godot/thirdparty/embree/kernels/geometry/curve_intersector_oriented.h

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

418 lines
18 KiB
C++
Raw Normal View History

// Copyright 2009-2021 Intel Corporation
2021-04-20 16:38:09 +00:00
// SPDX-License-Identifier: Apache-2.0
#pragma once
#include "../common/ray.h"
#include "curve_intersector_precalculations.h"
#include "curve_intersector_sweep.h"
#include "../subdiv/linear_bezier_patch.h"
#define DBG(x)
namespace embree
{
namespace isa
{
template<typename Ray, typename Epilog>
struct TensorLinearCubicBezierSurfaceIntersector
{
const LinearSpace3fa& ray_space;
Ray& ray;
TensorLinearCubicBezierSurface3fa curve3d;
TensorLinearCubicBezierSurface2fa curve2d;
float eps;
const Epilog& epilog;
bool isHit;
__forceinline TensorLinearCubicBezierSurfaceIntersector (const LinearSpace3fa& ray_space, Ray& ray, const TensorLinearCubicBezierSurface3fa& curve3d, const Epilog& epilog)
: ray_space(ray_space), ray(ray), curve3d(curve3d), epilog(epilog), isHit(false)
{
const TensorLinearCubicBezierSurface3fa curve3dray = curve3d.xfm(ray_space,ray.org);
curve2d = TensorLinearCubicBezierSurface2fa(CubicBezierCurve2fa(curve3dray.L),CubicBezierCurve2fa(curve3dray.R));
const BBox2fa b2 = curve2d.bounds();
eps = 8.0f*float(ulp)*reduce_max(max(abs(b2.lower),abs(b2.upper)));
}
__forceinline Interval1f solve_linear(const float u0, const float u1, const float& p0, const float& p1)
{
if (p1 == p0) {
if (p0 == 0.0f) return Interval1f(u0,u1);
else return Interval1f(empty);
}
const float t = -p0/(p1-p0);
const float tt = lerp(u0,u1,t);
return Interval1f(tt);
}
__forceinline void solve_linear(const float u0, const float u1, const Interval1f& p0, const Interval1f& p1, Interval1f& u)
{
if (sign(p0.lower) != sign(p0.upper)) u.extend(u0);
if (sign(p0.lower) != sign(p1.lower)) u.extend(solve_linear(u0,u1,p0.lower,p1.lower));
if (sign(p0.upper) != sign(p1.upper)) u.extend(solve_linear(u0,u1,p0.upper,p1.upper));
if (sign(p1.lower) != sign(p1.upper)) u.extend(u1);
}
__forceinline Interval1f bezier_clipping(const CubicBezierCurve<Interval1f>& curve)
{
Interval1f u = empty;
solve_linear(0.0f/3.0f,1.0f/3.0f,curve.v0,curve.v1,u);
solve_linear(0.0f/3.0f,2.0f/3.0f,curve.v0,curve.v2,u);
solve_linear(0.0f/3.0f,3.0f/3.0f,curve.v0,curve.v3,u);
solve_linear(1.0f/3.0f,2.0f/3.0f,curve.v1,curve.v2,u);
solve_linear(1.0f/3.0f,3.0f/3.0f,curve.v1,curve.v3,u);
solve_linear(2.0f/3.0f,3.0f/3.0f,curve.v2,curve.v3,u);
return intersect(u,Interval1f(0.0f,1.0f));
}
__forceinline Interval1f bezier_clipping(const LinearBezierCurve<Interval1f>& curve)
{
Interval1f v = empty;
solve_linear(0.0f,1.0f,curve.v0,curve.v1,v);
return intersect(v,Interval1f(0.0f,1.0f));
}
__forceinline void solve_bezier_clipping(BBox1f cu, BBox1f cv, const TensorLinearCubicBezierSurface2fa& curve2)
{
BBox2fa bounds = curve2.bounds();
if (bounds.upper.x < 0.0f) return;
if (bounds.upper.y < 0.0f) return;
if (bounds.lower.x > 0.0f) return;
if (bounds.lower.y > 0.0f) return;
if (max(cu.size(),cv.size()) < 1E-4f)
{
const float u = cu.center();
const float v = cv.center();
TensorLinearCubicBezierSurface1f curve_z = curve3d.xfm(ray_space.row2(),ray.org);
const float t = curve_z.eval(u,v);
if (ray.tnear() <= t && t <= ray.tfar) {
const Vec3fa Ng = cross(curve3d.eval_du(u,v),curve3d.eval_dv(u,v));
BezierCurveHit hit(t,u,v,Ng);
isHit |= epilog(hit);
}
return;
}
const Vec2fa dv = curve2.axis_v();
const TensorLinearCubicBezierSurface1f curve1v = curve2.xfm(dv);
LinearBezierCurve<Interval1f> curve0v = curve1v.reduce_u();
if (!curve0v.hasRoot()) return;
const Interval1f v = bezier_clipping(curve0v);
if (isEmpty(v)) return;
TensorLinearCubicBezierSurface2fa curve2a = curve2.clip_v(v);
cv = BBox1f(lerp(cv.lower,cv.upper,v.lower),lerp(cv.lower,cv.upper,v.upper));
const Vec2fa du = curve2.axis_u();
const TensorLinearCubicBezierSurface1f curve1u = curve2a.xfm(du);
CubicBezierCurve<Interval1f> curve0u = curve1u.reduce_v();
int roots = curve0u.maxRoots();
if (roots == 0) return;
if (roots == 1)
{
const Interval1f u = bezier_clipping(curve0u);
if (isEmpty(u)) return;
TensorLinearCubicBezierSurface2fa curve2b = curve2a.clip_u(u);
cu = BBox1f(lerp(cu.lower,cu.upper,u.lower),lerp(cu.lower,cu.upper,u.upper));
solve_bezier_clipping(cu,cv,curve2b);
return;
}
TensorLinearCubicBezierSurface2fa curve2l, curve2r;
curve2a.split_u(curve2l,curve2r);
solve_bezier_clipping(BBox1f(cu.lower,cu.center()),cv,curve2l);
solve_bezier_clipping(BBox1f(cu.center(),cu.upper),cv,curve2r);
}
__forceinline bool solve_bezier_clipping()
{
solve_bezier_clipping(BBox1f(0.0f,1.0f),BBox1f(0.0f,1.0f),curve2d);
return isHit;
}
__forceinline void solve_newton_raphson(BBox1f cu, BBox1f cv)
{
Vec2fa uv(cu.center(),cv.center());
const Vec2fa dfdu = curve2d.eval_du(uv.x,uv.y);
const Vec2fa dfdv = curve2d.eval_dv(uv.x,uv.y);
const LinearSpace2fa rcp_J = rcp(LinearSpace2fa(dfdu,dfdv));
solve_newton_raphson_loop(cu,cv,uv,dfdu,dfdv,rcp_J);
}
__forceinline void solve_newton_raphson_loop(BBox1f cu, BBox1f cv, const Vec2fa& uv_in, const Vec2fa& dfdu, const Vec2fa& dfdv, const LinearSpace2fa& rcp_J)
{
Vec2fa uv = uv_in;
for (size_t i=0; i<200; i++)
{
const Vec2fa f = curve2d.eval(uv.x,uv.y);
const Vec2fa duv = rcp_J*f;
uv -= duv;
if (max(abs(f.x),abs(f.y)) < eps)
{
const float u = uv.x;
const float v = uv.y;
if (!(u >= 0.0f && u <= 1.0f)) return; // rejects NaNs
if (!(v >= 0.0f && v <= 1.0f)) return; // rejects NaNs
const TensorLinearCubicBezierSurface1f curve_z = curve3d.xfm(ray_space.row2(),ray.org);
const float t = curve_z.eval(u,v);
if (!(ray.tnear() <= t && t <= ray.tfar)) return; // rejects NaNs
const Vec3fa Ng = cross(curve3d.eval_du(u,v),curve3d.eval_dv(u,v));
BezierCurveHit hit(t,u,v,Ng);
isHit |= epilog(hit);
return;
}
}
}
__forceinline bool clip_v(BBox1f& cu, BBox1f& cv)
{
const Vec2fa dv = curve2d.eval_dv(cu.lower,cv.lower);
const TensorLinearCubicBezierSurface1f curve1v = curve2d.xfm(dv).clip(cu,cv);
LinearBezierCurve<Interval1f> curve0v = curve1v.reduce_u();
if (!curve0v.hasRoot()) return false;
Interval1f v = bezier_clipping(curve0v);
if (isEmpty(v)) return false;
v = intersect(v + Interval1f(-0.1f,+0.1f),Interval1f(0.0f,1.0f));
cv = BBox1f(lerp(cv.lower,cv.upper,v.lower),lerp(cv.lower,cv.upper,v.upper));
return true;
}
__forceinline bool solve_krawczyk(bool very_small, BBox1f& cu, BBox1f& cv)
{
/* perform bezier clipping in v-direction to get tight v-bounds */
TensorLinearCubicBezierSurface2fa curve2 = curve2d.clip(cu,cv);
const Vec2fa dv = curve2.axis_v();
const TensorLinearCubicBezierSurface1f curve1v = curve2.xfm(dv);
LinearBezierCurve<Interval1f> curve0v = curve1v.reduce_u();
if (unlikely(!curve0v.hasRoot())) return true;
Interval1f v = bezier_clipping(curve0v);
if (unlikely(isEmpty(v))) return true;
v = intersect(v + Interval1f(-0.1f,+0.1f),Interval1f(0.0f,1.0f));
curve2 = curve2.clip_v(v);
cv = BBox1f(lerp(cv.lower,cv.upper,v.lower),lerp(cv.lower,cv.upper,v.upper));
/* perform one newton raphson iteration */
Vec2fa c(cu.center(),cv.center());
Vec2fa f,dfdu,dfdv; curve2d.eval(c.x,c.y,f,dfdu,dfdv);
const LinearSpace2fa rcp_J = rcp(LinearSpace2fa(dfdu,dfdv));
const Vec2fa c1 = c - rcp_J*f;
/* calculate bounds of derivatives */
const BBox2fa bounds_du = (1.0f/cu.size())*curve2.derivative_u().bounds();
const BBox2fa bounds_dv = (1.0f/cv.size())*curve2.derivative_v().bounds();
/* calculate krawczyk test */
LinearSpace2<Vec2<Interval1f>> I(Interval1f(1.0f), Interval1f(0.0f),
Interval1f(0.0f), Interval1f(1.0f));
LinearSpace2<Vec2<Interval1f>> G(Interval1f(bounds_du.lower.x,bounds_du.upper.x), Interval1f(bounds_dv.lower.x,bounds_dv.upper.x),
Interval1f(bounds_du.lower.y,bounds_du.upper.y), Interval1f(bounds_dv.lower.y,bounds_dv.upper.y));
const LinearSpace2<Vec2f> rcp_J2(rcp_J);
const LinearSpace2<Vec2<Interval1f>> rcp_Ji(rcp_J2);
const Vec2<Interval1f> x(cu,cv);
const Vec2<Interval1f> K = Vec2<Interval1f>(Vec2f(c1)) + (I - rcp_Ji*G)*(x-Vec2<Interval1f>(Vec2f(c)));
/* test if there is no solution */
const Vec2<Interval1f> KK = intersect(K,x);
if (unlikely(isEmpty(KK.x) || isEmpty(KK.y))) return true;
/* exit if convergence cannot get proven, but terminate if we are very small */
if (unlikely(!subset(K,x) && !very_small)) return false;
/* solve using newton raphson iteration of convergence is guarenteed */
solve_newton_raphson_loop(cu,cv,c1,dfdu,dfdv,rcp_J);
return true;
}
__forceinline void solve_newton_raphson_no_recursion(BBox1f cu, BBox1f cv)
{
if (!clip_v(cu,cv)) return;
return solve_newton_raphson(cu,cv);
}
__forceinline void solve_newton_raphson_recursion(BBox1f cu, BBox1f cv)
{
unsigned int sptr = 0;
const unsigned int stack_size = 4;
unsigned int mask_stack[stack_size];
BBox1f cu_stack[stack_size];
BBox1f cv_stack[stack_size];
goto entry;
/* terminate if stack is empty */
while (sptr)
{
/* pop from stack */
{
sptr--;
size_t mask = mask_stack[sptr];
cu = cu_stack[sptr];
cv = cv_stack[sptr];
const size_t i = bscf(mask);
mask_stack[sptr] = mask;
if (mask) sptr++; // there are still items on the stack
/* process next element recurse into each hit curve segment */
const float u0 = float(i+0)*(1.0f/(VSIZEX-1));
const float u1 = float(i+1)*(1.0f/(VSIZEX-1));
const BBox1f cui(lerp(cu.lower,cu.upper,u0),lerp(cu.lower,cu.upper,u1));
cu = cui;
}
#if 0
solve_newton_raphson_no_recursion(cu,cv);
continue;
#else
/* we assume convergence for small u ranges and verify using krawczyk */
if (cu.size() < 1.0f/6.0f) {
const bool very_small = cu.size() < 0.001f || sptr >= stack_size;
if (solve_krawczyk(very_small,cu,cv)) {
continue;
}
}
#endif
entry:
/* split the curve into VSIZEX-1 segments in u-direction */
vboolx valid = true;
TensorLinearCubicBezierSurface<Vec2vfx> subcurves = curve2d.clip_v(cv).vsplit_u(valid,cu);
/* slabs test in u-direction */
Vec2vfx ndv = cross(subcurves.axis_v());
BBox<vfloatx> boundsv = subcurves.vxfm(ndv).bounds();
valid &= boundsv.lower <= eps;
valid &= boundsv.upper >= -eps;
if (none(valid)) continue;
/* slabs test in v-direction */
Vec2vfx ndu = cross(subcurves.axis_u());
BBox<vfloatx> boundsu = subcurves.vxfm(ndu).bounds();
valid &= boundsu.lower <= eps;
valid &= boundsu.upper >= -eps;
if (none(valid)) continue;
/* push valid segments to stack */
assert(sptr < stack_size);
mask_stack [sptr] = movemask(valid);
cu_stack [sptr] = cu;
cv_stack [sptr] = cv;
sptr++;
}
}
__forceinline bool solve_newton_raphson_main()
{
BBox1f vu(0.0f,1.0f);
BBox1f vv(0.0f,1.0f);
solve_newton_raphson_recursion(vu,vv);
return isHit;
}
};
template<template<typename Ty> class SourceCurve>
struct OrientedCurve1Intersector1
{
//template<typename Ty> using Curve = SourceCurve<Ty>;
typedef SourceCurve<Vec3ff> SourceCurve3ff;
typedef SourceCurve<Vec3fa> SourceCurve3fa;
__forceinline OrientedCurve1Intersector1() {}
__forceinline OrientedCurve1Intersector1(const Ray& ray, const void* ptr) {}
template<typename Epilog>
__noinline bool intersect(const CurvePrecalculations1& pre, Ray& ray,
IntersectContext* context,
const CurveGeometry* geom, const unsigned int primID,
const Vec3ff& v0i, const Vec3ff& v1i, const Vec3ff& v2i, const Vec3ff& v3i,
const Vec3fa& n0i, const Vec3fa& n1i, const Vec3fa& n2i, const Vec3fa& n3i,
const Epilog& epilog) const
{
STAT3(normal.trav_prims,1,1,1);
SourceCurve3ff ccurve(v0i,v1i,v2i,v3i);
SourceCurve3fa ncurve(n0i,n1i,n2i,n3i);
ccurve = enlargeRadiusToMinWidth(context,geom,ray.org,ccurve);
TensorLinearCubicBezierSurface3fa curve = TensorLinearCubicBezierSurface3fa::fromCenterAndNormalCurve(ccurve,ncurve);
//return TensorLinearCubicBezierSurfaceIntersector<Ray,Epilog>(pre.ray_space,ray,curve,epilog).solve_bezier_clipping();
return TensorLinearCubicBezierSurfaceIntersector<Ray,Epilog>(pre.ray_space,ray,curve,epilog).solve_newton_raphson_main();
}
template<typename Epilog>
__noinline bool intersect(const CurvePrecalculations1& pre, Ray& ray,
IntersectContext* context,
const CurveGeometry* geom, const unsigned int primID,
const TensorLinearCubicBezierSurface3fa& curve, const Epilog& epilog) const
{
STAT3(normal.trav_prims,1,1,1);
//return TensorLinearCubicBezierSurfaceIntersector<Ray,Epilog>(pre.ray_space,ray,curve,epilog).solve_bezier_clipping();
return TensorLinearCubicBezierSurfaceIntersector<Ray,Epilog>(pre.ray_space,ray,curve,epilog).solve_newton_raphson_main();
}
};
template<template<typename Ty> class SourceCurve, int K>
struct OrientedCurve1IntersectorK
{
//template<typename Ty> using Curve = SourceCurve<Ty>;
typedef SourceCurve<Vec3ff> SourceCurve3ff;
typedef SourceCurve<Vec3fa> SourceCurve3fa;
struct Ray1
{
__forceinline Ray1(RayK<K>& ray, size_t k)
: org(ray.org.x[k],ray.org.y[k],ray.org.z[k]), dir(ray.dir.x[k],ray.dir.y[k],ray.dir.z[k]), _tnear(ray.tnear()[k]), tfar(ray.tfar[k]) {}
Vec3fa org;
Vec3fa dir;
float _tnear;
float& tfar;
__forceinline float& tnear() { return _tnear; }
//__forceinline float& tfar() { return _tfar; }
__forceinline const float& tnear() const { return _tnear; }
//__forceinline const float& tfar() const { return _tfar; }
};
template<typename Epilog>
__forceinline bool intersect(const CurvePrecalculationsK<K>& pre, RayK<K>& vray, size_t k,
IntersectContext* context,
const CurveGeometry* geom, const unsigned int primID,
const Vec3ff& v0i, const Vec3ff& v1i, const Vec3ff& v2i, const Vec3ff& v3i,
const Vec3fa& n0i, const Vec3fa& n1i, const Vec3fa& n2i, const Vec3fa& n3i,
const Epilog& epilog)
{
STAT3(normal.trav_prims,1,1,1);
Ray1 ray(vray,k);
SourceCurve3ff ccurve(v0i,v1i,v2i,v3i);
SourceCurve3fa ncurve(n0i,n1i,n2i,n3i);
ccurve = enlargeRadiusToMinWidth(context,geom,ray.org,ccurve);
TensorLinearCubicBezierSurface3fa curve = TensorLinearCubicBezierSurface3fa::fromCenterAndNormalCurve(ccurve,ncurve);
//return TensorLinearCubicBezierSurfaceIntersector<Ray1,Epilog>(pre.ray_space[k],ray,curve,epilog).solve_bezier_clipping();
return TensorLinearCubicBezierSurfaceIntersector<Ray1,Epilog>(pre.ray_space[k],ray,curve,epilog).solve_newton_raphson_main();
}
template<typename Epilog>
__forceinline bool intersect(const CurvePrecalculationsK<K>& pre, RayK<K>& vray, size_t k,
IntersectContext* context,
const CurveGeometry* geom, const unsigned int primID,
const TensorLinearCubicBezierSurface3fa& curve,
const Epilog& epilog)
{
STAT3(normal.trav_prims,1,1,1);
Ray1 ray(vray,k);
//return TensorLinearCubicBezierSurfaceIntersector<Ray1,Epilog>(pre.ray_space[k],ray,curve,epilog).solve_bezier_clipping();
return TensorLinearCubicBezierSurfaceIntersector<Ray1,Epilog>(pre.ray_space[k],ray,curve,epilog).solve_newton_raphson_main();
}
};
}
}