godot/core/math/bvh_split.inc

299 lines
7.9 KiB
C++
Raw Normal View History

void _split_inform_references(uint32_t p_node_id) {
TNode &node = _nodes[p_node_id];
TLeaf &leaf = _node_get_leaf(node);
for (int n = 0; n < leaf.num_items; n++) {
uint32_t ref_id = leaf.get_item_ref_id(n);
ItemRef &ref = _refs[ref_id];
ref.tnode_id = p_node_id;
ref.item_id = n;
}
}
void _split_leaf_sort_groups_simple(int &num_a, int &num_b, uint16_t *group_a, uint16_t *group_b, const BVHABB_CLASS *temp_bounds, const BVHABB_CLASS full_bound) {
// special case for low leaf sizes .. should static compile out
if (MAX_ITEMS < 4) {
uint32_t ind = group_a[0];
// add to b
group_b[num_b++] = ind;
// remove from a
group_a[0] = group_a[num_a - 1];
num_a--;
return;
}
POINT centre = full_bound.calculate_centre();
POINT size = full_bound.calculate_size();
int order[POINT::AXIS_COUNT];
order[0] = size.max_axis();
order[POINT::AXIS_COUNT - 1] = size.min_axis();
static_assert(POINT::AXIS_COUNT <= 3, "BVH POINT::AXIS_COUNT has unexpected size");
if (POINT::AXIS_COUNT == 3) {
order[1] = 3 - (order[0] + order[2]);
}
// simplest case, split on the longest axis
int split_axis = order[0];
for (int a = 0; a < num_a; a++) {
uint32_t ind = group_a[a];
if (temp_bounds[ind].min.coord[split_axis] > centre.coord[split_axis]) {
// add to b
group_b[num_b++] = ind;
// remove from a
group_a[a] = group_a[num_a - 1];
num_a--;
// do this one again, as it has been replaced
a--;
}
}
// detect when split on longest axis failed
int min_threshold = MAX_ITEMS / 4;
int min_group_size[POINT::AXIS_COUNT];
min_group_size[0] = MIN(num_a, num_b);
if (min_group_size[0] < min_threshold) {
// slow but sure .. first move everything back into a
for (int b = 0; b < num_b; b++) {
group_a[num_a++] = group_b[b];
}
num_b = 0;
// now calculate the best split
for (int axis = 1; axis < POINT::AXIS_COUNT; axis++) {
split_axis = order[axis];
int count = 0;
for (int a = 0; a < num_a; a++) {
uint32_t ind = group_a[a];
if (temp_bounds[ind].min.coord[split_axis] > centre.coord[split_axis]) {
count++;
}
}
min_group_size[axis] = MIN(count, num_a - count);
} // for axis
// best axis
int best_axis = 0;
int best_min = min_group_size[0];
for (int axis = 1; axis < POINT::AXIS_COUNT; axis++) {
if (min_group_size[axis] > best_min) {
best_min = min_group_size[axis];
best_axis = axis;
}
}
// now finally do the split
if (best_min > 0) {
split_axis = order[best_axis];
for (int a = 0; a < num_a; a++) {
uint32_t ind = group_a[a];
if (temp_bounds[ind].min.coord[split_axis] > centre.coord[split_axis]) {
// add to b
group_b[num_b++] = ind;
// remove from a
group_a[a] = group_a[num_a - 1];
num_a--;
// do this one again, as it has been replaced
a--;
}
}
} // if there was a split!
} // if the longest axis wasn't a good split
// special case, none crossed threshold
if (!num_b) {
uint32_t ind = group_a[0];
// add to b
group_b[num_b++] = ind;
// remove from a
group_a[0] = group_a[num_a - 1];
num_a--;
}
// opposite problem! :)
if (!num_a) {
uint32_t ind = group_b[0];
// add to a
group_a[num_a++] = ind;
// remove from b
group_b[0] = group_b[num_b - 1];
num_b--;
}
}
void _split_leaf_sort_groups(int &num_a, int &num_b, uint16_t *group_a, uint16_t *group_b, const BVHABB_CLASS *temp_bounds) {
BVHABB_CLASS groupb_aabb;
groupb_aabb.set_to_max_opposite_extents();
for (int n = 0; n < num_b; n++) {
int which = group_b[n];
groupb_aabb.merge(temp_bounds[which]);
}
BVHABB_CLASS groupb_aabb_new;
BVHABB_CLASS rest_aabb;
float best_size = FLT_MAX;
int best_candidate = -1;
// find most likely from a to move into b
for (int check = 0; check < num_a; check++) {
rest_aabb.set_to_max_opposite_extents();
groupb_aabb_new = groupb_aabb;
// find aabb of all the rest
for (int rest = 0; rest < num_a; rest++) {
if (rest == check) {
continue;
}
int which = group_a[rest];
rest_aabb.merge(temp_bounds[which]);
}
groupb_aabb_new.merge(temp_bounds[group_a[check]]);
// now compare the sizes
float size = groupb_aabb_new.get_area() + rest_aabb.get_area();
if (size < best_size) {
best_size = size;
best_candidate = check;
}
}
// we should now have the best, move it from group a to group b
group_b[num_b++] = group_a[best_candidate];
// remove best candidate from group a
num_a--;
group_a[best_candidate] = group_a[num_a];
}
uint32_t split_leaf(uint32_t p_node_id, const BVHABB_CLASS &p_added_item_aabb) {
return split_leaf_complex(p_node_id, p_added_item_aabb);
}
// aabb is the new inserted node
uint32_t split_leaf_complex(uint32_t p_node_id, const BVHABB_CLASS &p_added_item_aabb) {
VERBOSE_PRINT("split_leaf");
// note the tnode before and AFTER splitting may be a different address
// in memory because the vector could get relocated. So we need to reget
// the tnode after the split
BVH_ASSERT(_nodes[p_node_id].is_leaf());
// first create child leaf nodes
uint32_t *child_ids = (uint32_t *)alloca(sizeof(uint32_t) * MAX_CHILDREN);
for (int n = 0; n < MAX_CHILDREN; n++) {
// create node children
TNode *child_node = _nodes.request(child_ids[n]);
child_node->clear();
// back link to parent
child_node->parent_id = p_node_id;
// make each child a leaf node
node_make_leaf(child_ids[n]);
}
// don't get any leaves or nodes till AFTER the split
TNode &tnode = _nodes[p_node_id];
uint32_t orig_leaf_id = tnode.get_leaf_id();
const TLeaf &orig_leaf = _node_get_leaf(tnode);
// store the final child ids
for (int n = 0; n < MAX_CHILDREN; n++) {
tnode.children[n] = child_ids[n];
}
// mark as no longer a leaf node
tnode.num_children = MAX_CHILDREN;
// 2 groups, A and B, and assign children to each to split equally
int max_children = orig_leaf.num_items + 1; // plus 1 for the wildcard .. the item being added
//CRASH_COND(max_children > MAX_CHILDREN);
uint16_t *group_a = (uint16_t *)alloca(sizeof(uint16_t) * max_children);
uint16_t *group_b = (uint16_t *)alloca(sizeof(uint16_t) * max_children);
// we are copying the ABBs. This is ugly, but we need one extra for the inserted item...
BVHABB_CLASS *temp_bounds = (BVHABB_CLASS *)alloca(sizeof(BVHABB_CLASS) * max_children);
int num_a = max_children;
int num_b = 0;
// setup - start with all in group a
for (int n = 0; n < orig_leaf.num_items; n++) {
group_a[n] = n;
temp_bounds[n] = orig_leaf.get_aabb(n);
}
// wildcard
int wildcard = orig_leaf.num_items;
group_a[wildcard] = wildcard;
temp_bounds[wildcard] = p_added_item_aabb;
// we can choose here either an equal split, or just 1 in the new leaf
_split_leaf_sort_groups_simple(num_a, num_b, group_a, group_b, temp_bounds, tnode.aabb);
uint32_t wildcard_node = BVHCommon::INVALID;
// now there should be equal numbers in both groups
for (int n = 0; n < num_a; n++) {
int which = group_a[n];
if (which != wildcard) {
const BVHABB_CLASS &source_item_aabb = orig_leaf.get_aabb(which);
uint32_t source_item_ref_id = orig_leaf.get_item_ref_id(which);
//const Item &source_item = orig_leaf.get_item(which);
_node_add_item(tnode.children[0], source_item_ref_id, source_item_aabb);
} else {
wildcard_node = tnode.children[0];
}
}
for (int n = 0; n < num_b; n++) {
int which = group_b[n];
if (which != wildcard) {
const BVHABB_CLASS &source_item_aabb = orig_leaf.get_aabb(which);
uint32_t source_item_ref_id = orig_leaf.get_item_ref_id(which);
//const Item &source_item = orig_leaf.get_item(which);
_node_add_item(tnode.children[1], source_item_ref_id, source_item_aabb);
} else {
wildcard_node = tnode.children[1];
}
}
// now remove all items from the parent and replace with the child nodes
_leaves.free(orig_leaf_id);
// we should keep the references up to date!
for (int n = 0; n < MAX_CHILDREN; n++) {
_split_inform_references(tnode.children[n]);
}
refit_upward(p_node_id);
BVH_ASSERT(wildcard_node != BVHCommon::INVALID);
return wildcard_node;
}