2017-08-01 12:30:58 +00:00
/*
Bullet Continuous Collision Detection and Physics Library
Copyright ( c ) 2003 - 2009 Erwin Coumans http : //bulletphysics.org
This software is provided ' as - is ' , without any express or implied warranty .
In no event will the authors be held liable for any damages arising from the use of this software .
Permission is granted to anyone to use this software for any purpose ,
including commercial applications , and to alter it and redistribute it freely ,
subject to the following restrictions :
1. The origin of this software must not be misrepresented ; you must not claim that you wrote the original software . If you use this software in a product , an acknowledgment in the product documentation would be appreciated but is not required .
2. Altered source versions must be plainly marked as such , and must not be misrepresented as being the original software .
3. This notice may not be removed or altered from any source distribution .
*/
# ifndef BT_CAPSULE_SHAPE_H
# define BT_CAPSULE_SHAPE_H
# include "btConvexInternalShape.h"
# include "BulletCollision/BroadphaseCollision/btBroadphaseProxy.h" // for the types
///The btCapsuleShape represents a capsule around the Y axis, there is also the btCapsuleShapeX aligned around the X axis and btCapsuleShapeZ around the Z axis.
///The total height is height+2*radius, so the height is just the height between the center of each 'sphere' of the capsule caps.
///The btCapsuleShape is a convex hull of two spheres. The btMultiSphereShape is a more general collision shape that takes the convex hull of multiple sphere, so it can also represent a capsule when just using two spheres.
ATTRIBUTE_ALIGNED16 ( class ) btCapsuleShape : public btConvexInternalShape
{
protected :
int m_upAxis ;
protected :
///only used for btCapsuleShapeZ and btCapsuleShapeX subclasses.
btCapsuleShape ( ) : btConvexInternalShape ( ) { m_shapeType = CAPSULE_SHAPE_PROXYTYPE ; } ;
public :
BT_DECLARE_ALIGNED_ALLOCATOR ( ) ;
btCapsuleShape ( btScalar radius , btScalar height ) ;
///CollisionShape Interface
virtual void calculateLocalInertia ( btScalar mass , btVector3 & inertia ) const ;
/// btConvexShape Interface
virtual btVector3 localGetSupportingVertexWithoutMargin ( const btVector3 & vec ) const ;
virtual void batchedUnitVectorGetSupportingVertexWithoutMargin ( const btVector3 * vectors , btVector3 * supportVerticesOut , int numVectors ) const ;
virtual void setMargin ( btScalar collisionMargin )
{
//don't override the margin for capsules, their entire radius == margin
2018-09-07 14:11:04 +00:00
( void ) collisionMargin ;
2017-08-01 12:30:58 +00:00
}
virtual void getAabb ( const btTransform & t , btVector3 & aabbMin , btVector3 & aabbMax ) const
{
btVector3 halfExtents ( getRadius ( ) , getRadius ( ) , getRadius ( ) ) ;
halfExtents [ m_upAxis ] = getRadius ( ) + getHalfHeight ( ) ;
btMatrix3x3 abs_b = t . getBasis ( ) . absolute ( ) ;
btVector3 center = t . getOrigin ( ) ;
btVector3 extent = halfExtents . dot3 ( abs_b [ 0 ] , abs_b [ 1 ] , abs_b [ 2 ] ) ;
aabbMin = center - extent ;
aabbMax = center + extent ;
}
virtual const char * getName ( ) const
{
return " CapsuleShape " ;
}
int getUpAxis ( ) const
{
return m_upAxis ;
}
btScalar getRadius ( ) const
{
int radiusAxis = ( m_upAxis + 2 ) % 3 ;
return m_implicitShapeDimensions [ radiusAxis ] ;
}
btScalar getHalfHeight ( ) const
{
return m_implicitShapeDimensions [ m_upAxis ] ;
}
virtual void setLocalScaling ( const btVector3 & scaling )
{
btVector3 unScaledImplicitShapeDimensions = m_implicitShapeDimensions / m_localScaling ;
btConvexInternalShape : : setLocalScaling ( scaling ) ;
m_implicitShapeDimensions = ( unScaledImplicitShapeDimensions * scaling ) ;
//update m_collisionMargin, since entire radius==margin
int radiusAxis = ( m_upAxis + 2 ) % 3 ;
m_collisionMargin = m_implicitShapeDimensions [ radiusAxis ] ;
}
virtual btVector3 getAnisotropicRollingFrictionDirection ( ) const
{
btVector3 aniDir ( 0 , 0 , 0 ) ;
aniDir [ getUpAxis ( ) ] = 1 ;
return aniDir ;
}
virtual int calculateSerializeBufferSize ( ) const ;
///fills the dataBuffer and returns the struct name (and 0 on failure)
virtual const char * serialize ( void * dataBuffer , btSerializer * serializer ) const ;
SIMD_FORCE_INLINE void deSerializeFloat ( struct btCapsuleShapeData * dataBuffer ) ;
} ;
///btCapsuleShapeX represents a capsule around the Z axis
///the total height is height+2*radius, so the height is just the height between the center of each 'sphere' of the capsule caps.
class btCapsuleShapeX : public btCapsuleShape
{
public :
btCapsuleShapeX ( btScalar radius , btScalar height ) ;
//debugging
virtual const char * getName ( ) const
{
return " CapsuleX " ;
}
} ;
///btCapsuleShapeZ represents a capsule around the Z axis
///the total height is height+2*radius, so the height is just the height between the center of each 'sphere' of the capsule caps.
class btCapsuleShapeZ : public btCapsuleShape
{
public :
btCapsuleShapeZ ( btScalar radius , btScalar height ) ;
//debugging
virtual const char * getName ( ) const
{
return " CapsuleZ " ;
}
} ;
///do not change those serialization structures, it requires an updated sBulletDNAstr/sBulletDNAstr64
struct btCapsuleShapeData
{
btConvexInternalShapeData m_convexInternalShapeData ;
int m_upAxis ;
char m_padding [ 4 ] ;
} ;
SIMD_FORCE_INLINE int btCapsuleShape : : calculateSerializeBufferSize ( ) const
{
return sizeof ( btCapsuleShapeData ) ;
}
///fills the dataBuffer and returns the struct name (and 0 on failure)
SIMD_FORCE_INLINE const char * btCapsuleShape : : serialize ( void * dataBuffer , btSerializer * serializer ) const
{
btCapsuleShapeData * shapeData = ( btCapsuleShapeData * ) dataBuffer ;
btConvexInternalShape : : serialize ( & shapeData - > m_convexInternalShapeData , serializer ) ;
shapeData - > m_upAxis = m_upAxis ;
// Fill padding with zeros to appease msan.
shapeData - > m_padding [ 0 ] = 0 ;
shapeData - > m_padding [ 1 ] = 0 ;
shapeData - > m_padding [ 2 ] = 0 ;
shapeData - > m_padding [ 3 ] = 0 ;
return " btCapsuleShapeData " ;
}
SIMD_FORCE_INLINE void btCapsuleShape : : deSerializeFloat ( btCapsuleShapeData * dataBuffer )
{
m_implicitShapeDimensions . deSerializeFloat ( dataBuffer - > m_convexInternalShapeData . m_implicitShapeDimensions ) ;
m_collisionMargin = dataBuffer - > m_convexInternalShapeData . m_collisionMargin ;
m_localScaling . deSerializeFloat ( dataBuffer - > m_convexInternalShapeData . m_localScaling ) ;
//it is best to already pre-allocate the matching btCapsuleShape*(X/Z) version to match m_upAxis
m_upAxis = dataBuffer - > m_upAxis ;
}
# endif //BT_CAPSULE_SHAPE_H