depth_test = true ;
ds . enable_depth_write = true ;
ds . depth_compare_operator = RD : : COMPARE_OP_LESS ; //so it does render same pixel twice
RID raster_pipeline = rd - > render_pipeline_create ( rasterize_shader , rd - > framebuffer_get_format ( framebuffers [ 0 ] ) , RD : : INVALID_FORMAT_ID , RD : : RENDER_PRIMITIVE_TRIANGLES , RD : : PipelineRasterizationState ( ) , RD : : PipelineMultisampleState ( ) , ds , RD : : PipelineColorBlendState : : create_disabled ( 3 ) , 0 ) ;
RID raster_pipeline_wire ;
{
RD : : PipelineRasterizationState rw ;
rw . wireframe = true ;
raster_pipeline_wire = rd - > render_pipeline_create ( rasterize_shader , rd - > framebuffer_get_format ( framebuffers [ 0 ] ) , RD : : INVALID_FORMAT_ID , RD : : RENDER_PRIMITIVE_TRIANGLES , rw , RD : : PipelineMultisampleState ( ) , ds , RD : : PipelineColorBlendState : : create_disabled ( 3 ) , 0 ) ;
}
uint32_t triangle_offset = 0 ;
Vector < Color > clear_colors ;
clear_colors . push_back ( Color ( 0 , 0 , 0 , 0 ) ) ;
clear_colors . push_back ( Color ( 0 , 0 , 0 , 0 ) ) ;
clear_colors . push_back ( Color ( 0 , 0 , 0 , 0 ) ) ;
for ( int i = 0 ; i < atlas_slices ; i + + ) {
RasterPushConstant raster_push_constant ;
raster_push_constant . atlas_size [ 0 ] = atlas_size . x ;
raster_push_constant . atlas_size [ 1 ] = atlas_size . y ;
raster_push_constant . base_triangle = triangle_offset ;
raster_push_constant . to_cell_offset [ 0 ] = bounds . position . x ;
raster_push_constant . to_cell_offset [ 1 ] = bounds . position . y ;
raster_push_constant . to_cell_offset [ 2 ] = bounds . position . z ;
raster_push_constant . bias = p_bias ;
raster_push_constant . to_cell_size [ 0 ] = ( 1.0 / bounds . size . x ) * float ( grid_size ) ;
raster_push_constant . to_cell_size [ 1 ] = ( 1.0 / bounds . size . y ) * float ( grid_size ) ;
raster_push_constant . to_cell_size [ 2 ] = ( 1.0 / bounds . size . z ) * float ( grid_size ) ;
raster_push_constant . grid_size [ 0 ] = grid_size ;
raster_push_constant . grid_size [ 1 ] = grid_size ;
raster_push_constant . grid_size [ 2 ] = grid_size ;
2023-09-18 14:56:04 +00:00
// Half pixel offset is required so the rasterizer doesn't output face edges directly aligned into pixels.
// This fixes artifacts where the pixel would be traced from the edge of a face, causing half the rays to
// be outside of the boundaries of the geometry. See <https://github.com/godotengine/godot/issues/69126>.
raster_push_constant . uv_offset [ 0 ] = - 0.5f / float ( atlas_size . x ) ;
raster_push_constant . uv_offset [ 1 ] = - 0.5f / float ( atlas_size . y ) ;
2020-05-01 12:34:23 +00:00
RD : : DrawListID draw_list = rd - > draw_list_begin ( framebuffers [ i ] , RD : : INITIAL_ACTION_CLEAR , RD : : FINAL_ACTION_READ , RD : : INITIAL_ACTION_CLEAR , RD : : FINAL_ACTION_DISCARD , clear_colors ) ;
//draw opaque
rd - > draw_list_bind_render_pipeline ( draw_list , raster_pipeline ) ;
rd - > draw_list_bind_uniform_set ( draw_list , raster_base_uniform , 0 ) ;
rd - > draw_list_set_push_constant ( draw_list , & raster_push_constant , sizeof ( RasterPushConstant ) ) ;
rd - > draw_list_draw ( draw_list , false , 1 , slice_triangle_count [ i ] * 3 ) ;
//draw wire
rd - > draw_list_bind_render_pipeline ( draw_list , raster_pipeline_wire ) ;
rd - > draw_list_bind_uniform_set ( draw_list , raster_base_uniform , 0 ) ;
rd - > draw_list_set_push_constant ( draw_list , & raster_push_constant , sizeof ( RasterPushConstant ) ) ;
rd - > draw_list_draw ( draw_list , false , 1 , slice_triangle_count [ i ] * 3 ) ;
rd - > draw_list_end ( ) ;
triangle_offset + = slice_triangle_count [ i ] ;
}
}
2023-09-11 17:59:50 +00:00
static Vector < RD : : Uniform > dilate_or_denoise_common_uniforms ( RID & p_source_light_tex , RID & p_dest_light_tex ) {
2021-09-26 07:16:31 +00:00
Vector < RD : : Uniform > uniforms ;
{
2023-09-11 17:59:50 +00:00
RD : : Uniform u ;
u . uniform_type = RD : : UNIFORM_TYPE_IMAGE ;
u . binding = 0 ;
u . append_id ( p_dest_light_tex ) ;
uniforms . push_back ( u ) ;
}
{
RD : : Uniform u ;
u . uniform_type = RD : : UNIFORM_TYPE_TEXTURE ;
u . binding = 1 ;
u . append_id ( p_source_light_tex ) ;
uniforms . push_back ( u ) ;
2021-09-26 07:16:31 +00:00
}
2023-09-11 17:59:50 +00:00
return uniforms ;
}
LightmapperRD : : BakeError LightmapperRD : : _dilate ( RenderingDevice * rd , Ref < RDShaderFile > & compute_shader , RID & compute_base_uniform_set , PushConstant & push_constant , RID & source_light_tex , RID & dest_light_tex , const Size2i & atlas_size , int atlas_slices ) {
Vector < RD : : Uniform > uniforms = dilate_or_denoise_common_uniforms ( source_light_tex , dest_light_tex ) ;
2021-09-26 07:16:31 +00:00
RID compute_shader_dilate = rd - > shader_create_from_spirv ( compute_shader - > get_spirv_stages ( " dilate " ) ) ;
ERR_FAIL_COND_V ( compute_shader_dilate . is_null ( ) , BAKE_ERROR_LIGHTMAP_CANT_PRE_BAKE_MESHES ) ; //internal check, should not happen
RID compute_shader_dilate_pipeline = rd - > compute_pipeline_create ( compute_shader_dilate ) ;
RID dilate_uniform_set = rd - > uniform_set_create ( uniforms , compute_shader_dilate , 1 ) ;
RD : : ComputeListID compute_list = rd - > compute_list_begin ( ) ;
rd - > compute_list_bind_compute_pipeline ( compute_list , compute_shader_dilate_pipeline ) ;
rd - > compute_list_bind_uniform_set ( compute_list , compute_base_uniform_set , 0 ) ;
rd - > compute_list_bind_uniform_set ( compute_list , dilate_uniform_set , 1 ) ;
push_constant . region_ofs [ 0 ] = 0 ;
push_constant . region_ofs [ 1 ] = 0 ;
Vector3i group_size ( ( atlas_size . x - 1 ) / 8 + 1 , ( atlas_size . y - 1 ) / 8 + 1 , 1 ) ; //restore group size
for ( int i = 0 ; i < atlas_slices ; i + + ) {
push_constant . atlas_slice = i ;
rd - > compute_list_set_push_constant ( compute_list , & push_constant , sizeof ( PushConstant ) ) ;
rd - > compute_list_dispatch ( compute_list , group_size . x , group_size . y , group_size . z ) ;
//no barrier, let them run all together
}
rd - > compute_list_end ( ) ;
rd - > free ( compute_shader_dilate ) ;
# ifdef DEBUG_TEXTURES
for ( int i = 0 ; i < atlas_slices ; i + + ) {
Vector < uint8_t > s = rd - > texture_get_data ( light_accum_tex , i ) ;
2022-07-22 18:06:19 +00:00
Ref < Image > img = Image : : create_from_data ( atlas_size . width , atlas_size . height , false , Image : : FORMAT_RGBAH , s ) ;
2021-09-26 07:16:31 +00:00
img - > convert ( Image : : FORMAT_RGBA8 ) ;
img - > save_png ( " res://5_dilated_ " + itos ( i ) + " .png " ) ;
}
# endif
return BAKE_OK ;
}
2023-10-04 19:32:39 +00:00
Error LightmapperRD : : _store_pfm ( RenderingDevice * p_rd , RID p_atlas_tex , int p_index , const Size2i & p_atlas_size , const String & p_name ) {
Vector < uint8_t > data = p_rd - > texture_get_data ( p_atlas_tex , p_index ) ;
Ref < Image > img = Image : : create_from_data ( p_atlas_size . width , p_atlas_size . height , false , Image : : FORMAT_RGBAH , data ) ;
img - > convert ( Image : : FORMAT_RGBF ) ;
Vector < uint8_t > data_float = img - > get_data ( ) ;
Error err = OK ;
Ref < FileAccess > file = FileAccess : : open ( p_name , FileAccess : : WRITE , & err ) ;
ERR_FAIL_COND_V_MSG ( err , err , vformat ( " Can't save PFN at path: '%s'. " , p_name ) ) ;
file - > store_line ( " PF " ) ;
file - > store_line ( vformat ( " %d %d " , img - > get_width ( ) , img - > get_height ( ) ) ) ;
# ifdef BIG_ENDIAN_ENABLED
file - > store_line ( " 1.0 " ) ;
# else
file - > store_line ( " -1.0 " ) ;
# endif
file - > store_buffer ( data_float ) ;
file - > close ( ) ;
return OK ;
}
Ref < Image > LightmapperRD : : _read_pfm ( const String & p_name ) {
Error err = OK ;
Ref < FileAccess > file = FileAccess : : open ( p_name , FileAccess : : READ , & err ) ;
ERR_FAIL_COND_V_MSG ( err , Ref < Image > ( ) , vformat ( " Can't load PFM at path: '%s'. " , p_name ) ) ;
ERR_FAIL_COND_V ( file - > get_line ( ) ! = " PF " , Ref < Image > ( ) ) ;
Vector < String > new_size = file - > get_line ( ) . split ( " " ) ;
ERR_FAIL_COND_V ( new_size . size ( ) ! = 2 , Ref < Image > ( ) ) ;
int new_width = new_size [ 0 ] . to_int ( ) ;
int new_height = new_size [ 1 ] . to_int ( ) ;
float endian = file - > get_line ( ) . to_float ( ) ;
Vector < uint8_t > new_data = file - > get_buffer ( file - > get_length ( ) - file - > get_position ( ) ) ;
file - > close ( ) ;
# ifdef BIG_ENDIAN_ENABLED
if ( unlikely ( endian < 0.0 ) ) {
uint32_t count = new_data . size ( ) / 4 ;
uint16_t * dst = ( uint16_t * ) new_data . ptrw ( ) ;
for ( uint32_t j = 0 ; j < count ; j + + ) {
dst [ j * 4 ] = BSWAP32 ( dst [ j * 4 ] ) ;
}
}
# else
if ( unlikely ( endian > 0.0 ) ) {
uint32_t count = new_data . size ( ) / 4 ;
uint16_t * dst = ( uint16_t * ) new_data . ptrw ( ) ;
for ( uint32_t j = 0 ; j < count ; j + + ) {
dst [ j * 4 ] = BSWAP32 ( dst [ j * 4 ] ) ;
}
}
# endif
Ref < Image > img = Image : : create_from_data ( new_width , new_height , false , Image : : FORMAT_RGBF , new_data ) ;
img - > convert ( Image : : FORMAT_RGBAH ) ;
return img ;
}
LightmapperRD : : BakeError LightmapperRD : : _denoise_oidn ( RenderingDevice * p_rd , RID p_source_light_tex , RID p_source_normal_tex , RID p_dest_light_tex , const Size2i & p_atlas_size , int p_atlas_slices , bool p_bake_sh , const String & p_exe ) {
Ref < DirAccess > da = DirAccess : : create ( DirAccess : : ACCESS_FILESYSTEM ) ;
for ( int i = 0 ; i < p_atlas_slices ; i + + ) {
String fname_norm_in = EditorPaths : : get_singleton ( ) - > get_cache_dir ( ) . path_join ( vformat ( " temp_norm_%d.pfm " , i ) ) ;
_store_pfm ( p_rd , p_source_normal_tex , i , p_atlas_size , fname_norm_in ) ;
for ( int j = 0 ; j < ( p_bake_sh ? 4 : 1 ) ; j + + ) {
int index = i * ( p_bake_sh ? 4 : 1 ) + j ;
String fname_light_in = EditorPaths : : get_singleton ( ) - > get_cache_dir ( ) . path_join ( vformat ( " temp_light_%d.pfm " , index ) ) ;
String fname_out = EditorPaths : : get_singleton ( ) - > get_cache_dir ( ) . path_join ( vformat ( " temp_denoised_%d.pfm " , index ) ) ;
_store_pfm ( p_rd , p_source_light_tex , index , p_atlas_size , fname_light_in ) ;
List < String > args ;
args . push_back ( " --device " ) ;
args . push_back ( " default " ) ;
args . push_back ( " --filter " ) ;
args . push_back ( " RTLightmap " ) ;
args . push_back ( " --hdr " ) ;
args . push_back ( fname_light_in ) ;
args . push_back ( " --nrm " ) ;
args . push_back ( fname_norm_in ) ;
args . push_back ( " --output " ) ;
args . push_back ( fname_out ) ;
String str ;
int exitcode = 0 ;
Error err = OS : : get_singleton ( ) - > execute ( p_exe , args , & str , & exitcode , true ) ;
da - > remove ( fname_light_in ) ;
if ( err ! = OK | | exitcode ! = 0 ) {
da - > remove ( fname_out ) ;
print_verbose ( str ) ;
2023-11-11 21:59:05 +00:00
ERR_FAIL_V_MSG ( BAKE_ERROR_LIGHTMAP_CANT_PRE_BAKE_MESHES , vformat ( " OIDN denoiser failed, return code: %d " , exitcode ) ) ;
2023-10-04 19:32:39 +00:00
}
Ref < Image > img = _read_pfm ( fname_out ) ;
da - > remove ( fname_out ) ;
ERR_FAIL_COND_V ( img . is_null ( ) , BAKE_ERROR_LIGHTMAP_CANT_PRE_BAKE_MESHES ) ;
Vector < uint8_t > old_data = p_rd - > texture_get_data ( p_source_light_tex , index ) ;
Vector < uint8_t > new_data = img - > get_data ( ) ;
img . unref ( ) ; // Avoid copy on write.
uint32_t count = old_data . size ( ) / 2 ;
const uint16_t * src = ( const uint16_t * ) old_data . ptr ( ) ;
uint16_t * dst = ( uint16_t * ) new_data . ptrw ( ) ;
for ( uint32_t k = 0 ; k < count ; k + = 4 ) {
dst [ k + 3 ] = src [ k + 3 ] ;
}
p_rd - > texture_update ( p_dest_light_tex , index , new_data ) ;
}
da - > remove ( fname_norm_in ) ;
}
return BAKE_OK ;
}
2023-09-11 17:59:50 +00:00
LightmapperRD : : BakeError LightmapperRD : : _denoise ( RenderingDevice * p_rd , Ref < RDShaderFile > & p_compute_shader , const RID & p_compute_base_uniform_set , PushConstant & p_push_constant , RID p_source_light_tex , RID p_source_normal_tex , RID p_dest_light_tex , float p_denoiser_strength , const Size2i & p_atlas_size , int p_atlas_slices , bool p_bake_sh , BakeStepFunc p_step_function ) {
RID denoise_params_buffer = p_rd - > uniform_buffer_create ( sizeof ( DenoiseParams ) ) ;
DenoiseParams denoise_params ;
denoise_params . spatial_bandwidth = 5.0f ;
denoise_params . light_bandwidth = p_denoiser_strength ;
denoise_params . albedo_bandwidth = 1.0f ;
denoise_params . normal_bandwidth = 0.1f ;
denoise_params . filter_strength = 10.0f ;
p_rd - > buffer_update ( denoise_params_buffer , 0 , sizeof ( DenoiseParams ) , & denoise_params ) ;
Vector < RD : : Uniform > uniforms = dilate_or_denoise_common_uniforms ( p_source_light_tex , p_dest_light_tex ) ;
{
RD : : Uniform u ;
u . uniform_type = RD : : UNIFORM_TYPE_TEXTURE ;
u . binding = 2 ;
u . append_id ( p_source_normal_tex ) ;
uniforms . push_back ( u ) ;
}
{
RD : : Uniform u ;
u . uniform_type = RD : : UNIFORM_TYPE_UNIFORM_BUFFER ;
u . binding = 3 ;
u . append_id ( denoise_params_buffer ) ;
uniforms . push_back ( u ) ;
}
RID compute_shader_denoise = p_rd - > shader_create_from_spirv ( p_compute_shader - > get_spirv_stages ( " denoise " ) ) ;
ERR_FAIL_COND_V ( compute_shader_denoise . is_null ( ) , BAKE_ERROR_LIGHTMAP_CANT_PRE_BAKE_MESHES ) ;
RID compute_shader_denoise_pipeline = p_rd - > compute_pipeline_create ( compute_shader_denoise ) ;
RID denoise_uniform_set = p_rd - > uniform_set_create ( uniforms , compute_shader_denoise , 1 ) ;
// We denoise in fixed size regions and synchronize execution to avoid GPU timeouts.
// We use a region with 1/4 the amount of pixels if we're denoising SH lightmaps, as
// all four of them are denoised in the shader in one dispatch.
const int max_region_size = p_bake_sh ? 512 : 1024 ;
int x_regions = ( p_atlas_size . width - 1 ) / max_region_size + 1 ;
int y_regions = ( p_atlas_size . height - 1 ) / max_region_size + 1 ;
for ( int s = 0 ; s < p_atlas_slices ; s + + ) {
p_push_constant . atlas_slice = s ;
for ( int i = 0 ; i < x_regions ; i + + ) {
for ( int j = 0 ; j < y_regions ; j + + ) {
int x = i * max_region_size ;
int y = j * max_region_size ;
int w = MIN ( ( i + 1 ) * max_region_size , p_atlas_size . width ) - x ;
int h = MIN ( ( j + 1 ) * max_region_size , p_atlas_size . height ) - y ;
p_push_constant . region_ofs [ 0 ] = x ;
p_push_constant . region_ofs [ 1 ] = y ;
RD : : ComputeListID compute_list = p_rd - > compute_list_begin ( ) ;
p_rd - > compute_list_bind_compute_pipeline ( compute_list , compute_shader_denoise_pipeline ) ;
p_rd - > compute_list_bind_uniform_set ( compute_list , p_compute_base_uniform_set , 0 ) ;
p_rd - > compute_list_bind_uniform_set ( compute_list , denoise_uniform_set , 1 ) ;
p_rd - > compute_list_set_push_constant ( compute_list , & p_push_constant , sizeof ( PushConstant ) ) ;
p_rd - > compute_list_dispatch ( compute_list , ( w - 1 ) / 8 + 1 , ( h - 1 ) / 8 + 1 , 1 ) ;
p_rd - > compute_list_end ( ) ;
p_rd - > submit ( ) ;
p_rd - > sync ( ) ;
}
}
}
p_rd - > free ( compute_shader_denoise ) ;
p_rd - > free ( denoise_params_buffer ) ;
return BAKE_OK ;
}
2023-10-13 17:32:22 +00:00
LightmapperRD : : BakeError LightmapperRD : : bake ( BakeQuality p_quality , bool p_use_denoiser , float p_denoiser_strength , int p_bounces , float p_bounce_indirect_energy , float p_bias , int p_max_texture_size , bool p_bake_sh , bool p_texture_for_bounces , GenerateProbes p_generate_probes , const Ref < Image > & p_environment_panorama , const Basis & p_environment_transform , BakeStepFunc p_step_function , void * p_bake_userdata , float p_exposure_normalization ) {
2023-10-04 19:32:39 +00:00
int denoiser = GLOBAL_GET ( " rendering/lightmapping/denoising/denoiser " ) ;
String oidn_path = EDITOR_GET ( " filesystem/tools/oidn/oidn_denoise_path " ) ;
if ( p_use_denoiser & & denoiser = = 1 ) {
// OIDN (external).
Ref < DirAccess > da = DirAccess : : create ( DirAccess : : ACCESS_FILESYSTEM ) ;
if ( da - > dir_exists ( oidn_path ) ) {
if ( OS : : get_singleton ( ) - > get_name ( ) = = " Windows " ) {
oidn_path = oidn_path . path_join ( " oidnDenoise.exe " ) ;
} else {
oidn_path = oidn_path . path_join ( " oidnDenoise " ) ;
}
}
2023-11-11 21:59:05 +00:00
ERR_FAIL_COND_V_MSG ( oidn_path . is_empty ( ) | | ! da - > file_exists ( oidn_path ) , BAKE_ERROR_LIGHTMAP_CANT_PRE_BAKE_MESHES , " OIDN denoiser is selected in the project settings, but no or invalid OIDN executable path is configured in the editor settings. " ) ;
2023-10-04 19:32:39 +00:00
}
2020-05-01 12:34:23 +00:00
if ( p_step_function ) {
2022-03-28 13:24:14 +00:00
p_step_function ( 0.0 , RTR ( " Begin Bake " ) , p_bake_userdata , true ) ;
2020-05-01 12:34:23 +00:00
}
bake_textures . clear ( ) ;
int grid_size = 128 ;
/* STEP 1: Fetch material textures and compute the bounds */
AABB bounds ;
Size2i atlas_size ;
int atlas_slices ;
Vector < Ref < Image > > albedo_images ;
Vector < Ref < Image > > emission_images ;
BakeError bake_error = _blit_meshes_into_atlas ( p_max_texture_size , albedo_images , emission_images , bounds , atlas_size , atlas_slices , p_step_function , p_bake_userdata ) ;
if ( bake_error ! = BAKE_OK ) {
return bake_error ;
}
# ifdef DEBUG_TEXTURES
for ( int i = 0 ; i < atlas_slices ; i + + ) {
albedo_images [ i ] - > save_png ( " res://0_albedo_ " + itos ( i ) + " .png " ) ;
emission_images [ i ] - > save_png ( " res://0_emission_ " + itos ( i ) + " .png " ) ;
}
# endif
RenderingDevice * rd = RenderingDevice : : get_singleton ( ) - > create_local_device ( ) ;
RID albedo_array_tex ;
RID emission_array_tex ;
RID normal_tex ;
RID position_tex ;
RID unocclude_tex ;
RID light_source_tex ;
RID light_dest_tex ;
RID light_accum_tex ;
RID light_accum_tex2 ;
RID light_environment_tex ;
2023-10-13 17:32:22 +00:00
# define FREE_TEXTURES \
rd - > free ( albedo_array_tex ) ; \
rd - > free ( emission_array_tex ) ; \
rd - > free ( normal_tex ) ; \
rd - > free ( position_tex ) ; \
rd - > free ( unocclude_tex ) ; \
rd - > free ( light_source_tex ) ; \
rd - > free ( light_accum_tex2 ) ; \
rd - > free ( light_accum_tex ) ; \
2020-05-01 12:34:23 +00:00
rd - > free ( light_environment_tex ) ;
{ // create all textures
Vector < Vector < uint8_t > > albedo_data ;
Vector < Vector < uint8_t > > emission_data ;
for ( int i = 0 ; i < atlas_slices ; i + + ) {
albedo_data . push_back ( albedo_images [ i ] - > get_data ( ) ) ;
emission_data . push_back ( emission_images [ i ] - > get_data ( ) ) ;
}
RD : : TextureFormat tf ;
tf . width = atlas_size . width ;
tf . height = atlas_size . height ;
tf . array_layers = atlas_slices ;
2020-11-27 03:50:05 +00:00
tf . texture_type = RD : : TEXTURE_TYPE_2D_ARRAY ;
2020-05-01 12:34:23 +00:00
tf . usage_bits = RD : : TEXTURE_USAGE_SAMPLING_BIT | RD : : TEXTURE_USAGE_CAN_UPDATE_BIT ;
tf . format = RD : : DATA_FORMAT_R8G8B8A8_UNORM ;
albedo_array_tex = rd - > texture_create ( tf , RD : : TextureView ( ) , albedo_data ) ;
tf . format = RD : : DATA_FORMAT_R16G16B16A16_SFLOAT ;
emission_array_tex = rd - > texture_create ( tf , RD : : TextureView ( ) , emission_data ) ;
//this will be rastered to
tf . usage_bits = RD : : TEXTURE_USAGE_SAMPLING_BIT | RD : : TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | RD : : TEXTURE_USAGE_CAN_COPY_FROM_BIT | RD : : TEXTURE_USAGE_STORAGE_BIT ;
normal_tex = rd - > texture_create ( tf , RD : : TextureView ( ) ) ;
tf . format = RD : : DATA_FORMAT_R32G32B32A32_SFLOAT ;
position_tex = rd - > texture_create ( tf , RD : : TextureView ( ) ) ;
unocclude_tex = rd - > texture_create ( tf , RD : : TextureView ( ) ) ;
tf . format = RD : : DATA_FORMAT_R16G16B16A16_SFLOAT ;
tf . usage_bits = RD : : TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | RD : : TEXTURE_USAGE_SAMPLING_BIT | RD : : TEXTURE_USAGE_STORAGE_BIT | RD : : TEXTURE_USAGE_CAN_COPY_FROM_BIT | RD : : TEXTURE_USAGE_CAN_COPY_TO_BIT | RD : : TEXTURE_USAGE_CAN_UPDATE_BIT ;
light_source_tex = rd - > texture_create ( tf , RD : : TextureView ( ) ) ;
rd - > texture_clear ( light_source_tex , Color ( 0 , 0 , 0 , 0 ) , 0 , 1 , 0 , atlas_slices ) ;
if ( p_bake_sh ) {
tf . array_layers * = 4 ;
}
light_accum_tex = rd - > texture_create ( tf , RD : : TextureView ( ) ) ;
rd - > texture_clear ( light_accum_tex , Color ( 0 , 0 , 0 , 0 ) , 0 , 1 , 0 , tf . array_layers ) ;
light_dest_tex = rd - > texture_create ( tf , RD : : TextureView ( ) ) ;
rd - > texture_clear ( light_dest_tex , Color ( 0 , 0 , 0 , 0 ) , 0 , 1 , 0 , tf . array_layers ) ;
light_accum_tex2 = light_dest_tex ;
//env
{
Ref < Image > panorama_tex ;
if ( p_environment_panorama . is_valid ( ) ) {
panorama_tex = p_environment_panorama ;
panorama_tex - > convert ( Image : : FORMAT_RGBAF ) ;
} else {
2021-06-17 22:03:09 +00:00
panorama_tex . instantiate ( ) ;
2022-07-22 18:06:19 +00:00
panorama_tex - > initialize_data ( 8 , 8 , false , Image : : FORMAT_RGBAF ) ;
2022-01-08 11:58:15 +00:00
panorama_tex - > fill ( Color ( 0 , 0 , 0 , 1 ) ) ;
2020-05-01 12:34:23 +00:00
}
RD : : TextureFormat tfp ;
tfp . width = panorama_tex - > get_width ( ) ;
tfp . height = panorama_tex - > get_height ( ) ;
tfp . usage_bits = RD : : TEXTURE_USAGE_SAMPLING_BIT | RD : : TEXTURE_USAGE_CAN_UPDATE_BIT ;
tfp . format = RD : : DATA_FORMAT_R32G32B32A32_SFLOAT ;
Vector < Vector < uint8_t > > tdata ;
tdata . push_back ( panorama_tex - > get_data ( ) ) ;
light_environment_tex = rd - > texture_create ( tfp , RD : : TextureView ( ) , tdata ) ;
# ifdef DEBUG_TEXTURES
2021-04-25 21:36:39 +00:00
panorama_tex - > save_exr ( " res://0_panorama.exr " , false ) ;
2020-05-01 12:34:23 +00:00
# endif
}
}
/* STEP 2: create the acceleration structure for the GPU*/
Vector < int > slice_triangle_count ;
2023-10-13 17:32:22 +00:00
RID bake_parameters_buffer ;
2020-05-01 12:34:23 +00:00
RID vertex_buffer ;
RID triangle_buffer ;
RID lights_buffer ;
2023-10-13 14:39:48 +00:00
RID triangle_indices_buffer ;
RID cluster_indices_buffer ;
RID cluster_aabbs_buffer ;
2020-05-01 12:34:23 +00:00
RID grid_texture ;
RID seams_buffer ;
RID probe_positions_buffer ;
Vector < int > slice_seam_count ;
2023-10-13 14:39:48 +00:00
# define FREE_BUFFERS \
rd - > free ( bake_parameters_buffer ) ; \
rd - > free ( vertex_buffer ) ; \
rd - > free ( triangle_buffer ) ; \
rd - > free ( lights_buffer ) ; \
rd - > free ( triangle_indices_buffer ) ; \
rd - > free ( cluster_indices_buffer ) ; \
rd - > free ( cluster_aabbs_buffer ) ; \
rd - > free ( grid_texture ) ; \
rd - > free ( seams_buffer ) ; \
2020-05-01 12:34:23 +00:00
rd - > free ( probe_positions_buffer ) ;
2023-10-13 14:39:48 +00:00
const uint32_t cluster_size = 16 ;
_create_acceleration_structures ( rd , atlas_size , atlas_slices , bounds , grid_size , cluster_size , probe_positions , p_generate_probes , slice_triangle_count , slice_seam_count , vertex_buffer , triangle_buffer , lights_buffer , triangle_indices_buffer , cluster_indices_buffer , cluster_aabbs_buffer , probe_positions_buffer , grid_texture , seams_buffer , p_step_function , p_bake_userdata ) ;
2020-05-01 12:34:23 +00:00
2023-10-13 17:32:22 +00:00
// Create global bake parameters buffer.
BakeParameters bake_parameters ;
bake_parameters . world_size [ 0 ] = bounds . size . x ;
bake_parameters . world_size [ 1 ] = bounds . size . y ;
bake_parameters . world_size [ 2 ] = bounds . size . z ;
bake_parameters . bias = p_bias ;
bake_parameters . to_cell_offset [ 0 ] = bounds . position . x ;
bake_parameters . to_cell_offset [ 1 ] = bounds . position . y ;
bake_parameters . to_cell_offset [ 2 ] = bounds . position . z ;
bake_parameters . grid_size = grid_size ;
bake_parameters . to_cell_size [ 0 ] = ( 1.0 / bounds . size . x ) * float ( grid_size ) ;
bake_parameters . to_cell_size [ 1 ] = ( 1.0 / bounds . size . y ) * float ( grid_size ) ;
bake_parameters . to_cell_size [ 2 ] = ( 1.0 / bounds . size . z ) * float ( grid_size ) ;
bake_parameters . light_count = lights . size ( ) ;
bake_parameters . env_transform [ 0 ] = p_environment_transform . rows [ 0 ] [ 0 ] ;
bake_parameters . env_transform [ 1 ] = p_environment_transform . rows [ 1 ] [ 0 ] ;
bake_parameters . env_transform [ 2 ] = p_environment_transform . rows [ 2 ] [ 0 ] ;
bake_parameters . env_transform [ 3 ] = 0.0f ;
bake_parameters . env_transform [ 4 ] = p_environment_transform . rows [ 0 ] [ 1 ] ;
bake_parameters . env_transform [ 5 ] = p_environment_transform . rows [ 1 ] [ 1 ] ;
bake_parameters . env_transform [ 6 ] = p_environment_transform . rows [ 2 ] [ 1 ] ;
bake_parameters . env_transform [ 7 ] = 0.0f ;
bake_parameters . env_transform [ 8 ] = p_environment_transform . rows [ 0 ] [ 2 ] ;
bake_parameters . env_transform [ 9 ] = p_environment_transform . rows [ 1 ] [ 2 ] ;
bake_parameters . env_transform [ 10 ] = p_environment_transform . rows [ 2 ] [ 2 ] ;
bake_parameters . env_transform [ 11 ] = 0.0f ;
bake_parameters . atlas_size [ 0 ] = atlas_size . width ;
bake_parameters . atlas_size [ 1 ] = atlas_size . height ;
bake_parameters . exposure_normalization = p_exposure_normalization ;
bake_parameters . bounces = p_bounces ;
bake_parameters . bounce_indirect_energy = p_bounce_indirect_energy ;
bake_parameters_buffer = rd - > uniform_buffer_create ( sizeof ( BakeParameters ) ) ;
rd - > buffer_update ( bake_parameters_buffer , 0 , sizeof ( BakeParameters ) , & bake_parameters ) ;
2020-05-01 12:34:23 +00:00
if ( p_step_function ) {
2022-03-28 13:24:14 +00:00
p_step_function ( 0.47 , RTR ( " Preparing shaders " ) , p_bake_userdata , true ) ;
2020-05-01 12:34:23 +00:00
}
//shaders
Ref < RDShaderFile > raster_shader ;
2021-06-17 22:03:09 +00:00
raster_shader . instantiate ( ) ;
2020-05-01 12:34:23 +00:00
Error err = raster_shader - > parse_versions_from_text ( lm_raster_shader_glsl ) ;
if ( err ! = OK ) {
raster_shader - > print_errors ( " raster_shader " ) ;
FREE_TEXTURES
FREE_BUFFERS
memdelete ( rd ) ;
}
ERR_FAIL_COND_V ( err ! = OK , BAKE_ERROR_LIGHTMAP_CANT_PRE_BAKE_MESHES ) ;
Implement Binary Shader Compilation
* Added an extra stage before compiling shader, which is generating a binary blob.
* On Vulkan, this allows caching the SPIRV reflection information, which is expensive to parse.
* On other (future) RenderingDevices, it allows caching converted binary data, such as DXIL or MSL.
This PR makes the shader cache include the reflection information, hence editor startup times are significantly improved.
I tested this well and it appears to work, and I added a lot of consistency checks, but because it includes writing and reading binary information, rare bugs may pop up, so be aware.
There was not much of a choice for storing the reflection information, given shaders can be a lot, take a lot of space and take time to parse.
2021-07-25 14:22:55 +00:00
RID rasterize_shader = rd - > shader_create_from_spirv ( raster_shader - > get_spirv_stages ( ) ) ;
2020-05-01 12:34:23 +00:00
ERR_FAIL_COND_V ( rasterize_shader . is_null ( ) , BAKE_ERROR_LIGHTMAP_CANT_PRE_BAKE_MESHES ) ; //this is a bug check, though, should not happen
RID sampler ;
{
RD : : SamplerState s ;
s . mag_filter = RD : : SAMPLER_FILTER_LINEAR ;
s . min_filter = RD : : SAMPLER_FILTER_LINEAR ;
s . max_lod = 0 ;
sampler = rd - > sampler_create ( s ) ;
}
Vector < RD : : Uniform > base_uniforms ;
{
2023-10-13 17:32:22 +00:00
{
RD : : Uniform u ;
u . uniform_type = RD : : UNIFORM_TYPE_UNIFORM_BUFFER ;
u . binding = 0 ;
u . append_id ( bake_parameters_buffer ) ;
base_uniforms . push_back ( u ) ;
}
2020-05-01 12:34:23 +00:00
{
RD : : Uniform u ;
2020-10-17 01:19:21 +00:00
u . uniform_type = RD : : UNIFORM_TYPE_STORAGE_BUFFER ;
2020-05-01 12:34:23 +00:00
u . binding = 1 ;
2022-03-06 11:57:09 +00:00
u . append_id ( vertex_buffer ) ;
2020-05-01 12:34:23 +00:00
base_uniforms . push_back ( u ) ;
}
{
RD : : Uniform u ;
2020-10-17 01:19:21 +00:00
u . uniform_type = RD : : UNIFORM_TYPE_STORAGE_BUFFER ;
2020-05-01 12:34:23 +00:00
u . binding = 2 ;
2022-03-06 11:57:09 +00:00
u . append_id ( triangle_buffer ) ;
2020-05-01 12:34:23 +00:00
base_uniforms . push_back ( u ) ;
}
{
RD : : Uniform u ;
2020-10-17 01:19:21 +00:00
u . uniform_type = RD : : UNIFORM_TYPE_STORAGE_BUFFER ;
2020-05-01 12:34:23 +00:00
u . binding = 3 ;
2023-10-13 14:39:48 +00:00
u . append_id ( triangle_indices_buffer ) ;
2020-05-01 12:34:23 +00:00
base_uniforms . push_back ( u ) ;
}
{
RD : : Uniform u ;
2020-10-17 01:19:21 +00:00
u . uniform_type = RD : : UNIFORM_TYPE_STORAGE_BUFFER ;
2021-09-11 12:02:37 +00:00
u . binding = 4 ;
2022-03-06 11:57:09 +00:00
u . append_id ( lights_buffer ) ;
2020-05-01 12:34:23 +00:00
base_uniforms . push_back ( u ) ;
}
{
RD : : Uniform u ;
2020-10-17 01:19:21 +00:00
u . uniform_type = RD : : UNIFORM_TYPE_STORAGE_BUFFER ;
2021-09-11 12:02:37 +00:00
u . binding = 5 ;
2022-03-06 11:57:09 +00:00
u . append_id ( seams_buffer ) ;
2020-05-01 12:34:23 +00:00
base_uniforms . push_back ( u ) ;
}
{
RD : : Uniform u ;
2020-10-17 01:19:21 +00:00
u . uniform_type = RD : : UNIFORM_TYPE_STORAGE_BUFFER ;
2021-09-11 12:02:37 +00:00
u . binding = 6 ;
2022-03-06 11:57:09 +00:00
u . append_id ( probe_positions_buffer ) ;
2020-05-01 12:34:23 +00:00
base_uniforms . push_back ( u ) ;
}
{
RD : : Uniform u ;
2020-10-17 01:19:21 +00:00
u . uniform_type = RD : : UNIFORM_TYPE_TEXTURE ;
2021-09-11 12:02:37 +00:00
u . binding = 7 ;
2022-03-06 11:57:09 +00:00
u . append_id ( grid_texture ) ;
2020-05-01 12:34:23 +00:00
base_uniforms . push_back ( u ) ;
}
{
RD : : Uniform u ;
2020-10-17 01:19:21 +00:00
u . uniform_type = RD : : UNIFORM_TYPE_TEXTURE ;
2021-09-11 12:02:37 +00:00
u . binding = 8 ;
2022-03-06 11:57:09 +00:00
u . append_id ( albedo_array_tex ) ;
2020-05-01 12:34:23 +00:00
base_uniforms . push_back ( u ) ;
}
{
RD : : Uniform u ;
2020-10-17 01:19:21 +00:00
u . uniform_type = RD : : UNIFORM_TYPE_TEXTURE ;
2021-09-11 12:02:37 +00:00
u . binding = 9 ;
2022-03-06 11:57:09 +00:00
u . append_id ( emission_array_tex ) ;
2020-05-01 12:34:23 +00:00
base_uniforms . push_back ( u ) ;
}
{
RD : : Uniform u ;
2020-10-17 01:19:21 +00:00
u . uniform_type = RD : : UNIFORM_TYPE_SAMPLER ;
2021-09-11 12:02:37 +00:00
u . binding = 10 ;
2022-03-06 11:57:09 +00:00
u . append_id ( sampler ) ;
2020-05-01 12:34:23 +00:00
base_uniforms . push_back ( u ) ;
}
2023-10-13 14:39:48 +00:00
{
RD : : Uniform u ;
u . uniform_type = RD : : UNIFORM_TYPE_STORAGE_BUFFER ;
u . binding = 11 ;
u . append_id ( cluster_indices_buffer ) ;
base_uniforms . push_back ( u ) ;
}
{
RD : : Uniform u ;
u . uniform_type = RD : : UNIFORM_TYPE_STORAGE_BUFFER ;
u . binding = 12 ;
u . append_id ( cluster_aabbs_buffer ) ;
base_uniforms . push_back ( u ) ;
}
2020-05-01 12:34:23 +00:00
}
RID raster_base_uniform = rd - > uniform_set_create ( base_uniforms , rasterize_shader , 0 ) ;
RID raster_depth_buffer ;
{
RD : : TextureFormat tf ;
tf . width = atlas_size . width ;
tf . height = atlas_size . height ;
tf . depth = 1 ;
2020-11-27 03:50:05 +00:00
tf . texture_type = RD : : TEXTURE_TYPE_2D ;
2020-05-01 12:34:23 +00:00
tf . usage_bits = RD : : TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT ;
tf . format = RD : : DATA_FORMAT_D32_SFLOAT ;
raster_depth_buffer = rd - > texture_create ( tf , RD : : TextureView ( ) ) ;
}
rd - > submit ( ) ;
rd - > sync ( ) ;
/* STEP 3: Raster the geometry to UV2 coords in the atlas textures GPU*/
_raster_geometry ( rd , atlas_size , atlas_slices , grid_size , bounds , p_bias , slice_triangle_count , position_tex , unocclude_tex , normal_tex , raster_depth_buffer , rasterize_shader , raster_base_uniform ) ;
# ifdef DEBUG_TEXTURES
for ( int i = 0 ; i < atlas_slices ; i + + ) {
Vector < uint8_t > s = rd - > texture_get_data ( position_tex , i ) ;
2022-07-22 18:06:19 +00:00
Ref < Image > img = Image : : create_from_data ( atlas_size . width , atlas_size . height , false , Image : : FORMAT_RGBAF , s ) ;
2021-04-25 21:36:39 +00:00
img - > save_exr ( " res://1_position_ " + itos ( i ) + " .exr " , false ) ;
2020-05-01 12:34:23 +00:00
s = rd - > texture_get_data ( normal_tex , i ) ;
2022-07-22 18:06:19 +00:00
img - > set_data ( atlas_size . width , atlas_size . height , false , Image : : FORMAT_RGBAH , s ) ;
2021-04-25 21:36:39 +00:00
img - > save_exr ( " res://1_normal_ " + itos ( i ) + " .exr " , false ) ;
2020-05-01 12:34:23 +00:00
}
# endif
# define FREE_RASTER_RESOURCES \
rd - > free ( rasterize_shader ) ; \
rd - > free ( sampler ) ; \
rd - > free ( raster_depth_buffer ) ;
/* Plot direct light */
Ref < RDShaderFile > compute_shader ;
2023-10-13 17:32:22 +00:00
String defines = " " ;
2023-10-13 14:39:48 +00:00
defines + = " \n #define CLUSTER_SIZE " + uitos ( cluster_size ) + " \n " ;
2023-10-13 17:32:22 +00:00
if ( p_bake_sh ) {
defines + = " \n #define USE_SH_LIGHTMAPS \n " ;
}
if ( p_texture_for_bounces ) {
defines + = " \n #define USE_LIGHT_TEXTURE_FOR_BOUNCES \n " ;
}
2021-06-17 22:03:09 +00:00
compute_shader . instantiate ( ) ;
2023-10-13 17:32:22 +00:00
err = compute_shader - > parse_versions_from_text ( lm_compute_shader_glsl , defines ) ;
2020-05-01 12:34:23 +00:00
if ( err ! = OK ) {
FREE_TEXTURES
FREE_BUFFERS
FREE_RASTER_RESOURCES
memdelete ( rd ) ;
compute_shader - > print_errors ( " compute_shader " ) ;
}
ERR_FAIL_COND_V ( err ! = OK , BAKE_ERROR_LIGHTMAP_CANT_PRE_BAKE_MESHES ) ;
2021-04-25 21:36:39 +00:00
// Unoccluder
Implement Binary Shader Compilation
* Added an extra stage before compiling shader, which is generating a binary blob.
* On Vulkan, this allows caching the SPIRV reflection information, which is expensive to parse.
* On other (future) RenderingDevices, it allows caching converted binary data, such as DXIL or MSL.
This PR makes the shader cache include the reflection information, hence editor startup times are significantly improved.
I tested this well and it appears to work, and I added a lot of consistency checks, but because it includes writing and reading binary information, rare bugs may pop up, so be aware.
There was not much of a choice for storing the reflection information, given shaders can be a lot, take a lot of space and take time to parse.
2021-07-25 14:22:55 +00:00
RID compute_shader_unocclude = rd - > shader_create_from_spirv ( compute_shader - > get_spirv_stages ( " unocclude " ) ) ;
2020-05-01 12:34:23 +00:00
ERR_FAIL_COND_V ( compute_shader_unocclude . is_null ( ) , BAKE_ERROR_LIGHTMAP_CANT_PRE_BAKE_MESHES ) ; // internal check, should not happen
RID compute_shader_unocclude_pipeline = rd - > compute_pipeline_create ( compute_shader_unocclude ) ;
2021-04-25 21:36:39 +00:00
// Direct light
Implement Binary Shader Compilation
* Added an extra stage before compiling shader, which is generating a binary blob.
* On Vulkan, this allows caching the SPIRV reflection information, which is expensive to parse.
* On other (future) RenderingDevices, it allows caching converted binary data, such as DXIL or MSL.
This PR makes the shader cache include the reflection information, hence editor startup times are significantly improved.
I tested this well and it appears to work, and I added a lot of consistency checks, but because it includes writing and reading binary information, rare bugs may pop up, so be aware.
There was not much of a choice for storing the reflection information, given shaders can be a lot, take a lot of space and take time to parse.
2021-07-25 14:22:55 +00:00
RID compute_shader_primary = rd - > shader_create_from_spirv ( compute_shader - > get_spirv_stages ( " primary " ) ) ;
2020-05-01 12:34:23 +00:00
ERR_FAIL_COND_V ( compute_shader_primary . is_null ( ) , BAKE_ERROR_LIGHTMAP_CANT_PRE_BAKE_MESHES ) ; // internal check, should not happen
RID compute_shader_primary_pipeline = rd - > compute_pipeline_create ( compute_shader_primary ) ;
2021-04-25 21:36:39 +00:00
// Indirect light
Implement Binary Shader Compilation
* Added an extra stage before compiling shader, which is generating a binary blob.
* On Vulkan, this allows caching the SPIRV reflection information, which is expensive to parse.
* On other (future) RenderingDevices, it allows caching converted binary data, such as DXIL or MSL.
This PR makes the shader cache include the reflection information, hence editor startup times are significantly improved.
I tested this well and it appears to work, and I added a lot of consistency checks, but because it includes writing and reading binary information, rare bugs may pop up, so be aware.
There was not much of a choice for storing the reflection information, given shaders can be a lot, take a lot of space and take time to parse.
2021-07-25 14:22:55 +00:00
RID compute_shader_secondary = rd - > shader_create_from_spirv ( compute_shader - > get_spirv_stages ( " secondary " ) ) ;
2020-05-01 12:34:23 +00:00
ERR_FAIL_COND_V ( compute_shader_secondary . is_null ( ) , BAKE_ERROR_LIGHTMAP_CANT_PRE_BAKE_MESHES ) ; //internal check, should not happen
RID compute_shader_secondary_pipeline = rd - > compute_pipeline_create ( compute_shader_secondary ) ;
2021-04-25 21:36:39 +00:00
// Light probes
Implement Binary Shader Compilation
* Added an extra stage before compiling shader, which is generating a binary blob.
* On Vulkan, this allows caching the SPIRV reflection information, which is expensive to parse.
* On other (future) RenderingDevices, it allows caching converted binary data, such as DXIL or MSL.
This PR makes the shader cache include the reflection information, hence editor startup times are significantly improved.
I tested this well and it appears to work, and I added a lot of consistency checks, but because it includes writing and reading binary information, rare bugs may pop up, so be aware.
There was not much of a choice for storing the reflection information, given shaders can be a lot, take a lot of space and take time to parse.
2021-07-25 14:22:55 +00:00
RID compute_shader_light_probes = rd - > shader_create_from_spirv ( compute_shader - > get_spirv_stages ( " light_probes " ) ) ;
2020-05-01 12:34:23 +00:00
ERR_FAIL_COND_V ( compute_shader_light_probes . is_null ( ) , BAKE_ERROR_LIGHTMAP_CANT_PRE_BAKE_MESHES ) ; //internal check, should not happen
RID compute_shader_light_probes_pipeline = rd - > compute_pipeline_create ( compute_shader_light_probes ) ;
RID compute_base_uniform_set = rd - > uniform_set_create ( base_uniforms , compute_shader_primary , 0 ) ;
# define FREE_COMPUTE_RESOURCES \
rd - > free ( compute_shader_unocclude ) ; \
rd - > free ( compute_shader_primary ) ; \
rd - > free ( compute_shader_secondary ) ; \
rd - > free ( compute_shader_light_probes ) ;
Vector3i group_size ( ( atlas_size . x - 1 ) / 8 + 1 , ( atlas_size . y - 1 ) / 8 + 1 , 1 ) ;
rd - > submit ( ) ;
rd - > sync ( ) ;
if ( p_step_function ) {
2022-03-28 13:24:14 +00:00
p_step_function ( 0.49 , RTR ( " Un-occluding geometry " ) , p_bake_userdata , true ) ;
2020-05-01 12:34:23 +00:00
}
2023-10-13 17:32:22 +00:00
PushConstant push_constant ;
2020-05-01 12:34:23 +00:00
/* UNOCCLUDE */
{
Vector < RD : : Uniform > uniforms ;
{
{
RD : : Uniform u ;
2020-10-17 01:19:21 +00:00
u . uniform_type = RD : : UNIFORM_TYPE_IMAGE ;
2020-05-01 12:34:23 +00:00
u . binding = 0 ;
2022-03-06 11:57:09 +00:00
u . append_id ( position_tex ) ;
2020-05-01 12:34:23 +00:00
uniforms . push_back ( u ) ;
}
{
RD : : Uniform u ;
2020-10-17 01:19:21 +00:00
u . uniform_type = RD : : UNIFORM_TYPE_IMAGE ;
2020-05-01 12:34:23 +00:00
u . binding = 1 ;
2022-03-06 11:57:09 +00:00
u . append_id ( unocclude_tex ) ; //will be unused
2020-05-01 12:34:23 +00:00
uniforms . push_back ( u ) ;
}
}
RID unocclude_uniform_set = rd - > uniform_set_create ( uniforms , compute_shader_unocclude , 1 ) ;
RD : : ComputeListID compute_list = rd - > compute_list_begin ( ) ;
rd - > compute_list_bind_compute_pipeline ( compute_list , compute_shader_unocclude_pipeline ) ;
rd - > compute_list_bind_uniform_set ( compute_list , compute_base_uniform_set , 0 ) ;
rd - > compute_list_bind_uniform_set ( compute_list , unocclude_uniform_set , 1 ) ;
for ( int i = 0 ; i < atlas_slices ; i + + ) {
push_constant . atlas_slice = i ;
rd - > compute_list_set_push_constant ( compute_list , & push_constant , sizeof ( PushConstant ) ) ;
rd - > compute_list_dispatch ( compute_list , group_size . x , group_size . y , group_size . z ) ;
//no barrier, let them run all together
}
rd - > compute_list_end ( ) ; //done
}
if ( p_step_function ) {
2022-03-28 13:24:14 +00:00
p_step_function ( 0.5 , RTR ( " Plot direct lighting " ) , p_bake_userdata , true ) ;
2020-05-01 12:34:23 +00:00
}
2023-10-13 17:32:22 +00:00
// Set ray count to the quality used for direct light and bounces.
switch ( p_quality ) {
case BAKE_QUALITY_LOW : {
push_constant . ray_count = GLOBAL_GET ( " rendering/lightmapping/bake_quality/low_quality_ray_count " ) ;
} break ;
case BAKE_QUALITY_MEDIUM : {
push_constant . ray_count = GLOBAL_GET ( " rendering/lightmapping/bake_quality/medium_quality_ray_count " ) ;
} break ;
case BAKE_QUALITY_HIGH : {
push_constant . ray_count = GLOBAL_GET ( " rendering/lightmapping/bake_quality/high_quality_ray_count " ) ;
} break ;
case BAKE_QUALITY_ULTRA : {
push_constant . ray_count = GLOBAL_GET ( " rendering/lightmapping/bake_quality/ultra_quality_ray_count " ) ;
} break ;
}
push_constant . ray_count = CLAMP ( push_constant . ray_count , 16u , 8192u ) ;
2020-05-01 12:34:23 +00:00
/* PRIMARY (direct) LIGHT PASS */
{
Vector < RD : : Uniform > uniforms ;
{
{
RD : : Uniform u ;
2020-10-17 01:19:21 +00:00
u . uniform_type = RD : : UNIFORM_TYPE_IMAGE ;
2020-05-01 12:34:23 +00:00
u . binding = 0 ;
2022-03-06 11:57:09 +00:00
u . append_id ( light_source_tex ) ;
2020-05-01 12:34:23 +00:00
uniforms . push_back ( u ) ;
}
{
RD : : Uniform u ;
2020-10-17 01:19:21 +00:00
u . uniform_type = RD : : UNIFORM_TYPE_TEXTURE ;
2020-05-01 12:34:23 +00:00
u . binding = 1 ;
2022-03-06 11:57:09 +00:00
u . append_id ( light_dest_tex ) ; //will be unused
2020-05-01 12:34:23 +00:00
uniforms . push_back ( u ) ;
}
{
RD : : Uniform u ;
2020-10-17 01:19:21 +00:00
u . uniform_type = RD : : UNIFORM_TYPE_TEXTURE ;
2020-05-01 12:34:23 +00:00
u . binding = 2 ;
2022-03-06 11:57:09 +00:00
u . append_id ( position_tex ) ;
2020-05-01 12:34:23 +00:00
uniforms . push_back ( u ) ;
}
{
RD : : Uniform u ;
2020-10-17 01:19:21 +00:00
u . uniform_type = RD : : UNIFORM_TYPE_TEXTURE ;
2020-05-01 12:34:23 +00:00
u . binding = 3 ;
2022-03-06 11:57:09 +00:00
u . append_id ( normal_tex ) ;
2020-05-01 12:34:23 +00:00
uniforms . push_back ( u ) ;
}
{
RD : : Uniform u ;
2020-10-17 01:19:21 +00:00
u . uniform_type = RD : : UNIFORM_TYPE_IMAGE ;
2020-05-01 12:34:23 +00:00
u . binding = 4 ;
2022-03-06 11:57:09 +00:00
u . append_id ( light_accum_tex ) ;
2020-05-01 12:34:23 +00:00
uniforms . push_back ( u ) ;
}
}
RID light_uniform_set = rd - > uniform_set_create ( uniforms , compute_shader_primary , 1 ) ;
RD : : ComputeListID compute_list = rd - > compute_list_begin ( ) ;
rd - > compute_list_bind_compute_pipeline ( compute_list , compute_shader_primary_pipeline ) ;
rd - > compute_list_bind_uniform_set ( compute_list , compute_base_uniform_set , 0 ) ;
rd - > compute_list_bind_uniform_set ( compute_list , light_uniform_set , 1 ) ;
for ( int i = 0 ; i < atlas_slices ; i + + ) {
push_constant . atlas_slice = i ;
rd - > compute_list_set_push_constant ( compute_list , & push_constant , sizeof ( PushConstant ) ) ;
rd - > compute_list_dispatch ( compute_list , group_size . x , group_size . y , group_size . z ) ;
//no barrier, let them run all together
}
rd - > compute_list_end ( ) ; //done
}
# ifdef DEBUG_TEXTURES
for ( int i = 0 ; i < atlas_slices ; i + + ) {
Vector < uint8_t > s = rd - > texture_get_data ( light_source_tex , i ) ;
2022-07-22 18:06:19 +00:00
Ref < Image > img = Image : : create_from_data ( atlas_size . width , atlas_size . height , false , Image : : FORMAT_RGBAH , s ) ;
2021-04-25 21:36:39 +00:00
img - > save_exr ( " res://2_light_primary_ " + itos ( i ) + " .exr " , false ) ;
2020-05-01 12:34:23 +00:00
}
# endif
/* SECONDARY (indirect) LIGHT PASS(ES) */
if ( p_step_function ) {
2022-03-28 13:24:14 +00:00
p_step_function ( 0.6 , RTR ( " Integrate indirect lighting " ) , p_bake_userdata , true ) ;
2020-05-01 12:34:23 +00:00
}
if ( p_bounces > 0 ) {
Vector < RD : : Uniform > uniforms ;
{
{
2023-10-13 17:32:22 +00:00
// Unused.
2020-05-01 12:34:23 +00:00
RD : : Uniform u ;
2020-10-17 01:19:21 +00:00
u . uniform_type = RD : : UNIFORM_TYPE_IMAGE ;
2020-05-01 12:34:23 +00:00
u . binding = 0 ;
2022-03-06 11:57:09 +00:00
u . append_id ( light_dest_tex ) ;
2020-05-01 12:34:23 +00:00
uniforms . push_back ( u ) ;
}
{
RD : : Uniform u ;
2020-10-17 01:19:21 +00:00
u . uniform_type = RD : : UNIFORM_TYPE_TEXTURE ;
2020-05-01 12:34:23 +00:00
u . binding = 1 ;
2022-03-06 11:57:09 +00:00
u . append_id ( light_source_tex ) ;
2020-05-01 12:34:23 +00:00
uniforms . push_back ( u ) ;
}
{
RD : : Uniform u ;
2020-10-17 01:19:21 +00:00
u . uniform_type = RD : : UNIFORM_TYPE_TEXTURE ;
2020-05-01 12:34:23 +00:00
u . binding = 2 ;
2022-03-06 11:57:09 +00:00
u . append_id ( position_tex ) ;
2020-05-01 12:34:23 +00:00
uniforms . push_back ( u ) ;
}
{
RD : : Uniform u ;
2020-10-17 01:19:21 +00:00
u . uniform_type = RD : : UNIFORM_TYPE_TEXTURE ;
2020-05-01 12:34:23 +00:00
u . binding = 3 ;
2022-03-06 11:57:09 +00:00
u . append_id ( normal_tex ) ;
2020-05-01 12:34:23 +00:00
uniforms . push_back ( u ) ;
}
{
RD : : Uniform u ;
2020-10-17 01:19:21 +00:00
u . uniform_type = RD : : UNIFORM_TYPE_IMAGE ;
2020-05-01 12:34:23 +00:00
u . binding = 4 ;
2022-03-06 11:57:09 +00:00
u . append_id ( light_accum_tex ) ;
2020-05-01 12:34:23 +00:00
uniforms . push_back ( u ) ;
}
{
RD : : Uniform u ;
2020-10-17 01:19:21 +00:00
u . uniform_type = RD : : UNIFORM_TYPE_TEXTURE ;
2023-10-13 17:32:22 +00:00
u . binding = 5 ;
2022-03-06 11:57:09 +00:00
u . append_id ( light_environment_tex ) ;
2020-05-01 12:34:23 +00:00
uniforms . push_back ( u ) ;
}
}
2023-10-13 17:32:22 +00:00
RID secondary_uniform_set ;
secondary_uniform_set = rd - > uniform_set_create ( uniforms , compute_shader_secondary , 1 ) ;
2020-05-01 12:34:23 +00:00
2021-02-17 16:44:49 +00:00
int max_region_size = nearest_power_of_2_templated ( int ( GLOBAL_GET ( " rendering/lightmapping/bake_performance/region_size " ) ) ) ;
int max_rays = GLOBAL_GET ( " rendering/lightmapping/bake_performance/max_rays_per_pass " ) ;
2020-05-01 12:34:23 +00:00
int x_regions = ( atlas_size . width - 1 ) / max_region_size + 1 ;
int y_regions = ( atlas_size . height - 1 ) / max_region_size + 1 ;
2023-10-13 17:32:22 +00:00
2020-05-01 12:34:23 +00:00
int ray_iterations = ( push_constant . ray_count - 1 ) / max_rays + 1 ;
rd - > submit ( ) ;
rd - > sync ( ) ;
2023-10-13 17:32:22 +00:00
int count = 0 ;
for ( int s = 0 ; s < atlas_slices ; s + + ) {
push_constant . atlas_slice = s ;
for ( int i = 0 ; i < x_regions ; i + + ) {
for ( int j = 0 ; j < y_regions ; j + + ) {
int x = i * max_region_size ;
int y = j * max_region_size ;
int w = MIN ( ( i + 1 ) * max_region_size , atlas_size . width ) - x ;
int h = MIN ( ( j + 1 ) * max_region_size , atlas_size . height ) - y ;
push_constant . region_ofs [ 0 ] = x ;
push_constant . region_ofs [ 1 ] = y ;
group_size = Vector3i ( ( w - 1 ) / 8 + 1 , ( h - 1 ) / 8 + 1 , 1 ) ;
for ( int k = 0 ; k < ray_iterations ; k + + ) {
RD : : ComputeListID compute_list = rd - > compute_list_begin ( ) ;
rd - > compute_list_bind_compute_pipeline ( compute_list , compute_shader_secondary_pipeline ) ;
rd - > compute_list_bind_uniform_set ( compute_list , compute_base_uniform_set , 0 ) ;
rd - > compute_list_bind_uniform_set ( compute_list , secondary_uniform_set , 1 ) ;
push_constant . ray_from = k * max_rays ;
push_constant . ray_to = MIN ( ( k + 1 ) * max_rays , int32_t ( push_constant . ray_count ) ) ;
rd - > compute_list_set_push_constant ( compute_list , & push_constant , sizeof ( PushConstant ) ) ;
rd - > compute_list_dispatch ( compute_list , group_size . x , group_size . y , group_size . z ) ;
rd - > compute_list_end ( ) ;
rd - > submit ( ) ;
rd - > sync ( ) ;
count + + ;
if ( p_step_function ) {
int total = ( atlas_slices * x_regions * y_regions * ray_iterations ) ;
int percent = count * 100 / total ;
float p = float ( count ) / total * 0.1 ;
p_step_function ( 0.6 + p , vformat ( RTR ( " Integrate indirect lighting %d%% " ) , percent ) , p_bake_userdata , false ) ;
2020-05-01 12:34:23 +00:00
}
}
}
}
}
}
2021-09-26 07:16:31 +00:00
/* LIGHTPROBES */
2020-05-01 12:34:23 +00:00
RID light_probe_buffer ;
if ( probe_positions . size ( ) ) {
light_probe_buffer = rd - > storage_buffer_create ( sizeof ( float ) * 4 * 9 * probe_positions . size ( ) ) ;
if ( p_step_function ) {
2022-03-28 13:24:14 +00:00
p_step_function ( 0.7 , RTR ( " Baking lightprobes " ) , p_bake_userdata , true ) ;
2020-05-01 12:34:23 +00:00
}
Vector < RD : : Uniform > uniforms ;
{
{
RD : : Uniform u ;
2020-10-17 01:19:21 +00:00
u . uniform_type = RD : : UNIFORM_TYPE_STORAGE_BUFFER ;
2020-05-01 12:34:23 +00:00
u . binding = 0 ;
2022-03-06 11:57:09 +00:00
u . append_id ( light_probe_buffer ) ;
2020-05-01 12:34:23 +00:00
uniforms . push_back ( u ) ;
}
{
RD : : Uniform u ;
2020-10-17 01:19:21 +00:00
u . uniform_type = RD : : UNIFORM_TYPE_TEXTURE ;
2020-05-01 12:34:23 +00:00
u . binding = 1 ;
2023-10-13 17:32:22 +00:00
u . append_id ( light_source_tex ) ;
2020-05-01 12:34:23 +00:00
uniforms . push_back ( u ) ;
}
{
RD : : Uniform u ;
2020-10-17 01:19:21 +00:00
u . uniform_type = RD : : UNIFORM_TYPE_TEXTURE ;
2020-05-01 12:34:23 +00:00
u . binding = 2 ;
2022-03-06 11:57:09 +00:00
u . append_id ( light_environment_tex ) ;
2020-05-01 12:34:23 +00:00
uniforms . push_back ( u ) ;
}
}
RID light_probe_uniform_set = rd - > uniform_set_create ( uniforms , compute_shader_light_probes , 1 ) ;
switch ( p_quality ) {
case BAKE_QUALITY_LOW : {
2021-02-17 16:44:49 +00:00
push_constant . ray_count = GLOBAL_GET ( " rendering/lightmapping/bake_quality/low_quality_probe_ray_count " ) ;
2020-05-01 12:34:23 +00:00
} break ;
case BAKE_QUALITY_MEDIUM : {
2021-02-17 16:44:49 +00:00
push_constant . ray_count = GLOBAL_GET ( " rendering/lightmapping/bake_quality/medium_quality_probe_ray_count " ) ;
2020-05-01 12:34:23 +00:00
} break ;
case BAKE_QUALITY_HIGH : {
2021-02-17 16:44:49 +00:00
push_constant . ray_count = GLOBAL_GET ( " rendering/lightmapping/bake_quality/high_quality_probe_ray_count " ) ;
2020-05-01 12:34:23 +00:00
} break ;
case BAKE_QUALITY_ULTRA : {
2021-02-17 16:44:49 +00:00
push_constant . ray_count = GLOBAL_GET ( " rendering/lightmapping/bake_quality/ultra_quality_probe_ray_count " ) ;
2020-05-01 12:34:23 +00:00
} break ;
}
2022-03-08 14:10:48 +00:00
push_constant . ray_count = CLAMP ( push_constant . ray_count , 16u , 8192u ) ;
2023-10-13 17:32:22 +00:00
push_constant . probe_count = probe_positions . size ( ) ;
2020-05-01 12:34:23 +00:00
2021-02-17 16:44:49 +00:00
int max_rays = GLOBAL_GET ( " rendering/lightmapping/bake_performance/max_rays_per_probe_pass " ) ;
2020-05-01 12:34:23 +00:00
int ray_iterations = ( push_constant . ray_count - 1 ) / max_rays + 1 ;
for ( int i = 0 ; i < ray_iterations ; i + + ) {
RD : : ComputeListID compute_list = rd - > compute_list_begin ( ) ;
rd - > compute_list_bind_compute_pipeline ( compute_list , compute_shader_light_probes_pipeline ) ;
rd - > compute_list_bind_uniform_set ( compute_list , compute_base_uniform_set , 0 ) ;
rd - > compute_list_bind_uniform_set ( compute_list , light_probe_uniform_set , 1 ) ;
push_constant . ray_from = i * max_rays ;
push_constant . ray_to = MIN ( ( i + 1 ) * max_rays , int32_t ( push_constant . ray_count ) ) ;
rd - > compute_list_set_push_constant ( compute_list , & push_constant , sizeof ( PushConstant ) ) ;
rd - > compute_list_dispatch ( compute_list , ( probe_positions . size ( ) - 1 ) / 64 + 1 , 1 , 1 ) ;
rd - > compute_list_end ( ) ; //done
rd - > submit ( ) ;
rd - > sync ( ) ;
if ( p_step_function ) {
int percent = i * 100 / ray_iterations ;
float p = float ( i ) / ray_iterations * 0.1 ;
2022-03-28 13:24:14 +00:00
p_step_function ( 0.7 + p , vformat ( RTR ( " Integrating light probes %d%% " ) , percent ) , p_bake_userdata , false ) ;
2020-05-01 12:34:23 +00:00
}
}
}
#if 0
for ( int i = 0 ; i < probe_positions . size ( ) ; i + + ) {
2022-07-22 18:06:19 +00:00
Ref < Image > img = Image : : create_empty ( 6 , 4 , false , Image : : FORMAT_RGB8 ) ;
2020-05-01 12:34:23 +00:00
for ( int j = 0 ; j < 6 ; j + + ) {
Vector < uint8_t > s = rd - > texture_get_data ( lightprobe_tex , i * 6 + j ) ;
2022-07-22 18:06:19 +00:00
Ref < Image > img2 = Image : : create_from_data ( 2 , 2 , false , Image : : FORMAT_RGBAF , s ) ;
2020-05-01 12:34:23 +00:00
img2 - > convert ( Image : : FORMAT_RGB8 ) ;
2022-07-09 20:43:34 +00:00
img - > blit_rect ( img2 , Rect2i ( 0 , 0 , 2 , 2 ) , Point2i ( ( j % 3 ) * 2 , ( j / 3 ) * 2 ) ) ;
2020-05-01 12:34:23 +00:00
}
img - > save_png ( " res://3_light_probe_ " + itos ( i ) + " .png " ) ;
}
# endif
/* DENOISE */
if ( p_use_denoiser ) {
if ( p_step_function ) {
2022-03-28 13:24:14 +00:00
p_step_function ( 0.8 , RTR ( " Denoising " ) , p_bake_userdata , true ) ;
2020-05-01 12:34:23 +00:00
}
2023-09-11 17:59:50 +00:00
{
2023-10-04 19:32:39 +00:00
BakeError error ;
if ( denoiser = = 1 ) {
// OIDN (external).
error = _denoise_oidn ( rd , light_accum_tex , normal_tex , light_accum_tex , atlas_size , atlas_slices , p_bake_sh , oidn_path ) ;
} else {
// JNLM (built-in).
SWAP ( light_accum_tex , light_accum_tex2 ) ;
error = _denoise ( rd , compute_shader , compute_base_uniform_set , push_constant , light_accum_tex2 , normal_tex , light_accum_tex , p_denoiser_strength , atlas_size , atlas_slices , p_bake_sh , p_step_function ) ;
}
2023-09-11 17:59:50 +00:00
if ( unlikely ( error ! = BAKE_OK ) ) {
return error ;
2020-05-01 12:34:23 +00:00
}
}
2023-09-29 15:10:36 +00:00
}
2021-10-16 09:23:47 +00:00
2023-09-29 15:10:36 +00:00
{
SWAP ( light_accum_tex , light_accum_tex2 ) ;
BakeError error = _dilate ( rd , compute_shader , compute_base_uniform_set , push_constant , light_accum_tex2 , light_accum_tex , atlas_size , atlas_slices * ( p_bake_sh ? 4 : 1 ) ) ;
if ( unlikely ( error ! = BAKE_OK ) ) {
return error ;
2021-10-16 09:23:47 +00:00
}
2020-05-01 12:34:23 +00:00
}
# ifdef DEBUG_TEXTURES
for ( int i = 0 ; i < atlas_slices * ( p_bake_sh ? 4 : 1 ) ; i + + ) {
Vector < uint8_t > s = rd - > texture_get_data ( light_accum_tex , i ) ;
2022-07-22 18:06:19 +00:00
Ref < Image > img = Image : : create_from_data ( atlas_size . width , atlas_size . height , false , Image : : FORMAT_RGBAH , s ) ;
2021-04-25 21:36:39 +00:00
img - > save_exr ( " res://4_light_secondary_ " + itos ( i ) + " .exr " , false ) ;
2020-05-01 12:34:23 +00:00
}
# endif
/* BLEND SEAMS */
//shaders
Ref < RDShaderFile > blendseams_shader ;
2021-06-17 22:03:09 +00:00
blendseams_shader . instantiate ( ) ;
2020-05-01 12:34:23 +00:00
err = blendseams_shader - > parse_versions_from_text ( lm_blendseams_shader_glsl ) ;
if ( err ! = OK ) {
FREE_TEXTURES
FREE_BUFFERS
FREE_RASTER_RESOURCES
FREE_COMPUTE_RESOURCES
memdelete ( rd ) ;
blendseams_shader - > print_errors ( " blendseams_shader " ) ;
}
ERR_FAIL_COND_V ( err ! = OK , BAKE_ERROR_LIGHTMAP_CANT_PRE_BAKE_MESHES ) ;
Implement Binary Shader Compilation
* Added an extra stage before compiling shader, which is generating a binary blob.
* On Vulkan, this allows caching the SPIRV reflection information, which is expensive to parse.
* On other (future) RenderingDevices, it allows caching converted binary data, such as DXIL or MSL.
This PR makes the shader cache include the reflection information, hence editor startup times are significantly improved.
I tested this well and it appears to work, and I added a lot of consistency checks, but because it includes writing and reading binary information, rare bugs may pop up, so be aware.
There was not much of a choice for storing the reflection information, given shaders can be a lot, take a lot of space and take time to parse.
2021-07-25 14:22:55 +00:00
RID blendseams_line_raster_shader = rd - > shader_create_from_spirv ( blendseams_shader - > get_spirv_stages ( " lines " ) ) ;
2020-05-01 12:34:23 +00:00
ERR_FAIL_COND_V ( blendseams_line_raster_shader . is_null ( ) , BAKE_ERROR_LIGHTMAP_CANT_PRE_BAKE_MESHES ) ;
Implement Binary Shader Compilation
* Added an extra stage before compiling shader, which is generating a binary blob.
* On Vulkan, this allows caching the SPIRV reflection information, which is expensive to parse.
* On other (future) RenderingDevices, it allows caching converted binary data, such as DXIL or MSL.
This PR makes the shader cache include the reflection information, hence editor startup times are significantly improved.
I tested this well and it appears to work, and I added a lot of consistency checks, but because it includes writing and reading binary information, rare bugs may pop up, so be aware.
There was not much of a choice for storing the reflection information, given shaders can be a lot, take a lot of space and take time to parse.
2021-07-25 14:22:55 +00:00
RID blendseams_triangle_raster_shader = rd - > shader_create_from_spirv ( blendseams_shader - > get_spirv_stages ( " triangles " ) ) ;
2020-05-01 12:34:23 +00:00
ERR_FAIL_COND_V ( blendseams_triangle_raster_shader . is_null ( ) , BAKE_ERROR_LIGHTMAP_CANT_PRE_BAKE_MESHES ) ;
# define FREE_BLENDSEAMS_RESOURCES \
rd - > free ( blendseams_line_raster_shader ) ; \
rd - > free ( blendseams_triangle_raster_shader ) ;
{
//pre copy
for ( int i = 0 ; i < atlas_slices * ( p_bake_sh ? 4 : 1 ) ; i + + ) {
2021-01-26 00:52:58 +00:00
rd - > texture_copy ( light_accum_tex , light_accum_tex2 , Vector3 ( ) , Vector3 ( ) , Vector3 ( atlas_size . width , atlas_size . height , 1 ) , 0 , 0 , i , i ) ;
2020-05-01 12:34:23 +00:00
}
Vector < RID > framebuffers ;
for ( int i = 0 ; i < atlas_slices * ( p_bake_sh ? 4 : 1 ) ; i + + ) {
RID slice_tex = rd - > texture_create_shared_from_slice ( RD : : TextureView ( ) , light_accum_tex , i , 0 ) ;
Vector < RID > fb ;
fb . push_back ( slice_tex ) ;
fb . push_back ( raster_depth_buffer ) ;
framebuffers . push_back ( rd - > framebuffer_create ( fb ) ) ;
}
Vector < RD : : Uniform > uniforms ;
{
{
RD : : Uniform u ;
2020-10-17 01:19:21 +00:00
u . uniform_type = RD : : UNIFORM_TYPE_TEXTURE ;
2020-05-01 12:34:23 +00:00
u . binding = 0 ;
2022-03-06 11:57:09 +00:00
u . append_id ( light_accum_tex2 ) ;
2020-05-01 12:34:23 +00:00
uniforms . push_back ( u ) ;
}
}
RID blendseams_raster_uniform = rd - > uniform_set_create ( uniforms , blendseams_line_raster_shader , 1 ) ;
bool debug = false ;
RD : : PipelineColorBlendState bs = RD : : PipelineColorBlendState : : create_blend ( 1 ) ;
bs . attachments . write [ 0 ] . src_alpha_blend_factor = RD : : BLEND_FACTOR_ZERO ;
bs . attachments . write [ 0 ] . dst_alpha_blend_factor = RD : : BLEND_FACTOR_ONE ;
RD : : PipelineDepthStencilState ds ;
ds . enable_depth_test = true ;
ds . enable_depth_write = true ;
ds . depth_compare_operator = RD : : COMPARE_OP_LESS ; //so it does not render same pixel twice, this avoids wrong blending
RID blendseams_line_raster_pipeline = rd - > render_pipeline_create ( blendseams_line_raster_shader , rd - > framebuffer_get_format ( framebuffers [ 0 ] ) , RD : : INVALID_FORMAT_ID , RD : : RENDER_PRIMITIVE_LINES , RD : : PipelineRasterizationState ( ) , RD : : PipelineMultisampleState ( ) , ds , bs , 0 ) ;
RID blendseams_triangle_raster_pipeline = rd - > render_pipeline_create ( blendseams_triangle_raster_shader , rd - > framebuffer_get_format ( framebuffers [ 0 ] ) , RD : : INVALID_FORMAT_ID , RD : : RENDER_PRIMITIVE_TRIANGLES , RD : : PipelineRasterizationState ( ) , RD : : PipelineMultisampleState ( ) , ds , bs , 0 ) ;
uint32_t seam_offset = 0 ;
uint32_t triangle_offset = 0 ;
Vector < Color > clear_colors ;
clear_colors . push_back ( Color ( 0 , 0 , 0 , 1 ) ) ;
for ( int i = 0 ; i < atlas_slices ; i + + ) {
int subslices = ( p_bake_sh ? 4 : 1 ) ;
2021-04-25 21:36:39 +00:00
if ( slice_seam_count [ i ] = = 0 ) {
continue ;
}
2020-05-01 12:34:23 +00:00
for ( int k = 0 ; k < subslices ; k + + ) {
RasterSeamsPushConstant seams_push_constant ;
seams_push_constant . slice = uint32_t ( i * subslices + k ) ;
seams_push_constant . debug = debug ;
RD : : DrawListID draw_list = rd - > draw_list_begin ( framebuffers [ i ] , RD : : INITIAL_ACTION_KEEP , RD : : FINAL_ACTION_READ , RD : : INITIAL_ACTION_CLEAR , RD : : FINAL_ACTION_DISCARD , clear_colors ) ;
rd - > draw_list_bind_uniform_set ( draw_list , raster_base_uniform , 0 ) ;
rd - > draw_list_bind_uniform_set ( draw_list , blendseams_raster_uniform , 1 ) ;
const int uv_offset_count = 9 ;
static const Vector3 uv_offsets [ uv_offset_count ] = {
Vector3 ( 0 , 0 , 0.5 ) , //using zbuffer, so go inwards-outwards
Vector3 ( 0 , 1 , 0.2 ) ,
Vector3 ( 0 , - 1 , 0.2 ) ,
Vector3 ( 1 , 0 , 0.2 ) ,
Vector3 ( - 1 , 0 , 0.2 ) ,
Vector3 ( - 1 , - 1 , 0.1 ) ,
Vector3 ( 1 , - 1 , 0.1 ) ,
Vector3 ( 1 , 1 , 0.1 ) ,
Vector3 ( - 1 , 1 , 0.1 ) ,
} ;
/* step 1 use lines to blend the edges */
{
seams_push_constant . base_index = seam_offset ;
rd - > draw_list_bind_render_pipeline ( draw_list , blendseams_line_raster_pipeline ) ;
2023-09-18 14:56:04 +00:00
seams_push_constant . uv_offset [ 0 ] = ( uv_offsets [ 0 ] . x - 0.5f ) / float ( atlas_size . width ) ;
seams_push_constant . uv_offset [ 1 ] = ( uv_offsets [ 0 ] . y - 0.5f ) / float ( atlas_size . height ) ;
2020-05-01 12:34:23 +00:00
seams_push_constant . blend = uv_offsets [ 0 ] . z ;
rd - > draw_list_set_push_constant ( draw_list , & seams_push_constant , sizeof ( RasterSeamsPushConstant ) ) ;
rd - > draw_list_draw ( draw_list , false , 1 , slice_seam_count [ i ] * 4 ) ;
}
/* step 2 use triangles to mask the interior */
{
seams_push_constant . base_index = triangle_offset ;
rd - > draw_list_bind_render_pipeline ( draw_list , blendseams_triangle_raster_pipeline ) ;
seams_push_constant . blend = 0 ; //do not draw them, just fill the z-buffer so its used as a mask
rd - > draw_list_set_push_constant ( draw_list , & seams_push_constant , sizeof ( RasterSeamsPushConstant ) ) ;
rd - > draw_list_draw ( draw_list , false , 1 , slice_triangle_count [ i ] * 3 ) ;
}
/* step 3 blend around the triangle */
rd - > draw_list_bind_render_pipeline ( draw_list , blendseams_line_raster_pipeline ) ;
for ( int j = 1 ; j < uv_offset_count ; j + + ) {
seams_push_constant . base_index = seam_offset ;
2023-09-18 14:56:04 +00:00
seams_push_constant . uv_offset [ 0 ] = ( uv_offsets [ j ] . x - 0.5f ) / float ( atlas_size . width ) ;
seams_push_constant . uv_offset [ 1 ] = ( uv_offsets [ j ] . y - 0.5f ) / float ( atlas_size . height ) ;
2020-05-01 12:34:23 +00:00
seams_push_constant . blend = uv_offsets [ 0 ] . z ;
rd - > draw_list_set_push_constant ( draw_list , & seams_push_constant , sizeof ( RasterSeamsPushConstant ) ) ;
rd - > draw_list_draw ( draw_list , false , 1 , slice_seam_count [ i ] * 4 ) ;
}
rd - > draw_list_end ( ) ;
}
seam_offset + = slice_seam_count [ i ] ;
triangle_offset + = slice_triangle_count [ i ] ;
}
}
# ifdef DEBUG_TEXTURES
for ( int i = 0 ; i < atlas_slices * ( p_bake_sh ? 4 : 1 ) ; i + + ) {
Vector < uint8_t > s = rd - > texture_get_data ( light_accum_tex , i ) ;
2022-07-22 18:06:19 +00:00
Ref < Image > img = Image : : create_from_data ( atlas_size . width , atlas_size . height , false , Image : : FORMAT_RGBAH , s ) ;
2021-04-25 21:36:39 +00:00
img - > save_exr ( " res://5_blendseams " + itos ( i ) + " .exr " , false ) ;
2020-05-01 12:34:23 +00:00
}
# endif
if ( p_step_function ) {
2022-03-28 13:24:14 +00:00
p_step_function ( 0.9 , RTR ( " Retrieving textures " ) , p_bake_userdata , true ) ;
2020-05-01 12:34:23 +00:00
}
for ( int i = 0 ; i < atlas_slices * ( p_bake_sh ? 4 : 1 ) ; i + + ) {
Vector < uint8_t > s = rd - > texture_get_data ( light_accum_tex , i ) ;
2022-07-22 18:06:19 +00:00
Ref < Image > img = Image : : create_from_data ( atlas_size . width , atlas_size . height , false , Image : : FORMAT_RGBAH , s ) ;
2020-05-01 12:34:23 +00:00
img - > convert ( Image : : FORMAT_RGBH ) ; //remove alpha
bake_textures . push_back ( img ) ;
}
if ( probe_positions . size ( ) > 0 ) {
probe_values . resize ( probe_positions . size ( ) * 9 ) ;
Vector < uint8_t > probe_data = rd - > buffer_get_data ( light_probe_buffer ) ;
2021-04-27 14:19:21 +00:00
memcpy ( probe_values . ptrw ( ) , probe_data . ptr ( ) , probe_data . size ( ) ) ;
2020-05-01 12:34:23 +00:00
rd - > free ( light_probe_buffer ) ;
# ifdef DEBUG_TEXTURES
{
2022-07-22 18:06:19 +00:00
Ref < Image > img2 = Image : : create_from_data ( probe_values . size ( ) , 1 , false , Image : : FORMAT_RGBAF , probe_data ) ;
2021-04-25 21:36:39 +00:00
img2 - > save_exr ( " res://6_lightprobes.exr " , false ) ;
2020-05-01 12:34:23 +00:00
}
# endif
}
FREE_TEXTURES
FREE_BUFFERS
FREE_RASTER_RESOURCES
FREE_COMPUTE_RESOURCES
FREE_BLENDSEAMS_RESOURCES
memdelete ( rd ) ;
return BAKE_OK ;
}
int LightmapperRD : : get_bake_texture_count ( ) const {
return bake_textures . size ( ) ;
}
2020-05-14 12:29:06 +00:00
2020-05-01 12:34:23 +00:00
Ref < Image > LightmapperRD : : get_bake_texture ( int p_index ) const {
ERR_FAIL_INDEX_V ( p_index , bake_textures . size ( ) , Ref < Image > ( ) ) ;
return bake_textures [ p_index ] ;
}
2020-05-14 12:29:06 +00:00
2020-05-01 12:34:23 +00:00
int LightmapperRD : : get_bake_mesh_count ( ) const {
return mesh_instances . size ( ) ;
}
2020-05-14 12:29:06 +00:00
2020-05-01 12:34:23 +00:00
Variant LightmapperRD : : get_bake_mesh_userdata ( int p_index ) const {
ERR_FAIL_INDEX_V ( p_index , mesh_instances . size ( ) , Variant ( ) ) ;
return mesh_instances [ p_index ] . data . userdata ;
}
2020-05-14 12:29:06 +00:00
2020-05-01 12:34:23 +00:00
Rect2 LightmapperRD : : get_bake_mesh_uv_scale ( int p_index ) const {
ERR_FAIL_COND_V ( bake_textures . size ( ) = = 0 , Rect2 ( ) ) ;
Rect2 uv_ofs ;
Vector2 atlas_size = Vector2 ( bake_textures [ 0 ] - > get_width ( ) , bake_textures [ 0 ] - > get_height ( ) ) ;
uv_ofs . position = Vector2 ( mesh_instances [ p_index ] . offset ) / atlas_size ;
uv_ofs . size = Vector2 ( mesh_instances [ p_index ] . data . albedo_on_uv2 - > get_width ( ) , mesh_instances [ p_index ] . data . albedo_on_uv2 - > get_height ( ) ) / atlas_size ;
return uv_ofs ;
}
2020-05-14 12:29:06 +00:00
2020-05-01 12:34:23 +00:00
int LightmapperRD : : get_bake_mesh_texture_slice ( int p_index ) const {
ERR_FAIL_INDEX_V ( p_index , mesh_instances . size ( ) , Variant ( ) ) ;
return mesh_instances [ p_index ] . slice ;
}
int LightmapperRD : : get_bake_probe_count ( ) const {
return probe_positions . size ( ) ;
}
Vector3 LightmapperRD : : get_bake_probe_point ( int p_probe ) const {
ERR_FAIL_INDEX_V ( p_probe , probe_positions . size ( ) , Variant ( ) ) ;
return Vector3 ( probe_positions [ p_probe ] . position [ 0 ] , probe_positions [ p_probe ] . position [ 1 ] , probe_positions [ p_probe ] . position [ 2 ] ) ;
}
Vector < Color > LightmapperRD : : get_bake_probe_sh ( int p_probe ) const {
ERR_FAIL_INDEX_V ( p_probe , probe_positions . size ( ) , Vector < Color > ( ) ) ;
Vector < Color > ret ;
ret . resize ( 9 ) ;
2021-04-27 14:19:21 +00:00
memcpy ( ret . ptrw ( ) , & probe_values [ p_probe * 9 ] , sizeof ( Color ) * 9 ) ;
2020-05-01 12:34:23 +00:00
return ret ;
}
LightmapperRD : : LightmapperRD ( ) {
}