godot/thirdparty/icu4c/common/uvector.cpp

567 lines
17 KiB
C++
Raw Normal View History

// © 2016 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html
/*
******************************************************************************
* Copyright (C) 1999-2013, International Business Machines Corporation and
* others. All Rights Reserved.
******************************************************************************
* Date Name Description
* 10/22/99 alan Creation.
**********************************************************************
*/
#include "uvector.h"
#include "cmemory.h"
#include "uarrsort.h"
#include "uelement.h"
U_NAMESPACE_BEGIN
2021-10-28 06:15:28 +00:00
constexpr int32_t DEFAULT_CAPACITY = 8;
/*
* Constants for hinting whether a key is an integer
* or a pointer. If a hint bit is zero, then the associated
* token is assumed to be an integer. This is needed for iSeries
*/
2021-10-28 06:15:28 +00:00
constexpr int8_t HINT_KEY_POINTER = 1;
constexpr int8_t HINT_KEY_INTEGER = 0;
UOBJECT_DEFINE_RTTI_IMPLEMENTATION(UVector)
UVector::UVector(UErrorCode &status) :
2021-10-28 06:15:28 +00:00
UVector(nullptr, nullptr, DEFAULT_CAPACITY, status) {
}
UVector::UVector(int32_t initialCapacity, UErrorCode &status) :
2021-10-28 06:15:28 +00:00
UVector(nullptr, nullptr, initialCapacity, status) {
}
UVector::UVector(UObjectDeleter *d, UElementsAreEqual *c, UErrorCode &status) :
2021-10-28 06:15:28 +00:00
UVector(d, c, DEFAULT_CAPACITY, status) {
}
UVector::UVector(UObjectDeleter *d, UElementsAreEqual *c, int32_t initialCapacity, UErrorCode &status) :
deleter(d),
comparer(c)
{
if (U_FAILURE(status)) {
return;
}
// Fix bogus initialCapacity values; avoid malloc(0) and integer overflow
if ((initialCapacity < 1) || (initialCapacity > (int32_t)(INT32_MAX / sizeof(UElement)))) {
initialCapacity = DEFAULT_CAPACITY;
}
elements = (UElement *)uprv_malloc(sizeof(UElement)*initialCapacity);
2021-10-28 06:15:28 +00:00
if (elements == nullptr) {
status = U_MEMORY_ALLOCATION_ERROR;
} else {
capacity = initialCapacity;
}
}
UVector::~UVector() {
removeAllElements();
uprv_free(elements);
2021-10-28 06:15:28 +00:00
elements = nullptr;
}
/**
* Assign this object to another (make this a copy of 'other').
* Use the 'assign' function to assign each element.
*/
void UVector::assign(const UVector& other, UElementAssigner *assign, UErrorCode &ec) {
if (ensureCapacity(other.count, ec)) {
setSize(other.count, ec);
if (U_SUCCESS(ec)) {
for (int32_t i=0; i<other.count; ++i) {
2021-10-28 06:15:28 +00:00
if (elements[i].pointer != nullptr && deleter != nullptr) {
(*deleter)(elements[i].pointer);
}
(*assign)(&elements[i], &other.elements[i]);
}
}
}
}
// This only does something sensible if this object has a non-null comparer
2021-10-28 06:15:28 +00:00
bool UVector::operator==(const UVector& other) const {
U_ASSERT(comparer != nullptr);
if (count != other.count) return false;
if (comparer != nullptr) {
// Compare using this object's comparer
2021-10-28 06:15:28 +00:00
for (int32_t i=0; i<count; ++i) {
if (!(*comparer)(elements[i], other.elements[i])) {
2021-10-28 06:15:28 +00:00
return false;
}
}
}
2021-10-28 06:15:28 +00:00
return true;
}
void UVector::addElement(void* obj, UErrorCode &status) {
2021-10-28 06:15:28 +00:00
U_ASSERT(deleter == nullptr);
if (ensureCapacity(count + 1, status)) {
elements[count++].pointer = obj;
}
}
2021-10-28 06:15:28 +00:00
void UVector::adoptElement(void* obj, UErrorCode &status) {
U_ASSERT(deleter != nullptr);
if (ensureCapacity(count + 1, status)) {
elements[count++].pointer = obj;
} else {
(*deleter)(obj);
}
}
void UVector::addElement(int32_t elem, UErrorCode &status) {
2021-10-28 06:15:28 +00:00
U_ASSERT(deleter == nullptr); // Usage error. Mixing up ints and pointers.
if (ensureCapacity(count + 1, status)) {
2021-10-28 06:15:28 +00:00
elements[count].pointer = nullptr; // Pointers may be bigger than ints.
elements[count].integer = elem;
count++;
}
}
void UVector::setElementAt(void* obj, int32_t index) {
if (0 <= index && index < count) {
2021-10-28 06:15:28 +00:00
if (elements[index].pointer != nullptr && deleter != nullptr) {
(*deleter)(elements[index].pointer);
}
elements[index].pointer = obj;
2021-10-28 06:15:28 +00:00
} else {
/* index out of range */
if (deleter != nullptr) {
(*deleter)(obj);
}
}
}
void UVector::setElementAt(int32_t elem, int32_t index) {
2021-10-28 06:15:28 +00:00
U_ASSERT(deleter == nullptr); // Usage error. Mixing up ints and pointers.
if (0 <= index && index < count) {
2021-10-28 06:15:28 +00:00
elements[index].pointer = nullptr;
elements[index].integer = elem;
}
/* else index out of range */
}
void UVector::insertElementAt(void* obj, int32_t index, UErrorCode &status) {
2021-10-28 06:15:28 +00:00
if (ensureCapacity(count + 1, status)) {
if (0 <= index && index <= count) {
for (int32_t i=count; i>index; --i) {
elements[i] = elements[i-1];
}
elements[index].pointer = obj;
++count;
} else {
/* index out of range */
status = U_ILLEGAL_ARGUMENT_ERROR;
}
}
2021-10-28 06:15:28 +00:00
if (U_FAILURE(status) && deleter != nullptr) {
(*deleter)(obj);
}
}
void UVector::insertElementAt(int32_t elem, int32_t index, UErrorCode &status) {
2021-10-28 06:15:28 +00:00
U_ASSERT(deleter == nullptr); // Usage error. Mixing up ints and pointers.
// must have 0 <= index <= count
2021-10-28 06:15:28 +00:00
if (ensureCapacity(count + 1, status)) {
if (0 <= index && index <= count) {
for (int32_t i=count; i>index; --i) {
elements[i] = elements[i-1];
}
elements[index].pointer = nullptr;
elements[index].integer = elem;
++count;
} else {
/* index out of range */
status = U_ILLEGAL_ARGUMENT_ERROR;
}
}
}
void* UVector::elementAt(int32_t index) const {
2024-05-14 08:41:19 +00:00
return (0 <= index && index < count) ? elements[index].pointer : nullptr;
}
int32_t UVector::elementAti(int32_t index) const {
return (0 <= index && index < count) ? elements[index].integer : 0;
}
UBool UVector::containsAll(const UVector& other) const {
for (int32_t i=0; i<other.size(); ++i) {
if (indexOf(other.elements[i]) < 0) {
2022-10-28 06:11:55 +00:00
return false;
}
}
2022-10-28 06:11:55 +00:00
return true;
}
UBool UVector::containsNone(const UVector& other) const {
for (int32_t i=0; i<other.size(); ++i) {
if (indexOf(other.elements[i]) >= 0) {
2022-10-28 06:11:55 +00:00
return false;
}
}
2022-10-28 06:11:55 +00:00
return true;
}
UBool UVector::removeAll(const UVector& other) {
2022-10-28 06:11:55 +00:00
UBool changed = false;
for (int32_t i=0; i<other.size(); ++i) {
int32_t j = indexOf(other.elements[i]);
if (j >= 0) {
removeElementAt(j);
2022-10-28 06:11:55 +00:00
changed = true;
}
}
return changed;
}
UBool UVector::retainAll(const UVector& other) {
2022-10-28 06:11:55 +00:00
UBool changed = false;
for (int32_t j=size()-1; j>=0; --j) {
int32_t i = other.indexOf(elements[j]);
if (i < 0) {
removeElementAt(j);
2022-10-28 06:11:55 +00:00
changed = true;
}
}
return changed;
}
void UVector::removeElementAt(int32_t index) {
void* e = orphanElementAt(index);
2021-10-28 06:15:28 +00:00
if (e != nullptr && deleter != nullptr) {
(*deleter)(e);
}
}
UBool UVector::removeElement(void* obj) {
int32_t i = indexOf(obj);
if (i >= 0) {
removeElementAt(i);
2022-10-28 06:11:55 +00:00
return true;
}
2022-10-28 06:11:55 +00:00
return false;
}
void UVector::removeAllElements() {
2021-10-28 06:15:28 +00:00
if (deleter != nullptr) {
for (int32_t i=0; i<count; ++i) {
2021-10-28 06:15:28 +00:00
if (elements[i].pointer != nullptr) {
(*deleter)(elements[i].pointer);
}
}
}
count = 0;
}
UBool UVector::equals(const UVector &other) const {
int i;
if (this->count != other.count) {
2022-10-28 06:11:55 +00:00
return false;
}
2021-10-28 06:15:28 +00:00
if (comparer == nullptr) {
for (i=0; i<count; i++) {
if (elements[i].pointer != other.elements[i].pointer) {
2022-10-28 06:11:55 +00:00
return false;
}
}
} else {
UElement key;
for (i=0; i<count; i++) {
key.pointer = &other.elements[i];
if (!(*comparer)(key, elements[i])) {
2022-10-28 06:11:55 +00:00
return false;
}
}
}
2022-10-28 06:11:55 +00:00
return true;
}
int32_t UVector::indexOf(void* obj, int32_t startIndex) const {
UElement key;
key.pointer = obj;
return indexOf(key, startIndex, HINT_KEY_POINTER);
}
int32_t UVector::indexOf(int32_t obj, int32_t startIndex) const {
UElement key;
key.integer = obj;
return indexOf(key, startIndex, HINT_KEY_INTEGER);
}
int32_t UVector::indexOf(UElement key, int32_t startIndex, int8_t hint) const {
2021-10-28 06:15:28 +00:00
if (comparer != nullptr) {
for (int32_t i=startIndex; i<count; ++i) {
if ((*comparer)(key, elements[i])) {
return i;
}
}
} else {
2021-10-28 06:15:28 +00:00
for (int32_t i=startIndex; i<count; ++i) {
/* Pointers are not always the same size as ints so to perform
* a valid comparison we need to know whether we are being
* provided an int or a pointer. */
if (hint & HINT_KEY_POINTER) {
if (key.pointer == elements[i].pointer) {
return i;
}
} else {
if (key.integer == elements[i].integer) {
return i;
}
}
}
}
return -1;
}
2021-10-28 06:15:28 +00:00
UBool UVector::ensureCapacity(int32_t minimumCapacity, UErrorCode &status) {
if (U_FAILURE(status)) {
return false;
}
if (minimumCapacity < 0) {
status = U_ILLEGAL_ARGUMENT_ERROR;
return false;
}
2021-10-28 06:15:28 +00:00
if (capacity < minimumCapacity) {
if (capacity > (INT32_MAX - 1) / 2) { // integer overflow check
status = U_ILLEGAL_ARGUMENT_ERROR;
return false;
}
int32_t newCap = capacity * 2;
if (newCap < minimumCapacity) {
newCap = minimumCapacity;
}
if (newCap > (int32_t)(INT32_MAX / sizeof(UElement))) { // integer overflow check
// We keep the original memory contents on bad minimumCapacity.
status = U_ILLEGAL_ARGUMENT_ERROR;
return false;
}
UElement* newElems = (UElement *)uprv_realloc(elements, sizeof(UElement)*newCap);
if (newElems == nullptr) {
// We keep the original contents on the memory failure on realloc or bad minimumCapacity.
status = U_MEMORY_ALLOCATION_ERROR;
return false;
}
elements = newElems;
capacity = newCap;
}
return true;
}
/**
* Change the size of this vector as follows: If newSize is smaller,
* then truncate the array, possibly deleting held elements for i >=
* newSize. If newSize is larger, grow the array, filling in new
2021-10-28 06:15:28 +00:00
* slots with nullptr.
*/
void UVector::setSize(int32_t newSize, UErrorCode &status) {
2021-10-28 06:15:28 +00:00
if (!ensureCapacity(newSize, status)) {
return;
}
if (newSize > count) {
UElement empty;
2021-10-28 06:15:28 +00:00
empty.pointer = nullptr;
empty.integer = 0;
2021-10-28 06:15:28 +00:00
for (int32_t i=count; i<newSize; ++i) {
elements[i] = empty;
}
} else {
/* Most efficient to count down */
2021-10-28 06:15:28 +00:00
for (int32_t i=count-1; i>=newSize; --i) {
removeElementAt(i);
}
}
count = newSize;
}
/**
* Fill in the given array with all elements of this vector.
*/
void** UVector::toArray(void** result) const {
void** a = result;
for (int i=0; i<count; ++i) {
*a++ = elements[i].pointer;
}
return result;
}
UObjectDeleter *UVector::setDeleter(UObjectDeleter *d) {
UObjectDeleter *old = deleter;
deleter = d;
return old;
}
UElementsAreEqual *UVector::setComparer(UElementsAreEqual *d) {
UElementsAreEqual *old = comparer;
comparer = d;
return old;
}
/**
* Removes the element at the given index from this vector and
* transfer ownership of it to the caller. After this call, the
* caller owns the result and must delete it and the vector entry
* at 'index' is removed, shifting all subsequent entries back by
* one index and shortening the size of the vector by one. If the
* index is out of range or if there is no item at the given index
* then 0 is returned and the vector is unchanged.
*/
void* UVector::orphanElementAt(int32_t index) {
2021-10-28 06:15:28 +00:00
void* e = nullptr;
if (0 <= index && index < count) {
e = elements[index].pointer;
for (int32_t i=index; i<count-1; ++i) {
elements[i] = elements[i+1];
}
--count;
}
/* else index out of range */
return e;
}
/**
* Insert the given object into this vector at its sorted position
* as defined by 'compare'. The current elements are assumed to
* be sorted already.
*/
void UVector::sortedInsert(void* obj, UElementComparator *compare, UErrorCode& ec) {
UElement e;
e.pointer = obj;
sortedInsert(e, compare, ec);
}
/**
* Insert the given integer into this vector at its sorted position
* as defined by 'compare'. The current elements are assumed to
* be sorted already.
*/
void UVector::sortedInsert(int32_t obj, UElementComparator *compare, UErrorCode& ec) {
2021-10-28 06:15:28 +00:00
U_ASSERT(deleter == nullptr);
UElement e {};
e.integer = obj;
sortedInsert(e, compare, ec);
}
// ASSUME elements[] IS CURRENTLY SORTED
void UVector::sortedInsert(UElement e, UElementComparator *compare, UErrorCode& ec) {
// Perform a binary search for the location to insert tok at. Tok
// will be inserted between two elements a and b such that a <=
// tok && tok < b, where there is a 'virtual' elements[-1] always
// less than tok and a 'virtual' elements[count] always greater
// than tok.
2021-10-28 06:15:28 +00:00
if (!ensureCapacity(count + 1, ec)) {
if (deleter != nullptr) {
(*deleter)(e.pointer);
}
return;
}
int32_t min = 0, max = count;
while (min != max) {
int32_t probe = (min + max) / 2;
2021-10-28 06:15:28 +00:00
int32_t c = (*compare)(elements[probe], e);
if (c > 0) {
max = probe;
} else {
// assert(c <= 0);
min = probe + 1;
}
}
2021-10-28 06:15:28 +00:00
for (int32_t i=count; i>min; --i) {
elements[i] = elements[i-1];
}
2021-10-28 06:15:28 +00:00
elements[min] = e;
++count;
}
/**
* Array sort comparator function.
* Used from UVector::sort()
* Conforms to function signature required for uprv_sortArray().
* This function is essentially just a wrapper, to make a
* UVector style comparator function usable with uprv_sortArray().
*
* The context pointer to this function is a pointer back
* (with some extra indirection) to the user supplied comparator.
*
*/
static int32_t U_CALLCONV
sortComparator(const void *context, const void *left, const void *right) {
UElementComparator *compare = *static_cast<UElementComparator * const *>(context);
UElement e1 = *static_cast<const UElement *>(left);
UElement e2 = *static_cast<const UElement *>(right);
int32_t result = (*compare)(e1, e2);
return result;
}
/**
* Array sort comparison function for use from UVector::sorti()
* Compares int32_t vector elements.
*/
static int32_t U_CALLCONV
sortiComparator(const void * /*context */, const void *left, const void *right) {
const UElement *e1 = static_cast<const UElement *>(left);
const UElement *e2 = static_cast<const UElement *>(right);
int32_t result = e1->integer < e2->integer? -1 :
e1->integer == e2->integer? 0 : 1;
return result;
}
/**
* Sort the vector, assuming it contains ints.
* (A more general sort would take a comparison function, but it's
* not clear whether UVector's UElementComparator or
* UComparator from uprv_sortAray would be more appropriate.)
*/
void UVector::sorti(UErrorCode &ec) {
if (U_SUCCESS(ec)) {
uprv_sortArray(elements, count, sizeof(UElement),
2022-10-28 06:11:55 +00:00
sortiComparator, nullptr, false, &ec);
}
}
/**
* Sort with a user supplied comparator.
*
* The comparator function handling is confusing because the function type
* for UVector (as defined for sortedInsert()) is different from the signature
* required by uprv_sortArray(). This is handled by passing the
* the UVector sort function pointer via the context pointer to a
* sortArray() comparator function, which can then call back to
2021-10-28 06:15:28 +00:00
* the original user function.
*
* An additional twist is that it's not safe to pass a pointer-to-function
* as a (void *) data pointer, so instead we pass a (data) pointer to a
* pointer-to-function variable.
*/
void UVector::sort(UElementComparator *compare, UErrorCode &ec) {
if (U_SUCCESS(ec)) {
uprv_sortArray(elements, count, sizeof(UElement),
2022-10-28 06:11:55 +00:00
sortComparator, &compare, false, &ec);
}
}
/**
* Stable sort with a user supplied comparator of type UComparator.
*/
void UVector::sortWithUComparator(UComparator *compare, const void *context, UErrorCode &ec) {
if (U_SUCCESS(ec)) {
uprv_sortArray(elements, count, sizeof(UElement),
2022-10-28 06:11:55 +00:00
compare, context, true, &ec);
}
}
U_NAMESPACE_END