429 lines
11 KiB
C++
429 lines
11 KiB
C++
|
#ifndef GENERIC_6DOF_JOINT_SW_H
|
||
|
#define GENERIC_6DOF_JOINT_SW_H
|
||
|
|
||
|
#include "servers/physics/joints_sw.h"
|
||
|
#include "servers/physics/joints/jacobian_entry_sw.h"
|
||
|
|
||
|
|
||
|
/*
|
||
|
Bullet Continuous Collision Detection and Physics Library
|
||
|
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
|
||
|
|
||
|
This software is provided 'as-is', without any express or implied warranty.
|
||
|
In no event will the authors be held liable for any damages arising from the use of this software.
|
||
|
Permission is granted to anyone to use this software for any purpose,
|
||
|
including commercial applications, and to alter it and redistribute it freely,
|
||
|
subject to the following restrictions:
|
||
|
|
||
|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
||
|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
||
|
3. This notice may not be removed or altered from any source distribution.
|
||
|
*/
|
||
|
|
||
|
|
||
|
/*
|
||
|
2007-09-09
|
||
|
Generic6DOFJointSW Refactored by Francisco Le?n
|
||
|
email: projectileman@yahoo.com
|
||
|
http://gimpact.sf.net
|
||
|
*/
|
||
|
|
||
|
|
||
|
//! Rotation Limit structure for generic joints
|
||
|
class G6DOFRotationalLimitMotorSW {
|
||
|
public:
|
||
|
//! limit_parameters
|
||
|
//!@{
|
||
|
real_t m_loLimit;//!< joint limit
|
||
|
real_t m_hiLimit;//!< joint limit
|
||
|
real_t m_targetVelocity;//!< target motor velocity
|
||
|
real_t m_maxMotorForce;//!< max force on motor
|
||
|
real_t m_maxLimitForce;//!< max force on limit
|
||
|
real_t m_damping;//!< Damping.
|
||
|
real_t m_limitSoftness;//! Relaxation factor
|
||
|
real_t m_ERP;//!< Error tolerance factor when joint is at limit
|
||
|
real_t m_bounce;//!< restitution factor
|
||
|
bool m_enableMotor;
|
||
|
bool m_enableLimit;
|
||
|
|
||
|
//!@}
|
||
|
|
||
|
//! temp_variables
|
||
|
//!@{
|
||
|
real_t m_currentLimitError;//! How much is violated this limit
|
||
|
int m_currentLimit;//!< 0=free, 1=at lo limit, 2=at hi limit
|
||
|
real_t m_accumulatedImpulse;
|
||
|
//!@}
|
||
|
|
||
|
G6DOFRotationalLimitMotorSW()
|
||
|
{
|
||
|
m_accumulatedImpulse = 0.f;
|
||
|
m_targetVelocity = 0;
|
||
|
m_maxMotorForce = 0.1f;
|
||
|
m_maxLimitForce = 300.0f;
|
||
|
m_loLimit = -1e30;
|
||
|
m_hiLimit = 1e30;
|
||
|
m_ERP = 0.5f;
|
||
|
m_bounce = 0.0f;
|
||
|
m_damping = 1.0f;
|
||
|
m_limitSoftness = 0.5f;
|
||
|
m_currentLimit = 0;
|
||
|
m_currentLimitError = 0;
|
||
|
m_enableMotor = false;
|
||
|
m_enableLimit=false;
|
||
|
}
|
||
|
|
||
|
G6DOFRotationalLimitMotorSW(const G6DOFRotationalLimitMotorSW & limot)
|
||
|
{
|
||
|
m_targetVelocity = limot.m_targetVelocity;
|
||
|
m_maxMotorForce = limot.m_maxMotorForce;
|
||
|
m_limitSoftness = limot.m_limitSoftness;
|
||
|
m_loLimit = limot.m_loLimit;
|
||
|
m_hiLimit = limot.m_hiLimit;
|
||
|
m_ERP = limot.m_ERP;
|
||
|
m_bounce = limot.m_bounce;
|
||
|
m_currentLimit = limot.m_currentLimit;
|
||
|
m_currentLimitError = limot.m_currentLimitError;
|
||
|
m_enableMotor = limot.m_enableMotor;
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
//! Is limited
|
||
|
bool isLimited()
|
||
|
{
|
||
|
if(m_loLimit>=m_hiLimit) return false;
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
//! Need apply correction
|
||
|
bool needApplyTorques()
|
||
|
{
|
||
|
if(m_currentLimit == 0 && m_enableMotor == false) return false;
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
//! calculates error
|
||
|
/*!
|
||
|
calculates m_currentLimit and m_currentLimitError.
|
||
|
*/
|
||
|
int testLimitValue(real_t test_value);
|
||
|
|
||
|
//! apply the correction impulses for two bodies
|
||
|
real_t solveAngularLimits(real_t timeStep,Vector3& axis, real_t jacDiagABInv,BodySW * body0, BodySW * body1);
|
||
|
|
||
|
|
||
|
};
|
||
|
|
||
|
|
||
|
|
||
|
class G6DOFTranslationalLimitMotorSW
|
||
|
{
|
||
|
public:
|
||
|
Vector3 m_lowerLimit;//!< the constraint lower limits
|
||
|
Vector3 m_upperLimit;//!< the constraint upper limits
|
||
|
Vector3 m_accumulatedImpulse;
|
||
|
//! Linear_Limit_parameters
|
||
|
//!@{
|
||
|
Vector3 m_limitSoftness;//!< Softness for linear limit
|
||
|
Vector3 m_damping;//!< Damping for linear limit
|
||
|
Vector3 m_restitution;//! Bounce parameter for linear limit
|
||
|
//!@}
|
||
|
bool enable_limit[3];
|
||
|
|
||
|
G6DOFTranslationalLimitMotorSW()
|
||
|
{
|
||
|
m_lowerLimit=Vector3(0.f,0.f,0.f);
|
||
|
m_upperLimit=Vector3(0.f,0.f,0.f);
|
||
|
m_accumulatedImpulse=Vector3(0.f,0.f,0.f);
|
||
|
|
||
|
m_limitSoftness = Vector3(1,1,1)*0.7f;
|
||
|
m_damping = Vector3(1,1,1)*real_t(1.0f);
|
||
|
m_restitution = Vector3(1,1,1)*real_t(0.5f);
|
||
|
|
||
|
enable_limit[0]=true;
|
||
|
enable_limit[1]=true;
|
||
|
enable_limit[2]=true;
|
||
|
}
|
||
|
|
||
|
G6DOFTranslationalLimitMotorSW(const G6DOFTranslationalLimitMotorSW & other )
|
||
|
{
|
||
|
m_lowerLimit = other.m_lowerLimit;
|
||
|
m_upperLimit = other.m_upperLimit;
|
||
|
m_accumulatedImpulse = other.m_accumulatedImpulse;
|
||
|
|
||
|
m_limitSoftness = other.m_limitSoftness ;
|
||
|
m_damping = other.m_damping;
|
||
|
m_restitution = other.m_restitution;
|
||
|
}
|
||
|
|
||
|
//! Test limit
|
||
|
/*!
|
||
|
- free means upper < lower,
|
||
|
- locked means upper == lower
|
||
|
- limited means upper > lower
|
||
|
- limitIndex: first 3 are linear, next 3 are angular
|
||
|
*/
|
||
|
inline bool isLimited(int limitIndex)
|
||
|
{
|
||
|
return (m_upperLimit[limitIndex] >= m_lowerLimit[limitIndex]);
|
||
|
}
|
||
|
|
||
|
|
||
|
real_t solveLinearAxis(
|
||
|
real_t timeStep,
|
||
|
real_t jacDiagABInv,
|
||
|
BodySW* body1,const Vector3 &pointInA,
|
||
|
BodySW* body2,const Vector3 &pointInB,
|
||
|
int limit_index,
|
||
|
const Vector3 & axis_normal_on_a,
|
||
|
const Vector3 & anchorPos);
|
||
|
|
||
|
|
||
|
};
|
||
|
|
||
|
|
||
|
class Generic6DOFJointSW : public JointSW
|
||
|
{
|
||
|
protected:
|
||
|
|
||
|
|
||
|
union {
|
||
|
struct {
|
||
|
BodySW *A;
|
||
|
BodySW *B;
|
||
|
};
|
||
|
|
||
|
BodySW *_arr[2];
|
||
|
};
|
||
|
|
||
|
//! relative_frames
|
||
|
//!@{
|
||
|
Transform m_frameInA;//!< the constraint space w.r.t body A
|
||
|
Transform m_frameInB;//!< the constraint space w.r.t body B
|
||
|
//!@}
|
||
|
|
||
|
//! Jacobians
|
||
|
//!@{
|
||
|
JacobianEntrySW m_jacLinear[3];//!< 3 orthogonal linear constraints
|
||
|
JacobianEntrySW m_jacAng[3];//!< 3 orthogonal angular constraints
|
||
|
//!@}
|
||
|
|
||
|
//! Linear_Limit_parameters
|
||
|
//!@{
|
||
|
G6DOFTranslationalLimitMotorSW m_linearLimits;
|
||
|
//!@}
|
||
|
|
||
|
|
||
|
//! hinge_parameters
|
||
|
//!@{
|
||
|
G6DOFRotationalLimitMotorSW m_angularLimits[3];
|
||
|
//!@}
|
||
|
|
||
|
|
||
|
protected:
|
||
|
//! temporal variables
|
||
|
//!@{
|
||
|
real_t m_timeStep;
|
||
|
Transform m_calculatedTransformA;
|
||
|
Transform m_calculatedTransformB;
|
||
|
Vector3 m_calculatedAxisAngleDiff;
|
||
|
Vector3 m_calculatedAxis[3];
|
||
|
|
||
|
Vector3 m_AnchorPos; // point betwen pivots of bodies A and B to solve linear axes
|
||
|
|
||
|
bool m_useLinearReferenceFrameA;
|
||
|
|
||
|
//!@}
|
||
|
|
||
|
Generic6DOFJointSW& operator=(Generic6DOFJointSW& other)
|
||
|
{
|
||
|
ERR_PRINT("pito");
|
||
|
(void) other;
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
void buildLinearJacobian(
|
||
|
JacobianEntrySW & jacLinear,const Vector3 & normalWorld,
|
||
|
const Vector3 & pivotAInW,const Vector3 & pivotBInW);
|
||
|
|
||
|
void buildAngularJacobian(JacobianEntrySW & jacAngular,const Vector3 & jointAxisW);
|
||
|
|
||
|
|
||
|
//! calcs the euler angles between the two bodies.
|
||
|
void calculateAngleInfo();
|
||
|
|
||
|
|
||
|
|
||
|
public:
|
||
|
Generic6DOFJointSW(BodySW* rbA, BodySW* rbB, const Transform& frameInA, const Transform& frameInB ,bool useLinearReferenceFrameA);
|
||
|
|
||
|
virtual PhysicsServer::JointType get_type() const { return PhysicsServer::JOINT_6DOF; }
|
||
|
|
||
|
virtual bool setup(float p_step);
|
||
|
virtual void solve(float p_step);
|
||
|
|
||
|
|
||
|
//! Calcs global transform of the offsets
|
||
|
/*!
|
||
|
Calcs the global transform for the joint offset for body A an B, and also calcs the agle differences between the bodies.
|
||
|
\sa Generic6DOFJointSW.getCalculatedTransformA , Generic6DOFJointSW.getCalculatedTransformB, Generic6DOFJointSW.calculateAngleInfo
|
||
|
*/
|
||
|
void calculateTransforms();
|
||
|
|
||
|
//! Gets the global transform of the offset for body A
|
||
|
/*!
|
||
|
\sa Generic6DOFJointSW.getFrameOffsetA, Generic6DOFJointSW.getFrameOffsetB, Generic6DOFJointSW.calculateAngleInfo.
|
||
|
*/
|
||
|
const Transform & getCalculatedTransformA() const
|
||
|
{
|
||
|
return m_calculatedTransformA;
|
||
|
}
|
||
|
|
||
|
//! Gets the global transform of the offset for body B
|
||
|
/*!
|
||
|
\sa Generic6DOFJointSW.getFrameOffsetA, Generic6DOFJointSW.getFrameOffsetB, Generic6DOFJointSW.calculateAngleInfo.
|
||
|
*/
|
||
|
const Transform & getCalculatedTransformB() const
|
||
|
{
|
||
|
return m_calculatedTransformB;
|
||
|
}
|
||
|
|
||
|
const Transform & getFrameOffsetA() const
|
||
|
{
|
||
|
return m_frameInA;
|
||
|
}
|
||
|
|
||
|
const Transform & getFrameOffsetB() const
|
||
|
{
|
||
|
return m_frameInB;
|
||
|
}
|
||
|
|
||
|
|
||
|
Transform & getFrameOffsetA()
|
||
|
{
|
||
|
return m_frameInA;
|
||
|
}
|
||
|
|
||
|
Transform & getFrameOffsetB()
|
||
|
{
|
||
|
return m_frameInB;
|
||
|
}
|
||
|
|
||
|
|
||
|
//! performs Jacobian calculation, and also calculates angle differences and axis
|
||
|
|
||
|
|
||
|
void updateRHS(real_t timeStep);
|
||
|
|
||
|
//! Get the rotation axis in global coordinates
|
||
|
/*!
|
||
|
\pre Generic6DOFJointSW.buildJacobian must be called previously.
|
||
|
*/
|
||
|
Vector3 getAxis(int axis_index) const;
|
||
|
|
||
|
//! Get the relative Euler angle
|
||
|
/*!
|
||
|
\pre Generic6DOFJointSW.buildJacobian must be called previously.
|
||
|
*/
|
||
|
real_t getAngle(int axis_index) const;
|
||
|
|
||
|
//! Test angular limit.
|
||
|
/*!
|
||
|
Calculates angular correction and returns true if limit needs to be corrected.
|
||
|
\pre Generic6DOFJointSW.buildJacobian must be called previously.
|
||
|
*/
|
||
|
bool testAngularLimitMotor(int axis_index);
|
||
|
|
||
|
void setLinearLowerLimit(const Vector3& linearLower)
|
||
|
{
|
||
|
m_linearLimits.m_lowerLimit = linearLower;
|
||
|
}
|
||
|
|
||
|
void setLinearUpperLimit(const Vector3& linearUpper)
|
||
|
{
|
||
|
m_linearLimits.m_upperLimit = linearUpper;
|
||
|
}
|
||
|
|
||
|
void setAngularLowerLimit(const Vector3& angularLower)
|
||
|
{
|
||
|
m_angularLimits[0].m_loLimit = angularLower.x;
|
||
|
m_angularLimits[1].m_loLimit = angularLower.y;
|
||
|
m_angularLimits[2].m_loLimit = angularLower.z;
|
||
|
}
|
||
|
|
||
|
void setAngularUpperLimit(const Vector3& angularUpper)
|
||
|
{
|
||
|
m_angularLimits[0].m_hiLimit = angularUpper.x;
|
||
|
m_angularLimits[1].m_hiLimit = angularUpper.y;
|
||
|
m_angularLimits[2].m_hiLimit = angularUpper.z;
|
||
|
}
|
||
|
|
||
|
//! Retrieves the angular limit informacion
|
||
|
G6DOFRotationalLimitMotorSW * getRotationalLimitMotor(int index)
|
||
|
{
|
||
|
return &m_angularLimits[index];
|
||
|
}
|
||
|
|
||
|
//! Retrieves the limit informacion
|
||
|
G6DOFTranslationalLimitMotorSW * getTranslationalLimitMotor()
|
||
|
{
|
||
|
return &m_linearLimits;
|
||
|
}
|
||
|
|
||
|
//first 3 are linear, next 3 are angular
|
||
|
void setLimit(int axis, real_t lo, real_t hi)
|
||
|
{
|
||
|
if(axis<3)
|
||
|
{
|
||
|
m_linearLimits.m_lowerLimit[axis] = lo;
|
||
|
m_linearLimits.m_upperLimit[axis] = hi;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
m_angularLimits[axis-3].m_loLimit = lo;
|
||
|
m_angularLimits[axis-3].m_hiLimit = hi;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
//! Test limit
|
||
|
/*!
|
||
|
- free means upper < lower,
|
||
|
- locked means upper == lower
|
||
|
- limited means upper > lower
|
||
|
- limitIndex: first 3 are linear, next 3 are angular
|
||
|
*/
|
||
|
bool isLimited(int limitIndex)
|
||
|
{
|
||
|
if(limitIndex<3)
|
||
|
{
|
||
|
return m_linearLimits.isLimited(limitIndex);
|
||
|
|
||
|
}
|
||
|
return m_angularLimits[limitIndex-3].isLimited();
|
||
|
}
|
||
|
|
||
|
const BodySW* getRigidBodyA() const
|
||
|
{
|
||
|
return A;
|
||
|
}
|
||
|
const BodySW* getRigidBodyB() const
|
||
|
{
|
||
|
return B;
|
||
|
}
|
||
|
|
||
|
virtual void calcAnchorPos(void); // overridable
|
||
|
|
||
|
void set_param(Vector3::Axis p_axis,PhysicsServer::G6DOFJointAxisParam p_param, float p_value);
|
||
|
float get_param(Vector3::Axis p_axis,PhysicsServer::G6DOFJointAxisParam p_param) const;
|
||
|
|
||
|
void set_flag(Vector3::Axis p_axis,PhysicsServer::G6DOFJointAxisFlag p_flag, bool p_value);
|
||
|
bool get_flag(Vector3::Axis p_axis,PhysicsServer::G6DOFJointAxisFlag p_flag) const;
|
||
|
|
||
|
};
|
||
|
|
||
|
|
||
|
#endif // GENERIC_6DOF_JOINT_SW_H
|