godot/servers/physics/space_sw.cpp

1330 lines
42 KiB
C++
Raw Normal View History

2015-10-08 18:00:40 +00:00
/*************************************************************************/
/* space_sw.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
2015-10-08 18:00:40 +00:00
/*************************************************************************/
/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */
2015-10-08 18:00:40 +00:00
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
2015-10-08 18:00:40 +00:00
#include "space_sw.h"
2017-08-27 19:07:15 +00:00
2015-10-08 18:00:40 +00:00
#include "collision_solver_sw.h"
#include "core/project_settings.h"
2015-10-08 18:00:40 +00:00
#include "physics_server_sw.h"
#define TEST_MOTION_MARGIN_MIN_VALUE 0.0001
#define TEST_MOTION_MIN_CONTACT_DEPTH_FACTOR 0.05
_FORCE_INLINE_ static bool _can_collide_with(CollisionObjectSW *p_object, uint32_t p_collision_mask, bool p_collide_with_bodies, bool p_collide_with_areas) {
if (!(p_object->get_collision_layer() & p_collision_mask)) {
return false;
}
if (p_object->get_type() == CollisionObjectSW::TYPE_AREA && !p_collide_with_areas) {
return false;
}
if (p_object->get_type() == CollisionObjectSW::TYPE_BODY && !p_collide_with_bodies) {
return false;
}
return true;
2015-10-08 18:00:40 +00:00
}
int PhysicsDirectSpaceStateSW::intersect_point(const Vector3 &p_point, ShapeResult *r_results, int p_result_max, const Set<RID> &p_exclude, uint32_t p_collision_mask, bool p_collide_with_bodies, bool p_collide_with_areas) {
ERR_FAIL_COND_V(space->locked, false);
int amount = space->broadphase->cull_point(p_point, space->intersection_query_results, SpaceSW::INTERSECTION_QUERY_MAX, space->intersection_query_subindex_results);
int cc = 0;
//Transform ai = p_xform.affine_inverse();
for (int i = 0; i < amount; i++) {
if (cc >= p_result_max) {
break;
}
if (!_can_collide_with(space->intersection_query_results[i], p_collision_mask, p_collide_with_bodies, p_collide_with_areas)) {
continue;
}
//area can't be picked by ray (default)
if (p_exclude.has(space->intersection_query_results[i]->get_self())) {
continue;
}
const CollisionObjectSW *col_obj = space->intersection_query_results[i];
int shape_idx = space->intersection_query_subindex_results[i];
Transform inv_xform = col_obj->get_transform() * col_obj->get_shape_transform(shape_idx);
inv_xform.affine_invert();
if (!col_obj->get_shape(shape_idx)->intersect_point(inv_xform.xform(p_point))) {
continue;
}
r_results[cc].collider_id = col_obj->get_instance_id();
if (r_results[cc].collider_id != 0) {
r_results[cc].collider = ObjectDB::get_instance(r_results[cc].collider_id);
} else {
r_results[cc].collider = nullptr;
}
r_results[cc].rid = col_obj->get_self();
r_results[cc].shape = shape_idx;
cc++;
}
return cc;
}
bool PhysicsDirectSpaceStateSW::intersect_ray(const Vector3 &p_from, const Vector3 &p_to, RayResult &r_result, const Set<RID> &p_exclude, uint32_t p_collision_mask, bool p_collide_with_bodies, bool p_collide_with_areas, bool p_pick_ray) {
ERR_FAIL_COND_V(space->locked, false);
2015-10-08 18:00:40 +00:00
Vector3 begin, end;
2015-10-08 18:00:40 +00:00
Vector3 normal;
begin = p_from;
end = p_to;
normal = (end - begin).normalized();
2015-10-08 18:00:40 +00:00
int amount = space->broadphase->cull_segment(begin, end, space->intersection_query_results, SpaceSW::INTERSECTION_QUERY_MAX, space->intersection_query_subindex_results);
2015-10-08 18:00:40 +00:00
//todo, create another array that references results, compute AABBs and check closest point to ray origin, sort, and stop evaluating results when beyond first collision
2015-10-08 18:00:40 +00:00
bool collided = false;
Vector3 res_point, res_normal;
2015-10-08 18:00:40 +00:00
int res_shape;
const CollisionObjectSW *res_obj;
real_t min_d = 1e10;
2015-10-08 18:00:40 +00:00
for (int i = 0; i < amount; i++) {
if (!_can_collide_with(space->intersection_query_results[i], p_collision_mask, p_collide_with_bodies, p_collide_with_areas)) {
2015-10-08 18:00:40 +00:00
continue;
}
2015-10-08 18:00:40 +00:00
if (p_pick_ray && !(space->intersection_query_results[i]->is_ray_pickable())) {
2015-10-08 18:00:40 +00:00
continue;
}
2015-10-08 18:00:40 +00:00
if (p_exclude.has(space->intersection_query_results[i]->get_self())) {
2015-10-08 18:00:40 +00:00
continue;
}
2015-10-08 18:00:40 +00:00
const CollisionObjectSW *col_obj = space->intersection_query_results[i];
2015-10-08 18:00:40 +00:00
int shape_idx = space->intersection_query_subindex_results[i];
2015-10-08 18:00:40 +00:00
Transform inv_xform = col_obj->get_shape_inv_transform(shape_idx) * col_obj->get_inv_transform();
Vector3 local_from = inv_xform.xform(begin);
Vector3 local_to = inv_xform.xform(end);
const ShapeSW *shape = col_obj->get_shape(shape_idx);
Vector3 shape_point, shape_normal;
2015-10-08 18:00:40 +00:00
if (shape->intersect_segment(local_from, local_to, shape_point, shape_normal)) {
2015-10-08 18:00:40 +00:00
Transform xform = col_obj->get_transform() * col_obj->get_shape_transform(shape_idx);
shape_point = xform.xform(shape_point);
2015-10-08 18:00:40 +00:00
real_t ld = normal.dot(shape_point);
if (ld < min_d) {
min_d = ld;
res_point = shape_point;
res_normal = inv_xform.basis.xform_inv(shape_normal).normalized();
res_shape = shape_idx;
res_obj = col_obj;
collided = true;
2015-10-08 18:00:40 +00:00
}
}
}
if (!collided) {
2015-10-08 18:00:40 +00:00
return false;
}
2015-10-08 18:00:40 +00:00
r_result.collider_id = res_obj->get_instance_id();
if (r_result.collider_id != 0) {
r_result.collider = ObjectDB::get_instance(r_result.collider_id);
} else {
r_result.collider = nullptr;
}
r_result.normal = res_normal;
r_result.position = res_point;
r_result.rid = res_obj->get_self();
r_result.shape = res_shape;
2015-10-08 18:00:40 +00:00
return true;
}
int PhysicsDirectSpaceStateSW::intersect_shape(const RID &p_shape, const Transform &p_xform, real_t p_margin, ShapeResult *r_results, int p_result_max, const Set<RID> &p_exclude, uint32_t p_collision_mask, bool p_collide_with_bodies, bool p_collide_with_areas) {
if (p_result_max <= 0) {
2015-10-08 18:00:40 +00:00
return 0;
}
2015-10-08 18:00:40 +00:00
ShapeSW *shape = static_cast<PhysicsServerSW *>(PhysicsServer::get_singleton())->shape_owner.get(p_shape);
ERR_FAIL_COND_V(!shape, 0);
2015-10-08 18:00:40 +00:00
2017-11-17 02:09:00 +00:00
AABB aabb = p_xform.xform(shape->get_aabb());
2015-10-08 18:00:40 +00:00
int amount = space->broadphase->cull_aabb(aabb, space->intersection_query_results, SpaceSW::INTERSECTION_QUERY_MAX, space->intersection_query_subindex_results);
2015-10-08 18:00:40 +00:00
int cc = 0;
2015-10-08 18:00:40 +00:00
//Transform ai = p_xform.affine_inverse();
for (int i = 0; i < amount; i++) {
if (cc >= p_result_max) {
2015-10-08 18:00:40 +00:00
break;
}
2015-10-08 18:00:40 +00:00
if (!_can_collide_with(space->intersection_query_results[i], p_collision_mask, p_collide_with_bodies, p_collide_with_areas)) {
2015-10-08 18:00:40 +00:00
continue;
}
2015-10-08 18:00:40 +00:00
//area can't be picked by ray (default)
2015-10-08 18:00:40 +00:00
if (p_exclude.has(space->intersection_query_results[i]->get_self())) {
2015-10-08 18:00:40 +00:00
continue;
}
2015-10-08 18:00:40 +00:00
const CollisionObjectSW *col_obj = space->intersection_query_results[i];
int shape_idx = space->intersection_query_subindex_results[i];
2015-10-08 18:00:40 +00:00
if (!CollisionSolverSW::solve_static(shape, p_xform, col_obj->get_shape(shape_idx), col_obj->get_transform() * col_obj->get_shape_transform(shape_idx), nullptr, nullptr, nullptr, p_margin, 0)) {
2015-10-08 18:00:40 +00:00
continue;
}
2015-10-08 18:00:40 +00:00
if (r_results) {
r_results[cc].collider_id = col_obj->get_instance_id();
if (r_results[cc].collider_id != 0) {
r_results[cc].collider = ObjectDB::get_instance(r_results[cc].collider_id);
} else {
r_results[cc].collider = nullptr;
}
r_results[cc].rid = col_obj->get_self();
r_results[cc].shape = shape_idx;
}
cc++;
2015-10-08 18:00:40 +00:00
}
return cc;
}
bool PhysicsDirectSpaceStateSW::cast_motion(const RID &p_shape, const Transform &p_xform, const Vector3 &p_motion, real_t p_margin, real_t &p_closest_safe, real_t &p_closest_unsafe, const Set<RID> &p_exclude, uint32_t p_collision_mask, bool p_collide_with_bodies, bool p_collide_with_areas, ShapeRestInfo *r_info) {
ShapeSW *shape = static_cast<PhysicsServerSW *>(PhysicsServer::get_singleton())->shape_owner.get(p_shape);
ERR_FAIL_COND_V(!shape, false);
2015-10-08 18:00:40 +00:00
2017-11-17 02:09:00 +00:00
AABB aabb = p_xform.xform(shape->get_aabb());
aabb = aabb.merge(AABB(aabb.position + p_motion, aabb.size)); //motion
aabb = aabb.grow(p_margin);
2015-10-08 18:00:40 +00:00
int amount = space->broadphase->cull_aabb(aabb, space->intersection_query_results, SpaceSW::INTERSECTION_QUERY_MAX, space->intersection_query_subindex_results);
2015-10-08 18:00:40 +00:00
real_t best_safe = 1;
real_t best_unsafe = 1;
2015-10-08 18:00:40 +00:00
Transform xform_inv = p_xform.affine_inverse();
MotionShapeSW mshape;
mshape.shape = shape;
mshape.motion = xform_inv.basis.xform(p_motion);
2015-10-08 18:00:40 +00:00
bool best_first = true;
2015-10-08 18:00:40 +00:00
Vector3 motion_normal = p_motion.normalized();
Vector3 closest_A, closest_B;
2015-10-08 18:00:40 +00:00
for (int i = 0; i < amount; i++) {
if (!_can_collide_with(space->intersection_query_results[i], p_collision_mask, p_collide_with_bodies, p_collide_with_areas)) {
2015-10-08 18:00:40 +00:00
continue;
}
2015-10-08 18:00:40 +00:00
if (p_exclude.has(space->intersection_query_results[i]->get_self())) {
2015-10-08 18:00:40 +00:00
continue; //ignore excluded
}
2015-10-08 18:00:40 +00:00
const CollisionObjectSW *col_obj = space->intersection_query_results[i];
int shape_idx = space->intersection_query_subindex_results[i];
2015-10-08 18:00:40 +00:00
Vector3 point_A, point_B;
Vector3 sep_axis = motion_normal;
2015-10-08 18:00:40 +00:00
Transform col_obj_xform = col_obj->get_transform() * col_obj->get_shape_transform(shape_idx);
//test initial overlap, does it collide if going all the way?
if (CollisionSolverSW::solve_distance(&mshape, p_xform, col_obj->get_shape(shape_idx), col_obj_xform, point_A, point_B, aabb, &sep_axis)) {
2015-10-08 18:00:40 +00:00
continue;
}
//test initial overlap, ignore objects it's inside of.
sep_axis = motion_normal;
2015-10-08 18:00:40 +00:00
if (!CollisionSolverSW::solve_distance(shape, p_xform, col_obj->get_shape(shape_idx), col_obj_xform, point_A, point_B, aabb, &sep_axis)) {
continue;
2015-10-08 18:00:40 +00:00
}
//just do kinematic solving
real_t low = 0.0;
real_t hi = 1.0;
real_t fraction_coeff = 0.5;
for (int j = 0; j < 8; j++) { //steps should be customizable..
real_t fraction = low + (hi - low) * fraction_coeff;
2015-10-08 18:00:40 +00:00
mshape.motion = xform_inv.basis.xform(p_motion * fraction);
2015-10-08 18:00:40 +00:00
Vector3 lA, lB;
Vector3 sep = motion_normal; //important optimization for this to work fast enough
bool collided = !CollisionSolverSW::solve_distance(&mshape, p_xform, col_obj->get_shape(shape_idx), col_obj_xform, lA, lB, aabb, &sep);
2015-10-08 18:00:40 +00:00
if (collided) {
hi = fraction;
if ((j == 0) || (low > 0.0)) { // Did it not collide before?
// When alternating or first iteration, use dichotomy.
fraction_coeff = 0.5;
} else {
// When colliding again, converge faster towards low fraction
// for more accurate results with long motions that collide near the start.
fraction_coeff = 0.25;
}
2015-10-08 18:00:40 +00:00
} else {
point_A = lA;
point_B = lB;
low = fraction;
if ((j == 0) || (hi < 1.0)) { // Did it collide before?
// When alternating or first iteration, use dichotomy.
fraction_coeff = 0.5;
} else {
// When not colliding again, converge faster towards high fraction
// for more accurate results with long motions that collide near the end.
fraction_coeff = 0.75;
}
2015-10-08 18:00:40 +00:00
}
}
if (low < best_safe) {
best_first = true; //force reset
best_safe = low;
best_unsafe = hi;
2015-10-08 18:00:40 +00:00
}
if (r_info && (best_first || (point_A.distance_squared_to(point_B) < closest_A.distance_squared_to(closest_B) && low <= best_safe))) {
closest_A = point_A;
closest_B = point_B;
r_info->collider_id = col_obj->get_instance_id();
r_info->rid = col_obj->get_self();
r_info->shape = shape_idx;
r_info->point = closest_B;
r_info->normal = (closest_A - closest_B).normalized();
best_first = false;
if (col_obj->get_type() == CollisionObjectSW::TYPE_BODY) {
const BodySW *body = static_cast<const BodySW *>(col_obj);
Vector3 rel_vec = closest_B - (body->get_transform().origin + body->get_center_of_mass());
r_info->linear_velocity = body->get_linear_velocity() + (body->get_angular_velocity()).cross(rel_vec);
2015-10-08 18:00:40 +00:00
}
}
}
p_closest_safe = best_safe;
p_closest_unsafe = best_unsafe;
2015-10-08 18:00:40 +00:00
return true;
}
bool PhysicsDirectSpaceStateSW::collide_shape(RID p_shape, const Transform &p_shape_xform, real_t p_margin, Vector3 *r_results, int p_result_max, int &r_result_count, const Set<RID> &p_exclude, uint32_t p_collision_mask, bool p_collide_with_bodies, bool p_collide_with_areas) {
if (p_result_max <= 0) {
return false;
}
2015-10-08 18:00:40 +00:00
ShapeSW *shape = static_cast<PhysicsServerSW *>(PhysicsServer::get_singleton())->shape_owner.get(p_shape);
ERR_FAIL_COND_V(!shape, 0);
2015-10-08 18:00:40 +00:00
2017-11-17 02:09:00 +00:00
AABB aabb = p_shape_xform.xform(shape->get_aabb());
aabb = aabb.grow(p_margin);
2015-10-08 18:00:40 +00:00
int amount = space->broadphase->cull_aabb(aabb, space->intersection_query_results, SpaceSW::INTERSECTION_QUERY_MAX, space->intersection_query_subindex_results);
2015-10-08 18:00:40 +00:00
bool collided = false;
r_result_count = 0;
2015-10-08 18:00:40 +00:00
PhysicsServerSW::CollCbkData cbk;
cbk.max = p_result_max;
cbk.amount = 0;
cbk.ptr = r_results;
CollisionSolverSW::CallbackResult cbkres = PhysicsServerSW::_shape_col_cbk;
PhysicsServerSW::CollCbkData *cbkptr = &cbk;
2015-10-08 18:00:40 +00:00
for (int i = 0; i < amount; i++) {
if (!_can_collide_with(space->intersection_query_results[i], p_collision_mask, p_collide_with_bodies, p_collide_with_areas)) {
2015-10-08 18:00:40 +00:00
continue;
}
2015-10-08 18:00:40 +00:00
const CollisionObjectSW *col_obj = space->intersection_query_results[i];
int shape_idx = space->intersection_query_subindex_results[i];
2015-10-08 18:00:40 +00:00
if (p_exclude.has(col_obj->get_self())) {
2015-10-08 18:00:40 +00:00
continue;
}
if (CollisionSolverSW::solve_static(shape, p_shape_xform, col_obj->get_shape(shape_idx), col_obj->get_transform() * col_obj->get_shape_transform(shape_idx), cbkres, cbkptr, nullptr, p_margin)) {
collided = true;
2015-10-08 18:00:40 +00:00
}
}
r_result_count = cbk.amount;
2015-10-08 18:00:40 +00:00
return collided;
}
struct _RestCallbackData {
const CollisionObjectSW *object;
const CollisionObjectSW *best_object;
int local_shape;
int best_local_shape;
2015-10-08 18:00:40 +00:00
int shape;
int best_shape;
Vector3 best_contact;
Vector3 best_normal;
real_t best_len;
real_t min_allowed_depth;
2015-10-08 18:00:40 +00:00
};
static void _rest_cbk_result(const Vector3 &p_point_A, const Vector3 &p_point_B, void *p_userdata) {
_RestCallbackData *rd = (_RestCallbackData *)p_userdata;
2015-10-08 18:00:40 +00:00
Vector3 contact_rel = p_point_B - p_point_A;
real_t len = contact_rel.length();
if (len < rd->min_allowed_depth) {
return;
}
if (len <= rd->best_len) {
2015-10-08 18:00:40 +00:00
return;
}
2015-10-08 18:00:40 +00:00
rd->best_len = len;
rd->best_contact = p_point_B;
rd->best_normal = contact_rel / len;
rd->best_object = rd->object;
rd->best_shape = rd->shape;
rd->best_local_shape = rd->local_shape;
2015-10-08 18:00:40 +00:00
}
bool PhysicsDirectSpaceStateSW::rest_info(RID p_shape, const Transform &p_shape_xform, real_t p_margin, ShapeRestInfo *r_info, const Set<RID> &p_exclude, uint32_t p_collision_mask, bool p_collide_with_bodies, bool p_collide_with_areas) {
ShapeSW *shape = static_cast<PhysicsServerSW *>(PhysicsServer::get_singleton())->shape_owner.get(p_shape);
ERR_FAIL_COND_V(!shape, 0);
2015-10-08 18:00:40 +00:00
real_t margin = MAX(p_margin, TEST_MOTION_MARGIN_MIN_VALUE);
real_t min_contact_depth = margin * TEST_MOTION_MIN_CONTACT_DEPTH_FACTOR;
2017-11-17 02:09:00 +00:00
AABB aabb = p_shape_xform.xform(shape->get_aabb());
aabb = aabb.grow(margin);
2015-10-08 18:00:40 +00:00
int amount = space->broadphase->cull_aabb(aabb, space->intersection_query_results, SpaceSW::INTERSECTION_QUERY_MAX, space->intersection_query_subindex_results);
2015-10-08 18:00:40 +00:00
_RestCallbackData rcd;
rcd.best_len = 0;
rcd.best_object = nullptr;
rcd.best_shape = 0;
rcd.min_allowed_depth = min_contact_depth;
2015-10-08 18:00:40 +00:00
for (int i = 0; i < amount; i++) {
if (!_can_collide_with(space->intersection_query_results[i], p_collision_mask, p_collide_with_bodies, p_collide_with_areas)) {
2015-10-08 18:00:40 +00:00
continue;
}
2015-10-08 18:00:40 +00:00
const CollisionObjectSW *col_obj = space->intersection_query_results[i];
int shape_idx = space->intersection_query_subindex_results[i];
2015-10-08 18:00:40 +00:00
if (p_exclude.has(col_obj->get_self())) {
2015-10-08 18:00:40 +00:00
continue;
}
2015-10-08 18:00:40 +00:00
rcd.object = col_obj;
rcd.shape = shape_idx;
bool sc = CollisionSolverSW::solve_static(shape, p_shape_xform, col_obj->get_shape(shape_idx), col_obj->get_transform() * col_obj->get_shape_transform(shape_idx), _rest_cbk_result, &rcd, nullptr, margin);
if (!sc) {
2015-10-08 18:00:40 +00:00
continue;
}
2015-10-08 18:00:40 +00:00
}
if (rcd.best_len == 0 || !rcd.best_object) {
2015-10-08 18:00:40 +00:00
return false;
}
2015-10-08 18:00:40 +00:00
r_info->collider_id = rcd.best_object->get_instance_id();
r_info->shape = rcd.best_shape;
r_info->normal = rcd.best_normal;
r_info->point = rcd.best_contact;
r_info->rid = rcd.best_object->get_self();
if (rcd.best_object->get_type() == CollisionObjectSW::TYPE_BODY) {
const BodySW *body = static_cast<const BodySW *>(rcd.best_object);
Vector3 rel_vec = rcd.best_contact - (body->get_transform().origin + body->get_center_of_mass());
r_info->linear_velocity = body->get_linear_velocity() + (body->get_angular_velocity()).cross(rel_vec);
2015-10-08 18:00:40 +00:00
} else {
r_info->linear_velocity = Vector3();
2015-10-08 18:00:40 +00:00
}
return true;
}
Vector3 PhysicsDirectSpaceStateSW::get_closest_point_to_object_volume(RID p_object, const Vector3 p_point) const {
2017-08-21 19:15:36 +00:00
CollisionObjectSW *obj = PhysicsServerSW::singleton->area_owner.getornull(p_object);
if (!obj) {
obj = PhysicsServerSW::singleton->body_owner.getornull(p_object);
}
ERR_FAIL_COND_V(!obj, Vector3());
ERR_FAIL_COND_V(obj->get_space() != space, Vector3());
float min_distance = 1e20;
Vector3 min_point;
bool shapes_found = false;
for (int i = 0; i < obj->get_shape_count(); i++) {
if (obj->is_shape_disabled(i)) {
continue;
}
Transform shape_xform = obj->get_transform() * obj->get_shape_transform(i);
ShapeSW *shape = obj->get_shape(i);
Vector3 point = shape->get_closest_point_to(shape_xform.affine_inverse().xform(p_point));
point = shape_xform.xform(point);
float dist = point.distance_to(p_point);
if (dist < min_distance) {
min_distance = dist;
min_point = point;
}
shapes_found = true;
}
if (!shapes_found) {
return obj->get_transform().origin; //no shapes found, use distance to origin.
} else {
return min_point;
}
}
2015-10-08 18:00:40 +00:00
PhysicsDirectSpaceStateSW::PhysicsDirectSpaceStateSW() {
space = nullptr;
2015-10-08 18:00:40 +00:00
}
////////////////////////////////////////////////////////////////////////////////////////////////////////////
2017-11-17 02:09:00 +00:00
int SpaceSW::_cull_aabb_for_body(BodySW *p_body, const AABB &p_aabb) {
int amount = broadphase->cull_aabb(p_aabb, intersection_query_results, INTERSECTION_QUERY_MAX, intersection_query_subindex_results);
for (int i = 0; i < amount; i++) {
bool keep = true;
if (intersection_query_results[i] == p_body) {
keep = false;
} else if (intersection_query_results[i]->get_type() == CollisionObjectSW::TYPE_AREA) {
keep = false;
} else if ((static_cast<BodySW *>(intersection_query_results[i])->test_collision_mask(p_body)) == 0) {
keep = false;
} else if (static_cast<BodySW *>(intersection_query_results[i])->has_exception(p_body->get_self()) || p_body->has_exception(intersection_query_results[i]->get_self())) {
keep = false;
}
if (!keep) {
if (i < amount - 1) {
SWAP(intersection_query_results[i], intersection_query_results[amount - 1]);
SWAP(intersection_query_subindex_results[i], intersection_query_subindex_results[amount - 1]);
}
amount--;
i--;
}
}
return amount;
}
int SpaceSW::test_body_ray_separation(BodySW *p_body, const Transform &p_transform, bool p_infinite_inertia, Vector3 &r_recover_motion, PhysicsServer::SeparationResult *r_results, int p_result_max, real_t p_margin) {
AABB body_aabb;
bool shapes_found = false;
for (int i = 0; i < p_body->get_shape_count(); i++) {
if (p_body->is_shape_disabled(i)) {
continue;
}
if (!shapes_found) {
body_aabb = p_body->get_shape_aabb(i);
shapes_found = true;
} else {
body_aabb = body_aabb.merge(p_body->get_shape_aabb(i));
}
}
if (!shapes_found) {
return 0;
}
// Undo the currently transform the physics server is aware of and apply the provided one
body_aabb = p_transform.xform(p_body->get_inv_transform().xform(body_aabb));
body_aabb = body_aabb.grow(p_margin);
Transform body_transform = p_transform;
for (int i = 0; i < p_result_max; i++) {
//reset results
r_results[i].collision_depth = -1.0;
}
int rays_found = 0;
{
// raycast AND separate
const int max_results = 32;
int recover_attempts = 4;
Vector3 sr[max_results * 2];
PhysicsServerSW::CollCbkData cbk;
cbk.max = max_results;
PhysicsServerSW::CollCbkData *cbkptr = &cbk;
CollisionSolverSW::CallbackResult cbkres = PhysicsServerSW::_shape_col_cbk;
do {
Vector3 recover_motion;
bool collided = false;
int amount = _cull_aabb_for_body(p_body, body_aabb);
for (int j = 0; j < p_body->get_shape_count(); j++) {
if (p_body->is_shape_disabled(j)) {
continue;
}
ShapeSW *body_shape = p_body->get_shape(j);
if (body_shape->get_type() != PhysicsServer::SHAPE_RAY) {
continue;
}
Transform body_shape_xform = body_transform * p_body->get_shape_transform(j);
for (int i = 0; i < amount; i++) {
const CollisionObjectSW *col_obj = intersection_query_results[i];
int shape_idx = intersection_query_subindex_results[i];
cbk.amount = 0;
cbk.ptr = sr;
if (CollisionObjectSW::TYPE_BODY == col_obj->get_type()) {
const BodySW *b = static_cast<const BodySW *>(col_obj);
if (p_infinite_inertia && PhysicsServer::BODY_MODE_STATIC != b->get_mode() && PhysicsServer::BODY_MODE_KINEMATIC != b->get_mode()) {
continue;
}
}
ShapeSW *against_shape = col_obj->get_shape(shape_idx);
if (CollisionSolverSW::solve_static(body_shape, body_shape_xform, against_shape, col_obj->get_transform() * col_obj->get_shape_transform(shape_idx), cbkres, cbkptr, nullptr, p_margin)) {
if (cbk.amount > 0) {
collided = true;
}
int ray_index = -1; //reuse shape
for (int k = 0; k < rays_found; k++) {
KinematicBody performance and quality improvements With this change finally one can use compound collisions (like those created by Gridmaps) without serious performance issues. The previous KinematicBody code for Bullet was practically doing a whole bunch of unnecessary calculations. Gridmaps with fairly large octant sizes (in my case 32) can get up to 10000x speedup with this change (literally!). I expect the FPS demo to get a fair speedup as well. List of fixes and improvements: - Fixed a general bug in move_and_slide that affects both GodotPhysics and Bullet, where ray shapes would be ignored unless the stop_on_slope parameter is disabled. Not sure where that came from, but looking at the 2D physics code it was obvious there's a difference. - Enabled the dynamic AABB tree that Bullet uses to allow broadphase collision tests against individual shapes of compound shapes. This is crucial to get good performance with Gridmaps and in general improves the performance whenever a KinematicBody collides with compound collision shapes. - Added code to the broadphase collision detection code used by the Bullet module for KinematicBodies to also do broadphase on the sub-shapes of compound collision shapes. This is possible thanks to the dynamic AABB tree that was previously disabled and it's the change that provides the biggest performance boost. - Now broadphase test is only done once per KinematicBody in Bullet instead of once per each of its shapes which was completely unnecessary. - Fixed the way how the ray separation results are populated in Bullet which was completely broken previously, overwriting previous results and similar non-sense. - Fixed ray shapes for good now. Previously the margin set in the editor was not respected at all, and the KinematicBody code for ray separation was complete bogus, thus all previous attempts to fix it were mislead. - Fixed an obvious bug also in GodotPhysics where an out-of-bounds index was used in the ray result array. There are a whole set of other problems with the KinematicBody code of Bullet which cost performance and may cause unexpected behavior, but those are not addressed in this change (need to keep it "simple"). Not sure whether this fixes any outstanding Github issues but I wouldn't be surprised.
2019-03-25 21:46:26 +00:00
if (r_results[k].collision_local_shape == j) {
ray_index = k;
}
}
if (ray_index == -1 && rays_found < p_result_max) {
ray_index = rays_found;
rays_found++;
}
if (ray_index != -1) {
PhysicsServer::SeparationResult &result = r_results[ray_index];
for (int k = 0; k < cbk.amount; k++) {
Vector3 a = sr[k * 2 + 0];
Vector3 b = sr[k * 2 + 1];
// Compute plane on b towards a.
Vector3 n = (a - b).normalized();
float d = n.dot(b);
// Compute depth on recovered motion.
float depth = n.dot(a + recover_motion) - d;
// Apply recovery without margin.
float separation_depth = depth - p_margin;
if (separation_depth > 0.0) {
// Only recover if there is penetration.
recover_motion -= n * separation_depth;
}
if (depth > result.collision_depth) {
result.collision_depth = depth;
result.collision_point = b;
result.collision_normal = -n;
result.collision_local_shape = j;
result.collider = col_obj->get_self();
result.collider_id = col_obj->get_instance_id();
result.collider_shape = shape_idx;
if (col_obj->get_type() == CollisionObjectSW::TYPE_BODY) {
BodySW *body = (BodySW *)col_obj;
Vector3 rel_vec = b - (body->get_transform().origin + body->get_center_of_mass());
result.collider_velocity = body->get_linear_velocity() + (body->get_angular_velocity()).cross(rel_vec);
}
}
}
}
}
}
}
if (!collided || recover_motion == Vector3()) {
break;
}
body_transform.origin += recover_motion;
body_aabb.position += recover_motion;
recover_attempts--;
} while (recover_attempts);
}
r_recover_motion = body_transform.origin - p_transform.origin;
return rays_found;
}
bool SpaceSW::test_body_motion(BodySW *p_body, const Transform &p_from, const Vector3 &p_motion, bool p_infinite_inertia, real_t p_margin, PhysicsServer::MotionResult *r_result, bool p_exclude_raycast_shapes, const Set<RID> &p_exclude) {
//give me back regular physics engine logic
//this is madness
//and most people using this function will think
//what it does is simpler than using physics
//this took about a week to get right..
//but is it right? who knows at this point..
if (r_result) {
r_result->collider_id = 0;
r_result->collider_shape = 0;
}
2017-11-17 02:09:00 +00:00
AABB body_aabb;
bool shapes_found = false;
for (int i = 0; i < p_body->get_shape_count(); i++) {
if (p_body->is_shape_disabled(i)) {
continue;
}
if (!shapes_found) {
body_aabb = p_body->get_shape_aabb(i);
shapes_found = true;
} else {
body_aabb = body_aabb.merge(p_body->get_shape_aabb(i));
}
}
if (!shapes_found) {
if (r_result) {
*r_result = PhysicsServer::MotionResult();
r_result->motion = p_motion;
}
return false;
}
real_t margin = MAX(p_margin, TEST_MOTION_MARGIN_MIN_VALUE);
// Undo the currently transform the physics server is aware of and apply the provided one
body_aabb = p_from.xform(p_body->get_inv_transform().xform(body_aabb));
body_aabb = body_aabb.grow(margin);
real_t min_contact_depth = margin * TEST_MOTION_MIN_CONTACT_DEPTH_FACTOR;
float motion_length = p_motion.length();
Vector3 motion_normal = p_motion / motion_length;
Transform body_transform = p_from;
bool recovered = false;
{
//STEP 1, FREE BODY IF STUCK
const int max_results = 32;
int recover_attempts = 4;
Vector3 sr[max_results * 2];
do {
PhysicsServerSW::CollCbkData cbk;
cbk.max = max_results;
cbk.amount = 0;
cbk.ptr = sr;
2017-08-21 19:15:36 +00:00
PhysicsServerSW::CollCbkData *cbkptr = &cbk;
CollisionSolverSW::CallbackResult cbkres = PhysicsServerSW::_shape_col_cbk;
bool collided = false;
int amount = _cull_aabb_for_body(p_body, body_aabb);
for (int j = 0; j < p_body->get_shape_count(); j++) {
if (p_body->is_shape_disabled(j)) {
continue;
}
Transform body_shape_xform = body_transform * p_body->get_shape_transform(j);
ShapeSW *body_shape = p_body->get_shape(j);
if (p_exclude_raycast_shapes && body_shape->get_type() == PhysicsServer::SHAPE_RAY) {
continue;
}
for (int i = 0; i < amount; i++) {
const CollisionObjectSW *col_obj = intersection_query_results[i];
if (p_exclude.has(col_obj->get_self())) {
continue;
}
int shape_idx = intersection_query_subindex_results[i];
if (CollisionObjectSW::TYPE_BODY == col_obj->get_type()) {
const BodySW *b = static_cast<const BodySW *>(col_obj);
if (p_infinite_inertia && PhysicsServer::BODY_MODE_STATIC != b->get_mode() && PhysicsServer::BODY_MODE_KINEMATIC != b->get_mode()) {
continue;
}
}
if (CollisionSolverSW::solve_static(body_shape, body_shape_xform, col_obj->get_shape(shape_idx), col_obj->get_transform() * col_obj->get_shape_transform(shape_idx), cbkres, cbkptr, nullptr, margin)) {
collided = cbk.amount > 0;
}
}
}
if (!collided) {
break;
}
recovered = true;
Vector3 recover_motion;
for (int i = 0; i < cbk.amount; i++) {
Vector3 a = sr[i * 2 + 0];
Vector3 b = sr[i * 2 + 1];
// Compute plane on b towards a.
Vector3 n = (a - b).normalized();
float d = n.dot(b);
// Compute depth on recovered motion.
float depth = n.dot(a + recover_motion) - d;
if (depth > min_contact_depth + CMP_EPSILON) {
// Only recover if there is penetration.
recover_motion -= n * (depth - min_contact_depth) * 0.4;
}
}
if (recover_motion == Vector3()) {
collided = false;
break;
}
body_transform.origin += recover_motion;
body_aabb.position += recover_motion;
recover_attempts--;
} while (recover_attempts);
}
real_t safe = 1.0;
real_t unsafe = 1.0;
int best_shape = -1;
{
// STEP 2 ATTEMPT MOTION
2017-11-17 02:09:00 +00:00
AABB motion_aabb = body_aabb;
motion_aabb.position += p_motion;
motion_aabb = motion_aabb.merge(body_aabb);
int amount = _cull_aabb_for_body(p_body, motion_aabb);
for (int j = 0; j < p_body->get_shape_count(); j++) {
if (p_body->is_shape_disabled(j)) {
continue;
}
Transform body_shape_xform = body_transform * p_body->get_shape_transform(j);
ShapeSW *body_shape = p_body->get_shape(j);
if (p_exclude_raycast_shapes && body_shape->get_type() == PhysicsServer::SHAPE_RAY) {
continue;
}
Transform body_shape_xform_inv = body_shape_xform.affine_inverse();
MotionShapeSW mshape;
mshape.shape = body_shape;
mshape.motion = body_shape_xform_inv.basis.xform(p_motion);
bool stuck = false;
real_t best_safe = 1;
real_t best_unsafe = 1;
for (int i = 0; i < amount; i++) {
const CollisionObjectSW *col_obj = intersection_query_results[i];
if (p_exclude.has(col_obj->get_self())) {
continue;
}
int shape_idx = intersection_query_subindex_results[i];
if (CollisionObjectSW::TYPE_BODY == col_obj->get_type()) {
const BodySW *b = static_cast<const BodySW *>(col_obj);
if (p_infinite_inertia && PhysicsServer::BODY_MODE_STATIC != b->get_mode() && PhysicsServer::BODY_MODE_KINEMATIC != b->get_mode()) {
continue;
}
}
//test initial overlap, does it collide if going all the way?
Vector3 point_A, point_B;
Vector3 sep_axis = motion_normal;
Transform col_obj_xform = col_obj->get_transform() * col_obj->get_shape_transform(shape_idx);
//test initial overlap, does it collide if going all the way?
if (CollisionSolverSW::solve_distance(&mshape, body_shape_xform, col_obj->get_shape(shape_idx), col_obj_xform, point_A, point_B, motion_aabb, &sep_axis)) {
continue;
}
sep_axis = motion_normal;
if (!CollisionSolverSW::solve_distance(body_shape, body_shape_xform, col_obj->get_shape(shape_idx), col_obj_xform, point_A, point_B, motion_aabb, &sep_axis)) {
stuck = true;
break;
}
//just do kinematic solving
real_t low = 0.0;
real_t hi = 1.0;
real_t fraction_coeff = 0.5;
for (int k = 0; k < 8; k++) { //steps should be customizable..
real_t fraction = low + (hi - low) * fraction_coeff;
mshape.motion = body_shape_xform_inv.basis.xform(p_motion * fraction);
Vector3 lA, lB;
Vector3 sep = motion_normal; //important optimization for this to work fast enough
bool collided = !CollisionSolverSW::solve_distance(&mshape, body_shape_xform, col_obj->get_shape(shape_idx), col_obj_xform, lA, lB, motion_aabb, &sep);
if (collided) {
hi = fraction;
if ((k == 0) || (low > 0.0)) { // Did it not collide before?
// When alternating or first iteration, use dichotomy.
fraction_coeff = 0.5;
} else {
// When colliding again, converge faster towards low fraction
// for more accurate results with long motions that collide near the start.
fraction_coeff = 0.25;
}
} else {
point_A = lA;
point_B = lB;
low = fraction;
if ((k == 0) || (hi < 1.0)) { // Did it collide before?
// When alternating or first iteration, use dichotomy.
fraction_coeff = 0.5;
} else {
// When not colliding again, converge faster towards high fraction
// for more accurate results with long motions that collide near the end.
fraction_coeff = 0.75;
}
}
}
if (low < best_safe) {
best_safe = low;
best_unsafe = hi;
}
}
if (stuck) {
safe = 0;
unsafe = 0;
best_shape = j; //sadly it's the best
break;
}
if (best_safe == 1.0) {
continue;
}
if (best_safe < safe) {
safe = best_safe;
unsafe = best_unsafe;
best_shape = j;
}
}
}
bool collided = false;
if (recovered || (safe < 1)) {
if (safe >= 1) {
best_shape = -1; //no best shape with cast, reset to -1
}
//it collided, let's get the rest info in unsafe advance
Transform ugt = body_transform;
ugt.origin += p_motion * unsafe;
_RestCallbackData rcd;
rcd.best_len = 0;
rcd.best_object = nullptr;
rcd.best_shape = 0;
// Allowed depth can't be lower than motion length, in order to handle contacts at low speed.
rcd.min_allowed_depth = MIN(motion_length, min_contact_depth);
int from_shape = best_shape != -1 ? best_shape : 0;
int to_shape = best_shape != -1 ? best_shape + 1 : p_body->get_shape_count();
for (int j = from_shape; j < to_shape; j++) {
if (p_body->is_shape_disabled(j)) {
continue;
}
Transform body_shape_xform = ugt * p_body->get_shape_transform(j);
ShapeSW *body_shape = p_body->get_shape(j);
if (p_exclude_raycast_shapes && body_shape->get_type() == PhysicsServer::SHAPE_RAY) {
continue;
}
body_aabb.position += p_motion * unsafe;
int amount = _cull_aabb_for_body(p_body, body_aabb);
for (int i = 0; i < amount; i++) {
const CollisionObjectSW *col_obj = intersection_query_results[i];
if (p_exclude.has(col_obj->get_self())) {
continue;
}
int shape_idx = intersection_query_subindex_results[i];
if (CollisionObjectSW::TYPE_BODY == col_obj->get_type()) {
const BodySW *b = static_cast<const BodySW *>(col_obj);
if (p_infinite_inertia && PhysicsServer::BODY_MODE_STATIC != b->get_mode() && PhysicsServer::BODY_MODE_KINEMATIC != b->get_mode()) {
continue;
}
}
rcd.object = col_obj;
rcd.shape = shape_idx;
rcd.local_shape = j;
bool sc = CollisionSolverSW::solve_static(body_shape, body_shape_xform, col_obj->get_shape(shape_idx), col_obj->get_transform() * col_obj->get_shape_transform(shape_idx), _rest_cbk_result, &rcd, nullptr, margin);
if (!sc) {
continue;
}
}
}
if (rcd.best_len != 0) {
if (r_result) {
r_result->collider = rcd.best_object->get_self();
r_result->collider_id = rcd.best_object->get_instance_id();
r_result->collider_shape = rcd.best_shape;
r_result->collision_local_shape = rcd.best_local_shape;
r_result->collision_normal = rcd.best_normal;
r_result->collision_point = rcd.best_contact;
r_result->collision_depth = rcd.best_len;
r_result->collision_safe_fraction = safe;
r_result->collision_unsafe_fraction = unsafe;
//r_result->collider_metadata = rcd.best_object->get_shape_metadata(rcd.best_shape);
const BodySW *body = static_cast<const BodySW *>(rcd.best_object);
Vector3 rel_vec = rcd.best_contact - (body->get_transform().origin + body->get_center_of_mass());
r_result->collider_velocity = body->get_linear_velocity() + (body->get_angular_velocity()).cross(rel_vec);
r_result->motion = safe * p_motion;
r_result->remainder = p_motion - safe * p_motion;
r_result->motion += (body_transform.get_origin() - p_from.get_origin());
}
collided = true;
}
}
if (!collided && r_result) {
r_result->motion = p_motion;
r_result->remainder = Vector3();
r_result->motion += (body_transform.get_origin() - p_from.get_origin());
}
return collided;
}
// Assumes a valid collision pair, this should have been checked beforehand in the BVH or octree.
void *SpaceSW::_broadphase_pair(CollisionObjectSW *p_object_A, int p_subindex_A, CollisionObjectSW *p_object_B, int p_subindex_B, void *p_pair_data, void *p_self) {
// An existing pair - nothing to do, pair is still valid.
if (p_pair_data) {
return p_pair_data;
}
2015-10-08 18:00:40 +00:00
// New pair
CollisionObjectSW::Type type_A = p_object_A->get_type();
CollisionObjectSW::Type type_B = p_object_B->get_type();
if (type_A > type_B) {
SWAP(p_object_A, p_object_B);
SWAP(p_subindex_A, p_subindex_B);
SWAP(type_A, type_B);
2015-10-08 18:00:40 +00:00
}
SpaceSW *self = (SpaceSW *)p_self;
2015-10-08 18:00:40 +00:00
self->collision_pairs++;
if (type_A == CollisionObjectSW::TYPE_AREA) {
AreaSW *area_a = static_cast<AreaSW *>(p_object_A);
if (type_B == CollisionObjectSW::TYPE_AREA) {
AreaSW *area_b = static_cast<AreaSW *>(p_object_B);
Area2PairSW *area2_pair = memnew(Area2PairSW(area_b, p_subindex_B, area_a, p_subindex_A));
2015-10-08 18:00:40 +00:00
return area2_pair;
} else {
BodySW *body_b = static_cast<BodySW *>(p_object_B);
AreaPairSW *area_pair = memnew(AreaPairSW(body_b, p_subindex_B, area_a, p_subindex_A));
2015-10-08 18:00:40 +00:00
return area_pair;
}
} else {
BodySW *body_a = static_cast<BodySW *>(p_object_A);
BodySW *body_b = static_cast<BodySW *>(p_object_B);
BodyPairSW *body_pair = memnew(BodyPairSW(body_a, p_subindex_A, body_b, p_subindex_B));
return body_pair;
2015-10-08 18:00:40 +00:00
}
return nullptr;
2015-10-08 18:00:40 +00:00
}
void SpaceSW::_broadphase_unpair(CollisionObjectSW *p_object_A, int p_subindex_A, CollisionObjectSW *p_object_B, int p_subindex_B, void *p_pair_data, void *p_self) {
if (!p_pair_data) {
return;
}
2015-10-08 18:00:40 +00:00
SpaceSW *self = (SpaceSW *)p_self;
2015-10-08 18:00:40 +00:00
self->collision_pairs--;
ConstraintSW *c = (ConstraintSW *)p_pair_data;
2015-10-08 18:00:40 +00:00
memdelete(c);
}
const SelfList<BodySW>::List &SpaceSW::get_active_body_list() const {
2015-10-08 18:00:40 +00:00
return active_list;
}
void SpaceSW::body_add_to_active_list(SelfList<BodySW> *p_body) {
2015-10-08 18:00:40 +00:00
active_list.add(p_body);
}
void SpaceSW::body_remove_from_active_list(SelfList<BodySW> *p_body) {
2015-10-08 18:00:40 +00:00
active_list.remove(p_body);
}
void SpaceSW::body_add_to_inertia_update_list(SelfList<BodySW> *p_body) {
2015-10-08 18:00:40 +00:00
inertia_update_list.add(p_body);
}
void SpaceSW::body_remove_from_inertia_update_list(SelfList<BodySW> *p_body) {
2015-10-08 18:00:40 +00:00
inertia_update_list.remove(p_body);
}
BroadPhaseSW *SpaceSW::get_broadphase() {
return broadphase;
}
void SpaceSW::add_object(CollisionObjectSW *p_object) {
ERR_FAIL_COND(objects.has(p_object));
2015-10-08 18:00:40 +00:00
objects.insert(p_object);
}
void SpaceSW::remove_object(CollisionObjectSW *p_object) {
ERR_FAIL_COND(!objects.has(p_object));
2015-10-08 18:00:40 +00:00
objects.erase(p_object);
}
const Set<CollisionObjectSW *> &SpaceSW::get_objects() const {
2015-10-08 18:00:40 +00:00
return objects;
}
void SpaceSW::body_add_to_state_query_list(SelfList<BodySW> *p_body) {
2015-10-08 18:00:40 +00:00
state_query_list.add(p_body);
}
void SpaceSW::body_remove_from_state_query_list(SelfList<BodySW> *p_body) {
2015-10-08 18:00:40 +00:00
state_query_list.remove(p_body);
}
void SpaceSW::area_add_to_monitor_query_list(SelfList<AreaSW> *p_area) {
2015-10-08 18:00:40 +00:00
monitor_query_list.add(p_area);
}
void SpaceSW::area_remove_from_monitor_query_list(SelfList<AreaSW> *p_area) {
2015-10-08 18:00:40 +00:00
monitor_query_list.remove(p_area);
}
void SpaceSW::area_add_to_moved_list(SelfList<AreaSW> *p_area) {
2015-10-08 18:00:40 +00:00
area_moved_list.add(p_area);
}
void SpaceSW::area_remove_from_moved_list(SelfList<AreaSW> *p_area) {
2015-10-08 18:00:40 +00:00
area_moved_list.remove(p_area);
}
const SelfList<AreaSW>::List &SpaceSW::get_moved_area_list() const {
2015-10-08 18:00:40 +00:00
return area_moved_list;
}
void SpaceSW::call_queries() {
while (state_query_list.first()) {
BodySW *b = state_query_list.first()->self();
2015-10-08 18:00:40 +00:00
state_query_list.remove(state_query_list.first());
b->call_queries();
2015-10-08 18:00:40 +00:00
}
while (monitor_query_list.first()) {
AreaSW *a = monitor_query_list.first()->self();
2015-10-08 18:00:40 +00:00
monitor_query_list.remove(monitor_query_list.first());
a->call_queries();
2015-10-08 18:00:40 +00:00
}
}
void SpaceSW::setup() {
contact_debug_count = 0;
while (inertia_update_list.first()) {
2015-10-08 18:00:40 +00:00
inertia_update_list.first()->self()->update_inertias();
inertia_update_list.remove(inertia_update_list.first());
}
}
void SpaceSW::update() {
broadphase->update();
}
void SpaceSW::set_param(PhysicsServer::SpaceParameter p_param, real_t p_value) {
switch (p_param) {
case PhysicsServer::SPACE_PARAM_CONTACT_RECYCLE_RADIUS:
contact_recycle_radius = p_value;
break;
case PhysicsServer::SPACE_PARAM_CONTACT_MAX_SEPARATION:
contact_max_separation = p_value;
break;
case PhysicsServer::SPACE_PARAM_BODY_MAX_ALLOWED_PENETRATION:
contact_max_allowed_penetration = p_value;
break;
case PhysicsServer::SPACE_PARAM_BODY_LINEAR_VELOCITY_SLEEP_THRESHOLD:
body_linear_velocity_sleep_threshold = p_value;
break;
case PhysicsServer::SPACE_PARAM_BODY_ANGULAR_VELOCITY_SLEEP_THRESHOLD:
body_angular_velocity_sleep_threshold = p_value;
break;
case PhysicsServer::SPACE_PARAM_BODY_TIME_TO_SLEEP:
body_time_to_sleep = p_value;
break;
case PhysicsServer::SPACE_PARAM_BODY_ANGULAR_VELOCITY_DAMP_RATIO:
body_angular_velocity_damp_ratio = p_value;
break;
case PhysicsServer::SPACE_PARAM_CONSTRAINT_DEFAULT_BIAS:
constraint_bias = p_value;
break;
2015-10-08 18:00:40 +00:00
}
}
real_t SpaceSW::get_param(PhysicsServer::SpaceParameter p_param) const {
switch (p_param) {
case PhysicsServer::SPACE_PARAM_CONTACT_RECYCLE_RADIUS:
return contact_recycle_radius;
case PhysicsServer::SPACE_PARAM_CONTACT_MAX_SEPARATION:
return contact_max_separation;
case PhysicsServer::SPACE_PARAM_BODY_MAX_ALLOWED_PENETRATION:
return contact_max_allowed_penetration;
case PhysicsServer::SPACE_PARAM_BODY_LINEAR_VELOCITY_SLEEP_THRESHOLD:
return body_linear_velocity_sleep_threshold;
case PhysicsServer::SPACE_PARAM_BODY_ANGULAR_VELOCITY_SLEEP_THRESHOLD:
return body_angular_velocity_sleep_threshold;
case PhysicsServer::SPACE_PARAM_BODY_TIME_TO_SLEEP:
return body_time_to_sleep;
case PhysicsServer::SPACE_PARAM_BODY_ANGULAR_VELOCITY_DAMP_RATIO:
return body_angular_velocity_damp_ratio;
case PhysicsServer::SPACE_PARAM_CONSTRAINT_DEFAULT_BIAS:
return constraint_bias;
2015-10-08 18:00:40 +00:00
}
return 0;
}
void SpaceSW::lock() {
locked = true;
2015-10-08 18:00:40 +00:00
}
void SpaceSW::unlock() {
locked = false;
2015-10-08 18:00:40 +00:00
}
bool SpaceSW::is_locked() const {
return locked;
}
PhysicsDirectSpaceStateSW *SpaceSW::get_direct_state() {
return direct_access;
}
SpaceSW::SpaceSW() {
collision_pairs = 0;
active_objects = 0;
island_count = 0;
contact_debug_count = 0;
2015-10-08 18:00:40 +00:00
locked = false;
contact_recycle_radius = 0.01;
contact_max_separation = 0.05;
contact_max_allowed_penetration = 0.01;
2015-10-08 18:00:40 +00:00
constraint_bias = 0.01;
body_linear_velocity_sleep_threshold = GLOBAL_DEF("physics/3d/sleep_threshold_linear", 0.1);
body_angular_velocity_sleep_threshold = GLOBAL_DEF("physics/3d/sleep_threshold_angular", (8.0 / 180.0 * Math_PI));
body_time_to_sleep = GLOBAL_DEF("physics/3d/time_before_sleep", 0.5);
2018-10-05 16:43:53 +00:00
ProjectSettings::get_singleton()->set_custom_property_info("physics/3d/time_before_sleep", PropertyInfo(Variant::REAL, "physics/3d/time_before_sleep", PROPERTY_HINT_RANGE, "0,5,0.01,or_greater"));
body_angular_velocity_damp_ratio = 10;
2015-10-08 18:00:40 +00:00
broadphase = BroadPhaseSW::create_func();
broadphase->set_pair_callback(_broadphase_pair, this);
broadphase->set_unpair_callback(_broadphase_unpair, this);
area = nullptr;
2015-10-08 18:00:40 +00:00
direct_access = memnew(PhysicsDirectSpaceStateSW);
direct_access->space = this;
for (int i = 0; i < ELAPSED_TIME_MAX; i++) {
elapsed_time[i] = 0;
}
2015-10-08 18:00:40 +00:00
}
SpaceSW::~SpaceSW() {
memdelete(broadphase);
memdelete(direct_access);
2015-10-08 18:00:40 +00:00
}