2020-08-11 09:10:23 +00:00
|
|
|
// © 2016 and later: Unicode, Inc. and others.
|
|
|
|
// License & terms of use: http://www.unicode.org/copyright.html
|
|
|
|
/*
|
|
|
|
******************************************************************************
|
|
|
|
*
|
|
|
|
* Copyright (C) 2000-2016, International Business Machines
|
|
|
|
* Corporation and others. All Rights Reserved.
|
|
|
|
*
|
|
|
|
******************************************************************************
|
|
|
|
* file name: ucnvmbcs.cpp
|
|
|
|
* encoding: UTF-8
|
|
|
|
* tab size: 8 (not used)
|
|
|
|
* indentation:4
|
|
|
|
*
|
|
|
|
* created on: 2000jul03
|
|
|
|
* created by: Markus W. Scherer
|
|
|
|
*
|
|
|
|
* The current code in this file replaces the previous implementation
|
|
|
|
* of conversion code from multi-byte codepages to Unicode and back.
|
|
|
|
* This implementation supports the following:
|
|
|
|
* - legacy variable-length codepages with up to 4 bytes per character
|
|
|
|
* - all Unicode code points (up to 0x10ffff)
|
|
|
|
* - efficient distinction of unassigned vs. illegal byte sequences
|
|
|
|
* - it is possible in fromUnicode() to directly deal with simple
|
|
|
|
* stateful encodings (used for EBCDIC_STATEFUL)
|
|
|
|
* - it is possible to convert Unicode code points
|
|
|
|
* to a single zero byte (but not as a fallback except for SBCS)
|
|
|
|
*
|
|
|
|
* Remaining limitations in fromUnicode:
|
|
|
|
* - byte sequences must not have leading zero bytes
|
|
|
|
* - except for SBCS codepages: no fallback mapping from Unicode to a zero byte
|
|
|
|
* - limitation to up to 4 bytes per character
|
|
|
|
*
|
|
|
|
* ICU 2.8 (late 2003) adds a secondary data structure which lifts some of these
|
|
|
|
* limitations and adds m:n character mappings and other features.
|
|
|
|
* See ucnv_ext.h for details.
|
|
|
|
*
|
|
|
|
* Change history:
|
|
|
|
*
|
|
|
|
* 5/6/2001 Ram Moved MBCS_SINGLE_RESULT_FROM_U,MBCS_STAGE_2_FROM_U,
|
|
|
|
* MBCS_VALUE_2_FROM_STAGE_2, MBCS_VALUE_4_FROM_STAGE_2
|
|
|
|
* macros to ucnvmbcs.h file
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "unicode/utypes.h"
|
|
|
|
|
|
|
|
#if !UCONFIG_NO_CONVERSION && !UCONFIG_NO_LEGACY_CONVERSION
|
|
|
|
|
|
|
|
#include "unicode/ucnv.h"
|
|
|
|
#include "unicode/ucnv_cb.h"
|
|
|
|
#include "unicode/udata.h"
|
|
|
|
#include "unicode/uset.h"
|
|
|
|
#include "unicode/utf8.h"
|
|
|
|
#include "unicode/utf16.h"
|
|
|
|
#include "ucnv_bld.h"
|
|
|
|
#include "ucnvmbcs.h"
|
|
|
|
#include "ucnv_ext.h"
|
|
|
|
#include "ucnv_cnv.h"
|
|
|
|
#include "cmemory.h"
|
|
|
|
#include "cstring.h"
|
|
|
|
#include "umutex.h"
|
|
|
|
#include "ustr_imp.h"
|
|
|
|
|
|
|
|
/* control optimizations according to the platform */
|
|
|
|
#define MBCS_UNROLL_SINGLE_TO_BMP 1
|
|
|
|
#define MBCS_UNROLL_SINGLE_FROM_BMP 0
|
|
|
|
|
|
|
|
/*
|
|
|
|
* _MBCSHeader versions 5.3 & 4.3
|
|
|
|
* (Note that the _MBCSHeader version is in addition to the converter formatVersion.)
|
|
|
|
*
|
|
|
|
* This version is optional. Version 5 is used for incompatible data format changes.
|
|
|
|
* makeconv will continue to generate version 4 files if possible.
|
|
|
|
*
|
|
|
|
* Changes from version 4:
|
|
|
|
*
|
|
|
|
* The main difference is an additional _MBCSHeader field with
|
|
|
|
* - the length (number of uint32_t) of the _MBCSHeader
|
|
|
|
* - flags for further incompatible data format changes
|
|
|
|
* - flags for further, backward compatible data format changes
|
|
|
|
*
|
|
|
|
* The MBCS_OPT_FROM_U flag indicates that most of the fromUnicode data is omitted from
|
|
|
|
* the file and needs to be reconstituted at load time.
|
|
|
|
* This requires a utf8Friendly format with an additional mbcsIndex table for fast
|
|
|
|
* (and UTF-8-friendly) fromUnicode conversion for Unicode code points up to maxFastUChar.
|
|
|
|
* (For details about these structures see below, and see ucnvmbcs.h.)
|
|
|
|
*
|
|
|
|
* utf8Friendly also implies that the fromUnicode mappings are stored in ascending order
|
|
|
|
* of the Unicode code points. (This requires that the .ucm file has the |0 etc.
|
|
|
|
* precision markers for all mappings.)
|
|
|
|
*
|
|
|
|
* All fallbacks have been moved to the extension table, leaving only roundtrips in the
|
|
|
|
* omitted data that can be reconstituted from the toUnicode data.
|
|
|
|
*
|
|
|
|
* Of the stage 2 table, the part corresponding to maxFastUChar and below is omitted.
|
|
|
|
* With only roundtrip mappings in the base fromUnicode data, this part is fully
|
|
|
|
* redundant with the mbcsIndex and will be reconstituted from that (also using the
|
|
|
|
* stage 1 table which contains the information about how stage 2 was compacted).
|
|
|
|
*
|
|
|
|
* The rest of the stage 2 table, the part for code points above maxFastUChar,
|
|
|
|
* is stored in the file and will be appended to the reconstituted part.
|
|
|
|
*
|
|
|
|
* The entire fromUBytes array is omitted from the file and will be reconstitued.
|
|
|
|
* This is done by enumerating all toUnicode roundtrip mappings, performing
|
|
|
|
* each mapping (using the stage 1 and reconstituted stage 2 tables) and
|
|
|
|
* writing instead of reading the byte values.
|
|
|
|
*
|
|
|
|
* _MBCSHeader version 4.3
|
|
|
|
*
|
|
|
|
* Change from version 4.2:
|
|
|
|
* - Optional utf8Friendly data structures, with 64-entry stage 3 block
|
|
|
|
* allocation for parts of the BMP, and an additional mbcsIndex in non-SBCS
|
|
|
|
* files which can be used instead of stages 1 & 2.
|
|
|
|
* Faster lookups for roundtrips from most commonly used characters,
|
|
|
|
* and lookups from UTF-8 byte sequences with a natural bit distribution.
|
|
|
|
* See ucnvmbcs.h for more details.
|
|
|
|
*
|
|
|
|
* Change from version 4.1:
|
|
|
|
* - Added an optional extension table structure at the end of the .cnv file.
|
|
|
|
* It is present if the upper bits of the header flags field contains a non-zero
|
|
|
|
* byte offset to it.
|
|
|
|
* Files that contain only a conversion table and no base table
|
|
|
|
* use the special outputType MBCS_OUTPUT_EXT_ONLY.
|
|
|
|
* These contain the base table name between the MBCS header and the extension
|
|
|
|
* data.
|
|
|
|
*
|
|
|
|
* Change from version 4.0:
|
|
|
|
* - Replace header.reserved with header.fromUBytesLength so that all
|
|
|
|
* fields in the data have length.
|
|
|
|
*
|
|
|
|
* Changes from version 3 (for performance improvements):
|
|
|
|
* - new bit distribution for state table entries
|
|
|
|
* - reordered action codes
|
|
|
|
* - new data structure for single-byte fromUnicode
|
|
|
|
* + stage 2 only contains indexes
|
|
|
|
* + stage 3 stores 16 bits per character with classification bits 15..8
|
|
|
|
* - no multiplier for stage 1 entries
|
|
|
|
* - stage 2 for non-single-byte codepages contains the index and the flags in
|
|
|
|
* one 32-bit value
|
|
|
|
* - 2-byte and 4-byte fromUnicode results are stored directly as 16/32-bit integers
|
|
|
|
*
|
|
|
|
* For more details about old versions of the MBCS data structure, see
|
|
|
|
* the corresponding versions of this file.
|
|
|
|
*
|
|
|
|
* Converting stateless codepage data ---------------------------------------***
|
|
|
|
* (or codepage data with simple states) to Unicode.
|
|
|
|
*
|
|
|
|
* Data structure and algorithm for converting from complex legacy codepages
|
|
|
|
* to Unicode. (Designed before 2000-may-22.)
|
|
|
|
*
|
|
|
|
* The basic idea is that the structure of legacy codepages can be described
|
|
|
|
* with state tables.
|
|
|
|
* When reading a byte stream, each input byte causes a state transition.
|
|
|
|
* Some transitions result in the output of a code point, some result in
|
|
|
|
* "unassigned" or "illegal" output.
|
|
|
|
* This is used here for character conversion.
|
|
|
|
*
|
|
|
|
* The data structure begins with a state table consisting of a row
|
|
|
|
* per state, with 256 entries (columns) per row for each possible input
|
|
|
|
* byte value.
|
|
|
|
* Each entry is 32 bits wide, with two formats distinguished by
|
|
|
|
* the sign bit (bit 31):
|
|
|
|
*
|
|
|
|
* One format for transitional entries (bit 31 not set) for non-final bytes, and
|
|
|
|
* one format for final entries (bit 31 set).
|
|
|
|
* Both formats contain the number of the next state in the same bit
|
|
|
|
* positions.
|
|
|
|
* State 0 is the initial state.
|
|
|
|
*
|
|
|
|
* Most of the time, the offset values of subsequent states are added
|
|
|
|
* up to a scalar value. This value will eventually be the index of
|
|
|
|
* the Unicode code point in a table that follows the state table.
|
|
|
|
* The effect is that the code points for final state table rows
|
|
|
|
* are contiguous. The code points of final state rows follow each other
|
|
|
|
* in the order of the references to those final states by previous
|
|
|
|
* states, etc.
|
|
|
|
*
|
|
|
|
* For some terminal states, the offset is itself the output Unicode
|
|
|
|
* code point (16 bits for a BMP code point or 20 bits for a supplementary
|
|
|
|
* code point (stored as code point minus 0x10000 so that 20 bits are enough).
|
|
|
|
* For others, the code point in the Unicode table is stored with either
|
|
|
|
* one or two code units: one for BMP code points, two for a pair of
|
|
|
|
* surrogates.
|
|
|
|
* All code points for a final state entry take up the same number of code
|
|
|
|
* units, regardless of whether they all actually _use_ the same number
|
|
|
|
* of code units. This is necessary for simple array access.
|
|
|
|
*
|
|
|
|
* An additional feature comes in with what in ICU is called "fallback"
|
|
|
|
* mappings:
|
|
|
|
*
|
|
|
|
* In addition to round-trippable, precise, 1:1 mappings, there are often
|
|
|
|
* mappings defined between similar, though not the same, characters.
|
|
|
|
* Typically, such mappings occur only in fromUnicode mapping tables because
|
|
|
|
* Unicode has a superset repertoire of most other codepages. However, it
|
|
|
|
* is possible to provide such mappings in the toUnicode tables, too.
|
|
|
|
* In this case, the fallback mappings are partly integrated into the
|
|
|
|
* general state tables because the structure of the encoding includes their
|
|
|
|
* byte sequences.
|
|
|
|
* For final entries in an initial state, fallback mappings are stored in
|
|
|
|
* the entry itself like with roundtrip mappings.
|
|
|
|
* For other final entries, they are stored in the code units table if
|
|
|
|
* the entry is for a pair of code units.
|
|
|
|
* For single-unit results in the code units table, there is no space to
|
|
|
|
* alternatively hold a fallback mapping; in this case, the code unit
|
|
|
|
* is stored as U+fffe (unassigned), and the fallback mapping needs to
|
|
|
|
* be looked up by the scalar offset value in a separate table.
|
|
|
|
*
|
|
|
|
* "Unassigned" state entries really mean "structurally unassigned",
|
|
|
|
* i.e., such a byte sequence will never have a mapping result.
|
|
|
|
*
|
|
|
|
* The interpretation of the bits in each entry is as follows:
|
|
|
|
*
|
|
|
|
* Bit 31 not set, not a terminal entry ("transitional"):
|
|
|
|
* 30..24 next state
|
|
|
|
* 23..0 offset delta, to be added up
|
|
|
|
*
|
|
|
|
* Bit 31 set, terminal ("final") entry:
|
|
|
|
* 30..24 next state (regardless of action code)
|
|
|
|
* 23..20 action code:
|
|
|
|
* action codes 0 and 1 result in precise-mapping Unicode code points
|
|
|
|
* 0 valid byte sequence
|
|
|
|
* 19..16 not used, 0
|
|
|
|
* 15..0 16-bit Unicode BMP code point
|
|
|
|
* never U+fffe or U+ffff
|
|
|
|
* 1 valid byte sequence
|
|
|
|
* 19..0 20-bit Unicode supplementary code point
|
|
|
|
* never U+fffe or U+ffff
|
|
|
|
*
|
|
|
|
* action codes 2 and 3 result in fallback (unidirectional-mapping) Unicode code points
|
|
|
|
* 2 valid byte sequence (fallback)
|
|
|
|
* 19..16 not used, 0
|
|
|
|
* 15..0 16-bit Unicode BMP code point as fallback result
|
|
|
|
* 3 valid byte sequence (fallback)
|
|
|
|
* 19..0 20-bit Unicode supplementary code point as fallback result
|
|
|
|
*
|
|
|
|
* action codes 4 and 5 may result in roundtrip/fallback/unassigned/illegal results
|
|
|
|
* depending on the code units they result in
|
|
|
|
* 4 valid byte sequence
|
|
|
|
* 19..9 not used, 0
|
|
|
|
* 8..0 final offset delta
|
|
|
|
* pointing to one 16-bit code unit which may be
|
|
|
|
* fffe unassigned -- look for a fallback for this offset
|
|
|
|
* ffff illegal
|
|
|
|
* 5 valid byte sequence
|
|
|
|
* 19..9 not used, 0
|
|
|
|
* 8..0 final offset delta
|
|
|
|
* pointing to two 16-bit code units
|
|
|
|
* (typically UTF-16 surrogates)
|
|
|
|
* the result depends on the first code unit as follows:
|
|
|
|
* 0000..d7ff roundtrip BMP code point (1st alone)
|
|
|
|
* d800..dbff roundtrip surrogate pair (1st, 2nd)
|
|
|
|
* dc00..dfff fallback surrogate pair (1st-400, 2nd)
|
|
|
|
* e000 roundtrip BMP code point (2nd alone)
|
|
|
|
* e001 fallback BMP code point (2nd alone)
|
|
|
|
* fffe unassigned
|
|
|
|
* ffff illegal
|
|
|
|
* (the final offset deltas are at most 255 * 2,
|
|
|
|
* times 2 because of storing code unit pairs)
|
|
|
|
*
|
|
|
|
* 6 unassigned byte sequence
|
|
|
|
* 19..16 not used, 0
|
|
|
|
* 15..0 16-bit Unicode BMP code point U+fffe (new with version 2)
|
|
|
|
* this does not contain a final offset delta because the main
|
|
|
|
* purpose of this action code is to save scalar offset values;
|
|
|
|
* therefore, fallback values cannot be assigned to byte
|
|
|
|
* sequences that result in this action code
|
|
|
|
* 7 illegal byte sequence
|
|
|
|
* 19..16 not used, 0
|
|
|
|
* 15..0 16-bit Unicode BMP code point U+ffff (new with version 2)
|
|
|
|
* 8 state change only
|
|
|
|
* 19..0 not used, 0
|
|
|
|
* useful for state changes in simple stateful encodings,
|
|
|
|
* at Shift-In/Shift-Out codes
|
|
|
|
*
|
|
|
|
*
|
|
|
|
* 9..15 reserved for future use
|
|
|
|
* current implementations will only perform a state change
|
|
|
|
* and ignore bits 19..0
|
|
|
|
*
|
|
|
|
* An encoding with contiguous ranges of unassigned byte sequences, like
|
|
|
|
* Shift-JIS and especially EUC-TW, can be stored efficiently by having
|
|
|
|
* at least two states for the trail bytes:
|
|
|
|
* One trail byte state that results in code points, and one that only
|
|
|
|
* has "unassigned" and "illegal" terminal states.
|
|
|
|
*
|
|
|
|
* Note: partly by accident, this data structure supports simple stateful
|
|
|
|
* encodings without any additional logic.
|
|
|
|
* Currently, only simple Shift-In/Shift-Out schemes are handled with
|
|
|
|
* appropriate state tables (especially EBCDIC_STATEFUL!).
|
|
|
|
*
|
|
|
|
* MBCS version 2 added:
|
|
|
|
* unassigned and illegal action codes have U+fffe and U+ffff
|
|
|
|
* instead of unused bits; this is useful for _MBCS_SINGLE_SIMPLE_GET_NEXT_BMP()
|
|
|
|
*
|
|
|
|
* Converting from Unicode to codepage bytes --------------------------------***
|
|
|
|
*
|
|
|
|
* The conversion data structure for fromUnicode is designed for the known
|
|
|
|
* structure of Unicode. It maps from 21-bit code points (0..0x10ffff) to
|
|
|
|
* a sequence of 1..4 bytes, in addition to a flag that indicates if there is
|
|
|
|
* a roundtrip mapping.
|
|
|
|
*
|
|
|
|
* The lookup is done with a 3-stage trie, using 11/6/4 bits for stage 1/2/3
|
|
|
|
* like in the character properties table.
|
|
|
|
* The beginning of the trie is at offsetFromUTable, the beginning of stage 3
|
|
|
|
* with the resulting bytes is at offsetFromUBytes.
|
|
|
|
*
|
|
|
|
* Beginning with version 4, single-byte codepages have a significantly different
|
|
|
|
* trie compared to other codepages.
|
|
|
|
* In all cases, the entry in stage 1 is directly the index of the block of
|
|
|
|
* 64 entries in stage 2.
|
|
|
|
*
|
|
|
|
* Single-byte lookup:
|
|
|
|
*
|
|
|
|
* Stage 2 only contains 16-bit indexes directly to the 16-blocks in stage 3.
|
|
|
|
* Stage 3 contains one 16-bit word per result:
|
|
|
|
* Bits 15..8 indicate the kind of result:
|
|
|
|
* f roundtrip result
|
|
|
|
* c fallback result from private-use code point
|
|
|
|
* 8 fallback result from other code points
|
|
|
|
* 0 unassigned
|
|
|
|
* Bits 7..0 contain the codepage byte. A zero byte is always possible.
|
|
|
|
*
|
|
|
|
* In version 4.3, the runtime code can build an sbcsIndex for a utf8Friendly
|
|
|
|
* file. For 2-byte UTF-8 byte sequences and some 3-byte sequences the lookup
|
|
|
|
* becomes a 2-stage (single-index) trie lookup with 6 bits for stage 3.
|
|
|
|
* ASCII code points can be looked up with a linear array access into stage 3.
|
|
|
|
* See maxFastUChar and other details in ucnvmbcs.h.
|
|
|
|
*
|
|
|
|
* Multi-byte lookup:
|
|
|
|
*
|
|
|
|
* Stage 2 contains a 32-bit word for each 16-block in stage 3:
|
|
|
|
* Bits 31..16 contain flags for which stage 3 entries contain roundtrip results
|
|
|
|
* test: MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c)
|
|
|
|
* If this test is false, then a non-zero result will be interpreted as
|
|
|
|
* a fallback mapping.
|
|
|
|
* Bits 15..0 contain the index to stage 3, which must be multiplied by 16*(bytes per char)
|
|
|
|
*
|
|
|
|
* Stage 3 contains 2, 3, or 4 bytes per result.
|
|
|
|
* 2 or 4 bytes are stored as uint16_t/uint32_t in platform endianness,
|
|
|
|
* while 3 bytes are stored as bytes in big-endian order.
|
|
|
|
* Leading zero bytes are ignored, and the number of bytes is counted.
|
|
|
|
* A zero byte mapping result is possible as a roundtrip result.
|
|
|
|
* For some output types, the actual result is processed from this;
|
|
|
|
* see ucnv_MBCSFromUnicodeWithOffsets().
|
|
|
|
*
|
|
|
|
* Note that stage 1 always contains 0x440=1088 entries (0x440==0x110000>>10),
|
|
|
|
* or (version 3 and up) for BMP-only codepages, it contains 64 entries.
|
|
|
|
*
|
|
|
|
* In version 4.3, a utf8Friendly file contains an mbcsIndex table.
|
|
|
|
* For 2-byte UTF-8 byte sequences and most 3-byte sequences the lookup
|
|
|
|
* becomes a 2-stage (single-index) trie lookup with 6 bits for stage 3.
|
|
|
|
* ASCII code points can be looked up with a linear array access into stage 3.
|
|
|
|
* See maxFastUChar, mbcsIndex and other details in ucnvmbcs.h.
|
|
|
|
*
|
|
|
|
* In version 3, stage 2 blocks may overlap by multiples of the multiplier
|
|
|
|
* for compaction.
|
|
|
|
* In version 4, stage 2 blocks (and for single-byte codepages, stage 3 blocks)
|
|
|
|
* may overlap by any number of entries.
|
|
|
|
*
|
|
|
|
* MBCS version 2 added:
|
|
|
|
* the converter checks for known output types, which allows
|
|
|
|
* adding new ones without crashing an unaware converter
|
|
|
|
*/
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Callback from ucnv_MBCSEnumToUnicode(), takes 32 mappings from
|
|
|
|
* consecutive sequences of bytes, starting from the one encoded in value,
|
|
|
|
* to Unicode code points. (Multiple mappings to reduce per-function call overhead.)
|
|
|
|
* Does not currently support m:n mappings or reverse fallbacks.
|
|
|
|
* This function will not be called for sequences of bytes with leading zeros.
|
|
|
|
*
|
|
|
|
* @param context an opaque pointer, as passed into ucnv_MBCSEnumToUnicode()
|
|
|
|
* @param value contains 1..4 bytes of the first byte sequence, right-aligned
|
|
|
|
* @param codePoints resulting Unicode code points, or negative if a byte sequence does
|
|
|
|
* not map to anything
|
2022-10-28 06:11:55 +00:00
|
|
|
* @return true to continue enumeration, false to stop
|
2020-08-11 09:10:23 +00:00
|
|
|
*/
|
|
|
|
typedef UBool U_CALLCONV
|
|
|
|
UConverterEnumToUCallback(const void *context, uint32_t value, UChar32 codePoints[32]);
|
|
|
|
|
|
|
|
static void U_CALLCONV
|
|
|
|
ucnv_MBCSLoad(UConverterSharedData *sharedData,
|
|
|
|
UConverterLoadArgs *pArgs,
|
|
|
|
const uint8_t *raw,
|
|
|
|
UErrorCode *pErrorCode);
|
|
|
|
|
|
|
|
static void U_CALLCONV
|
|
|
|
ucnv_MBCSUnload(UConverterSharedData *sharedData);
|
|
|
|
|
|
|
|
static void U_CALLCONV
|
|
|
|
ucnv_MBCSOpen(UConverter *cnv,
|
|
|
|
UConverterLoadArgs *pArgs,
|
|
|
|
UErrorCode *pErrorCode);
|
|
|
|
|
|
|
|
static UChar32 U_CALLCONV
|
|
|
|
ucnv_MBCSGetNextUChar(UConverterToUnicodeArgs *pArgs,
|
|
|
|
UErrorCode *pErrorCode);
|
|
|
|
|
|
|
|
static void U_CALLCONV
|
|
|
|
ucnv_MBCSGetStarters(const UConverter* cnv,
|
|
|
|
UBool starters[256],
|
|
|
|
UErrorCode *pErrorCode);
|
|
|
|
|
|
|
|
U_CDECL_BEGIN
|
|
|
|
static const char* U_CALLCONV
|
|
|
|
ucnv_MBCSGetName(const UConverter *cnv);
|
|
|
|
U_CDECL_END
|
|
|
|
|
|
|
|
static void U_CALLCONV
|
|
|
|
ucnv_MBCSWriteSub(UConverterFromUnicodeArgs *pArgs,
|
|
|
|
int32_t offsetIndex,
|
|
|
|
UErrorCode *pErrorCode);
|
|
|
|
|
|
|
|
static UChar32 U_CALLCONV
|
|
|
|
ucnv_MBCSGetNextUChar(UConverterToUnicodeArgs *pArgs,
|
|
|
|
UErrorCode *pErrorCode);
|
|
|
|
|
|
|
|
static void U_CALLCONV
|
|
|
|
ucnv_SBCSFromUTF8(UConverterFromUnicodeArgs *pFromUArgs,
|
|
|
|
UConverterToUnicodeArgs *pToUArgs,
|
|
|
|
UErrorCode *pErrorCode);
|
|
|
|
|
|
|
|
static void U_CALLCONV
|
|
|
|
ucnv_MBCSGetUnicodeSet(const UConverter *cnv,
|
|
|
|
const USetAdder *sa,
|
|
|
|
UConverterUnicodeSet which,
|
|
|
|
UErrorCode *pErrorCode);
|
|
|
|
|
|
|
|
static void U_CALLCONV
|
|
|
|
ucnv_DBCSFromUTF8(UConverterFromUnicodeArgs *pFromUArgs,
|
|
|
|
UConverterToUnicodeArgs *pToUArgs,
|
|
|
|
UErrorCode *pErrorCode);
|
|
|
|
|
|
|
|
static const UConverterImpl _SBCSUTF8Impl={
|
|
|
|
UCNV_MBCS,
|
|
|
|
|
|
|
|
ucnv_MBCSLoad,
|
|
|
|
ucnv_MBCSUnload,
|
|
|
|
|
|
|
|
ucnv_MBCSOpen,
|
2023-05-23 00:05:01 +00:00
|
|
|
nullptr,
|
|
|
|
nullptr,
|
2020-08-11 09:10:23 +00:00
|
|
|
|
|
|
|
ucnv_MBCSToUnicodeWithOffsets,
|
|
|
|
ucnv_MBCSToUnicodeWithOffsets,
|
|
|
|
ucnv_MBCSFromUnicodeWithOffsets,
|
|
|
|
ucnv_MBCSFromUnicodeWithOffsets,
|
|
|
|
ucnv_MBCSGetNextUChar,
|
|
|
|
|
|
|
|
ucnv_MBCSGetStarters,
|
|
|
|
ucnv_MBCSGetName,
|
|
|
|
ucnv_MBCSWriteSub,
|
2023-05-23 00:05:01 +00:00
|
|
|
nullptr,
|
2020-08-11 09:10:23 +00:00
|
|
|
ucnv_MBCSGetUnicodeSet,
|
|
|
|
|
2023-05-23 00:05:01 +00:00
|
|
|
nullptr,
|
2020-08-11 09:10:23 +00:00
|
|
|
ucnv_SBCSFromUTF8
|
|
|
|
};
|
|
|
|
|
|
|
|
static const UConverterImpl _DBCSUTF8Impl={
|
|
|
|
UCNV_MBCS,
|
|
|
|
|
|
|
|
ucnv_MBCSLoad,
|
|
|
|
ucnv_MBCSUnload,
|
|
|
|
|
|
|
|
ucnv_MBCSOpen,
|
2023-05-23 00:05:01 +00:00
|
|
|
nullptr,
|
|
|
|
nullptr,
|
2020-08-11 09:10:23 +00:00
|
|
|
|
|
|
|
ucnv_MBCSToUnicodeWithOffsets,
|
|
|
|
ucnv_MBCSToUnicodeWithOffsets,
|
|
|
|
ucnv_MBCSFromUnicodeWithOffsets,
|
|
|
|
ucnv_MBCSFromUnicodeWithOffsets,
|
|
|
|
ucnv_MBCSGetNextUChar,
|
|
|
|
|
|
|
|
ucnv_MBCSGetStarters,
|
|
|
|
ucnv_MBCSGetName,
|
|
|
|
ucnv_MBCSWriteSub,
|
2023-05-23 00:05:01 +00:00
|
|
|
nullptr,
|
2020-08-11 09:10:23 +00:00
|
|
|
ucnv_MBCSGetUnicodeSet,
|
|
|
|
|
2023-05-23 00:05:01 +00:00
|
|
|
nullptr,
|
2020-08-11 09:10:23 +00:00
|
|
|
ucnv_DBCSFromUTF8
|
|
|
|
};
|
|
|
|
|
|
|
|
static const UConverterImpl _MBCSImpl={
|
|
|
|
UCNV_MBCS,
|
|
|
|
|
|
|
|
ucnv_MBCSLoad,
|
|
|
|
ucnv_MBCSUnload,
|
|
|
|
|
|
|
|
ucnv_MBCSOpen,
|
2023-05-23 00:05:01 +00:00
|
|
|
nullptr,
|
|
|
|
nullptr,
|
2020-08-11 09:10:23 +00:00
|
|
|
|
|
|
|
ucnv_MBCSToUnicodeWithOffsets,
|
|
|
|
ucnv_MBCSToUnicodeWithOffsets,
|
|
|
|
ucnv_MBCSFromUnicodeWithOffsets,
|
|
|
|
ucnv_MBCSFromUnicodeWithOffsets,
|
|
|
|
ucnv_MBCSGetNextUChar,
|
|
|
|
|
|
|
|
ucnv_MBCSGetStarters,
|
|
|
|
ucnv_MBCSGetName,
|
|
|
|
ucnv_MBCSWriteSub,
|
2023-05-23 00:05:01 +00:00
|
|
|
nullptr,
|
2020-08-11 09:10:23 +00:00
|
|
|
ucnv_MBCSGetUnicodeSet,
|
2023-05-23 00:05:01 +00:00
|
|
|
nullptr,
|
|
|
|
nullptr
|
2020-08-11 09:10:23 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
/* Static data is in tools/makeconv/ucnvstat.c for data-based
|
|
|
|
* converters. Be sure to update it as well.
|
|
|
|
*/
|
|
|
|
|
|
|
|
const UConverterSharedData _MBCSData={
|
|
|
|
sizeof(UConverterSharedData), 1,
|
2023-05-23 00:05:01 +00:00
|
|
|
nullptr, nullptr, false, true, &_MBCSImpl,
|
2020-08-11 09:10:23 +00:00
|
|
|
0, UCNV_MBCS_TABLE_INITIALIZER
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
/* GB 18030 data ------------------------------------------------------------ */
|
|
|
|
|
|
|
|
/* helper macros for linear values for GB 18030 four-byte sequences */
|
|
|
|
#define LINEAR_18030(a, b, c, d) ((((a)*10+(b))*126L+(c))*10L+(d))
|
|
|
|
|
|
|
|
#define LINEAR_18030_BASE LINEAR_18030(0x81, 0x30, 0x81, 0x30)
|
|
|
|
|
|
|
|
#define LINEAR(x) LINEAR_18030(x>>24, (x>>16)&0xff, (x>>8)&0xff, x&0xff)
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Some ranges of GB 18030 where both the Unicode code points and the
|
|
|
|
* GB four-byte sequences are contiguous and are handled algorithmically by
|
|
|
|
* the special callback functions below.
|
|
|
|
* The values are start & end of Unicode & GB codes.
|
|
|
|
*
|
|
|
|
* Note that single surrogates are not mapped by GB 18030
|
|
|
|
* as of the re-released mapping tables from 2000-nov-30.
|
|
|
|
*/
|
|
|
|
static const uint32_t
|
|
|
|
gb18030Ranges[14][4]={
|
|
|
|
{0x10000, 0x10FFFF, LINEAR(0x90308130), LINEAR(0xE3329A35)},
|
|
|
|
{0x9FA6, 0xD7FF, LINEAR(0x82358F33), LINEAR(0x8336C738)},
|
|
|
|
{0x0452, 0x1E3E, LINEAR(0x8130D330), LINEAR(0x8135F436)},
|
|
|
|
{0x1E40, 0x200F, LINEAR(0x8135F438), LINEAR(0x8136A531)},
|
|
|
|
{0xE865, 0xF92B, LINEAR(0x8336D030), LINEAR(0x84308534)},
|
|
|
|
{0x2643, 0x2E80, LINEAR(0x8137A839), LINEAR(0x8138FD38)},
|
|
|
|
{0xFA2A, 0xFE2F, LINEAR(0x84309C38), LINEAR(0x84318537)},
|
|
|
|
{0x3CE1, 0x4055, LINEAR(0x8231D438), LINEAR(0x8232AF32)},
|
|
|
|
{0x361B, 0x3917, LINEAR(0x8230A633), LINEAR(0x8230F237)},
|
|
|
|
{0x49B8, 0x4C76, LINEAR(0x8234A131), LINEAR(0x8234E733)},
|
|
|
|
{0x4160, 0x4336, LINEAR(0x8232C937), LINEAR(0x8232F837)},
|
|
|
|
{0x478E, 0x4946, LINEAR(0x8233E838), LINEAR(0x82349638)},
|
|
|
|
{0x44D7, 0x464B, LINEAR(0x8233A339), LINEAR(0x8233C931)},
|
|
|
|
{0xFFE6, 0xFFFF, LINEAR(0x8431A234), LINEAR(0x8431A439)}
|
|
|
|
};
|
|
|
|
|
|
|
|
/* bit flag for UConverter.options indicating GB 18030 special handling */
|
|
|
|
#define _MBCS_OPTION_GB18030 0x8000
|
|
|
|
|
|
|
|
/* bit flag for UConverter.options indicating KEIS,JEF,JIF special handling */
|
|
|
|
#define _MBCS_OPTION_KEIS 0x01000
|
|
|
|
#define _MBCS_OPTION_JEF 0x02000
|
|
|
|
#define _MBCS_OPTION_JIPS 0x04000
|
|
|
|
|
|
|
|
#define KEIS_SO_CHAR_1 0x0A
|
|
|
|
#define KEIS_SO_CHAR_2 0x42
|
|
|
|
#define KEIS_SI_CHAR_1 0x0A
|
|
|
|
#define KEIS_SI_CHAR_2 0x41
|
|
|
|
|
|
|
|
#define JEF_SO_CHAR 0x28
|
|
|
|
#define JEF_SI_CHAR 0x29
|
|
|
|
|
|
|
|
#define JIPS_SO_CHAR_1 0x1A
|
|
|
|
#define JIPS_SO_CHAR_2 0x70
|
|
|
|
#define JIPS_SI_CHAR_1 0x1A
|
|
|
|
#define JIPS_SI_CHAR_2 0x71
|
|
|
|
|
|
|
|
enum SISO_Option {
|
|
|
|
SI,
|
|
|
|
SO
|
|
|
|
};
|
|
|
|
typedef enum SISO_Option SISO_Option;
|
|
|
|
|
|
|
|
static int32_t getSISOBytes(SISO_Option option, uint32_t cnvOption, uint8_t *value) {
|
|
|
|
int32_t SISOLength = 0;
|
|
|
|
|
|
|
|
switch (option) {
|
|
|
|
case SI:
|
|
|
|
if ((cnvOption&_MBCS_OPTION_KEIS)!=0) {
|
|
|
|
value[0] = KEIS_SI_CHAR_1;
|
|
|
|
value[1] = KEIS_SI_CHAR_2;
|
|
|
|
SISOLength = 2;
|
|
|
|
} else if ((cnvOption&_MBCS_OPTION_JEF)!=0) {
|
|
|
|
value[0] = JEF_SI_CHAR;
|
|
|
|
SISOLength = 1;
|
|
|
|
} else if ((cnvOption&_MBCS_OPTION_JIPS)!=0) {
|
|
|
|
value[0] = JIPS_SI_CHAR_1;
|
|
|
|
value[1] = JIPS_SI_CHAR_2;
|
|
|
|
SISOLength = 2;
|
|
|
|
} else {
|
|
|
|
value[0] = UCNV_SI;
|
|
|
|
SISOLength = 1;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case SO:
|
|
|
|
if ((cnvOption&_MBCS_OPTION_KEIS)!=0) {
|
|
|
|
value[0] = KEIS_SO_CHAR_1;
|
|
|
|
value[1] = KEIS_SO_CHAR_2;
|
|
|
|
SISOLength = 2;
|
|
|
|
} else if ((cnvOption&_MBCS_OPTION_JEF)!=0) {
|
|
|
|
value[0] = JEF_SO_CHAR;
|
|
|
|
SISOLength = 1;
|
|
|
|
} else if ((cnvOption&_MBCS_OPTION_JIPS)!=0) {
|
|
|
|
value[0] = JIPS_SO_CHAR_1;
|
|
|
|
value[1] = JIPS_SO_CHAR_2;
|
|
|
|
SISOLength = 2;
|
|
|
|
} else {
|
|
|
|
value[0] = UCNV_SO;
|
|
|
|
SISOLength = 1;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
/* Should never happen. */
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
return SISOLength;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Miscellaneous ------------------------------------------------------------ */
|
|
|
|
|
|
|
|
/* similar to ucnv_MBCSGetNextUChar() but recursive */
|
|
|
|
static UBool
|
|
|
|
enumToU(UConverterMBCSTable *mbcsTable, int8_t stateProps[],
|
|
|
|
int32_t state, uint32_t offset,
|
|
|
|
uint32_t value,
|
|
|
|
UConverterEnumToUCallback *callback, const void *context,
|
|
|
|
UErrorCode *pErrorCode) {
|
|
|
|
UChar32 codePoints[32];
|
|
|
|
const int32_t *row;
|
|
|
|
const uint16_t *unicodeCodeUnits;
|
|
|
|
UChar32 anyCodePoints;
|
|
|
|
int32_t b, limit;
|
|
|
|
|
|
|
|
row=mbcsTable->stateTable[state];
|
|
|
|
unicodeCodeUnits=mbcsTable->unicodeCodeUnits;
|
|
|
|
|
|
|
|
value<<=8;
|
|
|
|
anyCodePoints=-1; /* becomes non-negative if there is a mapping */
|
|
|
|
|
|
|
|
b=(stateProps[state]&0x38)<<2;
|
|
|
|
if(b==0 && stateProps[state]>=0x40) {
|
|
|
|
/* skip byte sequences with leading zeros because they are not stored in the fromUnicode table */
|
|
|
|
codePoints[0]=U_SENTINEL;
|
|
|
|
b=1;
|
|
|
|
}
|
|
|
|
limit=((stateProps[state]&7)+1)<<5;
|
|
|
|
while(b<limit) {
|
|
|
|
int32_t entry=row[b];
|
|
|
|
if(MBCS_ENTRY_IS_TRANSITION(entry)) {
|
|
|
|
int32_t nextState=MBCS_ENTRY_TRANSITION_STATE(entry);
|
|
|
|
if(stateProps[nextState]>=0) {
|
|
|
|
/* recurse to a state with non-ignorable actions */
|
|
|
|
if(!enumToU(
|
|
|
|
mbcsTable, stateProps, nextState,
|
|
|
|
offset+MBCS_ENTRY_TRANSITION_OFFSET(entry),
|
|
|
|
value|(uint32_t)b,
|
|
|
|
callback, context,
|
|
|
|
pErrorCode)) {
|
2022-10-28 06:11:55 +00:00
|
|
|
return false;
|
2020-08-11 09:10:23 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
codePoints[b&0x1f]=U_SENTINEL;
|
|
|
|
} else {
|
|
|
|
UChar32 c;
|
|
|
|
int32_t action;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* An if-else-if chain provides more reliable performance for
|
|
|
|
* the most common cases compared to a switch.
|
|
|
|
*/
|
|
|
|
action=MBCS_ENTRY_FINAL_ACTION(entry);
|
|
|
|
if(action==MBCS_STATE_VALID_DIRECT_16) {
|
|
|
|
/* output BMP code point */
|
2023-05-23 00:05:01 +00:00
|
|
|
c=(char16_t)MBCS_ENTRY_FINAL_VALUE_16(entry);
|
2020-08-11 09:10:23 +00:00
|
|
|
} else if(action==MBCS_STATE_VALID_16) {
|
|
|
|
int32_t finalOffset=offset+MBCS_ENTRY_FINAL_VALUE_16(entry);
|
|
|
|
c=unicodeCodeUnits[finalOffset];
|
|
|
|
if(c<0xfffe) {
|
|
|
|
/* output BMP code point */
|
|
|
|
} else {
|
|
|
|
c=U_SENTINEL;
|
|
|
|
}
|
|
|
|
} else if(action==MBCS_STATE_VALID_16_PAIR) {
|
|
|
|
int32_t finalOffset=offset+MBCS_ENTRY_FINAL_VALUE_16(entry);
|
|
|
|
c=unicodeCodeUnits[finalOffset++];
|
|
|
|
if(c<0xd800) {
|
|
|
|
/* output BMP code point below 0xd800 */
|
|
|
|
} else if(c<=0xdbff) {
|
|
|
|
/* output roundtrip or fallback supplementary code point */
|
|
|
|
c=((c&0x3ff)<<10)+unicodeCodeUnits[finalOffset]+(0x10000-0xdc00);
|
|
|
|
} else if(c==0xe000) {
|
|
|
|
/* output roundtrip BMP code point above 0xd800 or fallback BMP code point */
|
|
|
|
c=unicodeCodeUnits[finalOffset];
|
|
|
|
} else {
|
|
|
|
c=U_SENTINEL;
|
|
|
|
}
|
|
|
|
} else if(action==MBCS_STATE_VALID_DIRECT_20) {
|
|
|
|
/* output supplementary code point */
|
|
|
|
c=(UChar32)(MBCS_ENTRY_FINAL_VALUE(entry)+0x10000);
|
|
|
|
} else {
|
|
|
|
c=U_SENTINEL;
|
|
|
|
}
|
|
|
|
|
|
|
|
codePoints[b&0x1f]=c;
|
|
|
|
anyCodePoints&=c;
|
|
|
|
}
|
|
|
|
if(((++b)&0x1f)==0) {
|
|
|
|
if(anyCodePoints>=0) {
|
|
|
|
if(!callback(context, value|(uint32_t)(b-0x20), codePoints)) {
|
2022-10-28 06:11:55 +00:00
|
|
|
return false;
|
2020-08-11 09:10:23 +00:00
|
|
|
}
|
|
|
|
anyCodePoints=-1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2022-10-28 06:11:55 +00:00
|
|
|
return true;
|
2020-08-11 09:10:23 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Only called if stateProps[state]==-1.
|
|
|
|
* A recursive call may do stateProps[state]|=0x40 if this state is the target of an
|
|
|
|
* MBCS_STATE_CHANGE_ONLY.
|
|
|
|
*/
|
|
|
|
static int8_t
|
|
|
|
getStateProp(const int32_t (*stateTable)[256], int8_t stateProps[], int state) {
|
|
|
|
const int32_t *row;
|
|
|
|
int32_t min, max, entry, nextState;
|
|
|
|
|
|
|
|
row=stateTable[state];
|
|
|
|
stateProps[state]=0;
|
|
|
|
|
|
|
|
/* find first non-ignorable state */
|
|
|
|
for(min=0;; ++min) {
|
|
|
|
entry=row[min];
|
|
|
|
nextState=MBCS_ENTRY_STATE(entry);
|
|
|
|
if(stateProps[nextState]==-1) {
|
|
|
|
getStateProp(stateTable, stateProps, nextState);
|
|
|
|
}
|
|
|
|
if(MBCS_ENTRY_IS_TRANSITION(entry)) {
|
|
|
|
if(stateProps[nextState]>=0) {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
} else if(MBCS_ENTRY_FINAL_ACTION(entry)<MBCS_STATE_UNASSIGNED) {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
if(min==0xff) {
|
|
|
|
stateProps[state]=-0x40; /* (int8_t)0xc0 */
|
|
|
|
return stateProps[state];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
stateProps[state]|=(int8_t)((min>>5)<<3);
|
|
|
|
|
|
|
|
/* find last non-ignorable state */
|
|
|
|
for(max=0xff; min<max; --max) {
|
|
|
|
entry=row[max];
|
|
|
|
nextState=MBCS_ENTRY_STATE(entry);
|
|
|
|
if(stateProps[nextState]==-1) {
|
|
|
|
getStateProp(stateTable, stateProps, nextState);
|
|
|
|
}
|
|
|
|
if(MBCS_ENTRY_IS_TRANSITION(entry)) {
|
|
|
|
if(stateProps[nextState]>=0) {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
} else if(MBCS_ENTRY_FINAL_ACTION(entry)<MBCS_STATE_UNASSIGNED) {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
stateProps[state]|=(int8_t)(max>>5);
|
|
|
|
|
|
|
|
/* recurse further and collect direct-state information */
|
|
|
|
while(min<=max) {
|
|
|
|
entry=row[min];
|
|
|
|
nextState=MBCS_ENTRY_STATE(entry);
|
|
|
|
if(stateProps[nextState]==-1) {
|
|
|
|
getStateProp(stateTable, stateProps, nextState);
|
|
|
|
}
|
|
|
|
if(MBCS_ENTRY_IS_FINAL(entry)) {
|
|
|
|
stateProps[nextState]|=0x40;
|
|
|
|
if(MBCS_ENTRY_FINAL_ACTION(entry)<=MBCS_STATE_FALLBACK_DIRECT_20) {
|
|
|
|
stateProps[state]|=0x40;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
++min;
|
|
|
|
}
|
|
|
|
return stateProps[state];
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Internal function enumerating the toUnicode data of an MBCS converter.
|
|
|
|
* Currently only used for reconstituting data for a MBCS_OPT_NO_FROM_U
|
|
|
|
* table, but could also be used for a future ucnv_getUnicodeSet() option
|
|
|
|
* that includes reverse fallbacks (after updating this function's implementation).
|
|
|
|
* Currently only handles roundtrip mappings.
|
|
|
|
* Does not currently handle extensions.
|
|
|
|
*/
|
|
|
|
static void
|
|
|
|
ucnv_MBCSEnumToUnicode(UConverterMBCSTable *mbcsTable,
|
|
|
|
UConverterEnumToUCallback *callback, const void *context,
|
|
|
|
UErrorCode *pErrorCode) {
|
|
|
|
/*
|
|
|
|
* Properties for each state, to speed up the enumeration.
|
|
|
|
* Ignorable actions are unassigned/illegal/state-change-only:
|
|
|
|
* They do not lead to mappings.
|
|
|
|
*
|
|
|
|
* Bits 7..6:
|
|
|
|
* 1 direct/initial state (stateful converters have multiple)
|
|
|
|
* 0 non-initial state with transitions or with non-ignorable result actions
|
|
|
|
* -1 final state with only ignorable actions
|
|
|
|
*
|
|
|
|
* Bits 5..3:
|
|
|
|
* The lowest byte value with non-ignorable actions is
|
|
|
|
* value<<5 (rounded down).
|
|
|
|
*
|
|
|
|
* Bits 2..0:
|
|
|
|
* The highest byte value with non-ignorable actions is
|
|
|
|
* (value<<5)&0x1f (rounded up).
|
|
|
|
*/
|
|
|
|
int8_t stateProps[MBCS_MAX_STATE_COUNT];
|
|
|
|
int32_t state;
|
|
|
|
|
|
|
|
uprv_memset(stateProps, -1, sizeof(stateProps));
|
|
|
|
|
|
|
|
/* recurse from state 0 and set all stateProps */
|
|
|
|
getStateProp(mbcsTable->stateTable, stateProps, 0);
|
|
|
|
|
|
|
|
for(state=0; state<mbcsTable->countStates; ++state) {
|
|
|
|
/*if(stateProps[state]==-1) {
|
|
|
|
printf("unused/unreachable <icu:state> %d\n", state);
|
|
|
|
}*/
|
|
|
|
if(stateProps[state]>=0x40) {
|
|
|
|
/* start from each direct state */
|
|
|
|
enumToU(
|
|
|
|
mbcsTable, stateProps, state, 0, 0,
|
|
|
|
callback, context,
|
|
|
|
pErrorCode);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
U_CFUNC void
|
|
|
|
ucnv_MBCSGetFilteredUnicodeSetForUnicode(const UConverterSharedData *sharedData,
|
|
|
|
const USetAdder *sa,
|
|
|
|
UConverterUnicodeSet which,
|
|
|
|
UConverterSetFilter filter,
|
|
|
|
UErrorCode *pErrorCode) {
|
|
|
|
const UConverterMBCSTable *mbcsTable;
|
|
|
|
const uint16_t *table;
|
|
|
|
|
|
|
|
uint32_t st3;
|
|
|
|
uint16_t st1, maxStage1, st2;
|
|
|
|
|
|
|
|
UChar32 c;
|
|
|
|
|
|
|
|
/* enumerate the from-Unicode trie table */
|
|
|
|
mbcsTable=&sharedData->mbcs;
|
|
|
|
table=mbcsTable->fromUnicodeTable;
|
|
|
|
if(mbcsTable->unicodeMask&UCNV_HAS_SUPPLEMENTARY) {
|
|
|
|
maxStage1=0x440;
|
|
|
|
} else {
|
|
|
|
maxStage1=0x40;
|
|
|
|
}
|
|
|
|
|
|
|
|
c=0; /* keep track of the current code point while enumerating */
|
|
|
|
|
|
|
|
if(mbcsTable->outputType==MBCS_OUTPUT_1) {
|
|
|
|
const uint16_t *stage2, *stage3, *results;
|
|
|
|
uint16_t minValue;
|
|
|
|
|
|
|
|
results=(const uint16_t *)mbcsTable->fromUnicodeBytes;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Set a threshold variable for selecting which mappings to use.
|
|
|
|
* See ucnv_MBCSSingleFromBMPWithOffsets() and
|
|
|
|
* MBCS_SINGLE_RESULT_FROM_U() for details.
|
|
|
|
*/
|
|
|
|
if(which==UCNV_ROUNDTRIP_SET) {
|
|
|
|
/* use only roundtrips */
|
|
|
|
minValue=0xf00;
|
|
|
|
} else /* UCNV_ROUNDTRIP_AND_FALLBACK_SET */ {
|
|
|
|
/* use all roundtrip and fallback results */
|
|
|
|
minValue=0x800;
|
|
|
|
}
|
|
|
|
|
|
|
|
for(st1=0; st1<maxStage1; ++st1) {
|
|
|
|
st2=table[st1];
|
|
|
|
if(st2>maxStage1) {
|
|
|
|
stage2=table+st2;
|
|
|
|
for(st2=0; st2<64; ++st2) {
|
|
|
|
if((st3=stage2[st2])!=0) {
|
|
|
|
/* read the stage 3 block */
|
|
|
|
stage3=results+st3;
|
|
|
|
|
|
|
|
do {
|
|
|
|
if(*stage3++>=minValue) {
|
|
|
|
sa->add(sa->set, c);
|
|
|
|
}
|
|
|
|
} while((++c&0xf)!=0);
|
|
|
|
} else {
|
|
|
|
c+=16; /* empty stage 3 block */
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
c+=1024; /* empty stage 2 block */
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
const uint32_t *stage2;
|
|
|
|
const uint8_t *stage3, *bytes;
|
|
|
|
uint32_t st3Multiplier;
|
|
|
|
uint32_t value;
|
|
|
|
UBool useFallback;
|
|
|
|
|
|
|
|
bytes=mbcsTable->fromUnicodeBytes;
|
|
|
|
|
|
|
|
useFallback=(UBool)(which==UCNV_ROUNDTRIP_AND_FALLBACK_SET);
|
|
|
|
|
|
|
|
switch(mbcsTable->outputType) {
|
|
|
|
case MBCS_OUTPUT_3:
|
|
|
|
case MBCS_OUTPUT_4_EUC:
|
|
|
|
st3Multiplier=3;
|
|
|
|
break;
|
|
|
|
case MBCS_OUTPUT_4:
|
|
|
|
st3Multiplier=4;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
st3Multiplier=2;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
for(st1=0; st1<maxStage1; ++st1) {
|
|
|
|
st2=table[st1];
|
|
|
|
if(st2>(maxStage1>>1)) {
|
|
|
|
stage2=(const uint32_t *)table+st2;
|
|
|
|
for(st2=0; st2<64; ++st2) {
|
|
|
|
if((st3=stage2[st2])!=0) {
|
|
|
|
/* read the stage 3 block */
|
|
|
|
stage3=bytes+st3Multiplier*16*(uint32_t)(uint16_t)st3;
|
|
|
|
|
|
|
|
/* get the roundtrip flags for the stage 3 block */
|
|
|
|
st3>>=16;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Add code points for which the roundtrip flag is set,
|
|
|
|
* or which map to non-zero bytes if we use fallbacks.
|
|
|
|
* See ucnv_MBCSFromUnicodeWithOffsets() for details.
|
|
|
|
*/
|
|
|
|
switch(filter) {
|
|
|
|
case UCNV_SET_FILTER_NONE:
|
|
|
|
do {
|
|
|
|
if(st3&1) {
|
|
|
|
sa->add(sa->set, c);
|
|
|
|
stage3+=st3Multiplier;
|
|
|
|
} else if(useFallback) {
|
|
|
|
uint8_t b=0;
|
|
|
|
switch(st3Multiplier) {
|
|
|
|
case 4:
|
|
|
|
b|=*stage3++;
|
|
|
|
U_FALLTHROUGH;
|
|
|
|
case 3:
|
|
|
|
b|=*stage3++;
|
|
|
|
U_FALLTHROUGH;
|
|
|
|
case 2:
|
|
|
|
b|=stage3[0]|stage3[1];
|
|
|
|
stage3+=2;
|
|
|
|
U_FALLTHROUGH;
|
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
if(b!=0) {
|
|
|
|
sa->add(sa->set, c);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
st3>>=1;
|
|
|
|
} while((++c&0xf)!=0);
|
|
|
|
break;
|
|
|
|
case UCNV_SET_FILTER_DBCS_ONLY:
|
|
|
|
/* Ignore single-byte results (<0x100). */
|
|
|
|
do {
|
|
|
|
if(((st3&1)!=0 || useFallback) && *((const uint16_t *)stage3)>=0x100) {
|
|
|
|
sa->add(sa->set, c);
|
|
|
|
}
|
|
|
|
st3>>=1;
|
|
|
|
stage3+=2; /* +=st3Multiplier */
|
|
|
|
} while((++c&0xf)!=0);
|
|
|
|
break;
|
|
|
|
case UCNV_SET_FILTER_2022_CN:
|
|
|
|
/* Only add code points that map to CNS 11643 planes 1 & 2 for non-EXT ISO-2022-CN. */
|
|
|
|
do {
|
|
|
|
if(((st3&1)!=0 || useFallback) && ((value=*stage3)==0x81 || value==0x82)) {
|
|
|
|
sa->add(sa->set, c);
|
|
|
|
}
|
|
|
|
st3>>=1;
|
|
|
|
stage3+=3; /* +=st3Multiplier */
|
|
|
|
} while((++c&0xf)!=0);
|
|
|
|
break;
|
|
|
|
case UCNV_SET_FILTER_SJIS:
|
|
|
|
/* Only add code points that map to Shift-JIS codes corresponding to JIS X 0208. */
|
|
|
|
do {
|
|
|
|
if(((st3&1)!=0 || useFallback) && (value=*((const uint16_t *)stage3))>=0x8140 && value<=0xeffc) {
|
|
|
|
sa->add(sa->set, c);
|
|
|
|
}
|
|
|
|
st3>>=1;
|
|
|
|
stage3+=2; /* +=st3Multiplier */
|
|
|
|
} while((++c&0xf)!=0);
|
|
|
|
break;
|
|
|
|
case UCNV_SET_FILTER_GR94DBCS:
|
|
|
|
/* Only add code points that map to ISO 2022 GR 94 DBCS codes (each byte A1..FE). */
|
|
|
|
do {
|
|
|
|
if( ((st3&1)!=0 || useFallback) &&
|
|
|
|
(uint16_t)((value=*((const uint16_t *)stage3)) - 0xa1a1)<=(0xfefe - 0xa1a1) &&
|
|
|
|
(uint8_t)(value-0xa1)<=(0xfe - 0xa1)
|
|
|
|
) {
|
|
|
|
sa->add(sa->set, c);
|
|
|
|
}
|
|
|
|
st3>>=1;
|
|
|
|
stage3+=2; /* +=st3Multiplier */
|
|
|
|
} while((++c&0xf)!=0);
|
|
|
|
break;
|
|
|
|
case UCNV_SET_FILTER_HZ:
|
|
|
|
/* Only add code points that are suitable for HZ DBCS (lead byte A1..FD). */
|
|
|
|
do {
|
|
|
|
if( ((st3&1)!=0 || useFallback) &&
|
|
|
|
(uint16_t)((value=*((const uint16_t *)stage3))-0xa1a1)<=(0xfdfe - 0xa1a1) &&
|
|
|
|
(uint8_t)(value-0xa1)<=(0xfe - 0xa1)
|
|
|
|
) {
|
|
|
|
sa->add(sa->set, c);
|
|
|
|
}
|
|
|
|
st3>>=1;
|
|
|
|
stage3+=2; /* +=st3Multiplier */
|
|
|
|
} while((++c&0xf)!=0);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
*pErrorCode=U_INTERNAL_PROGRAM_ERROR;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
c+=16; /* empty stage 3 block */
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
c+=1024; /* empty stage 2 block */
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
ucnv_extGetUnicodeSet(sharedData, sa, which, filter, pErrorCode);
|
|
|
|
}
|
|
|
|
|
|
|
|
U_CFUNC void
|
|
|
|
ucnv_MBCSGetUnicodeSetForUnicode(const UConverterSharedData *sharedData,
|
|
|
|
const USetAdder *sa,
|
|
|
|
UConverterUnicodeSet which,
|
|
|
|
UErrorCode *pErrorCode) {
|
|
|
|
ucnv_MBCSGetFilteredUnicodeSetForUnicode(
|
|
|
|
sharedData, sa, which,
|
|
|
|
sharedData->mbcs.outputType==MBCS_OUTPUT_DBCS_ONLY ?
|
|
|
|
UCNV_SET_FILTER_DBCS_ONLY :
|
|
|
|
UCNV_SET_FILTER_NONE,
|
|
|
|
pErrorCode);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void U_CALLCONV
|
|
|
|
ucnv_MBCSGetUnicodeSet(const UConverter *cnv,
|
|
|
|
const USetAdder *sa,
|
|
|
|
UConverterUnicodeSet which,
|
|
|
|
UErrorCode *pErrorCode) {
|
|
|
|
if(cnv->options&_MBCS_OPTION_GB18030) {
|
|
|
|
sa->addRange(sa->set, 0, 0xd7ff);
|
|
|
|
sa->addRange(sa->set, 0xe000, 0x10ffff);
|
|
|
|
} else {
|
|
|
|
ucnv_MBCSGetUnicodeSetForUnicode(cnv->sharedData, sa, which, pErrorCode);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* conversion extensions for input not in the main table -------------------- */
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Hardcoded extension handling for GB 18030.
|
|
|
|
* Definition of LINEAR macros and gb18030Ranges see near the beginning of the file.
|
|
|
|
*
|
|
|
|
* In the future, conversion extensions may handle m:n mappings and delta tables,
|
2021-10-28 06:15:28 +00:00
|
|
|
* see https://htmlpreview.github.io/?https://github.com/unicode-org/icu-docs/blob/main/design/conversion/conversion_extensions.html
|
2020-08-11 09:10:23 +00:00
|
|
|
*
|
|
|
|
* If an input character cannot be mapped, then these functions set an error
|
|
|
|
* code. The framework will then call the callback function.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* @return if(U_FAILURE) return the code point for cnv->fromUChar32
|
|
|
|
* else return 0 after output has been written to the target
|
|
|
|
*/
|
|
|
|
static UChar32
|
|
|
|
_extFromU(UConverter *cnv, const UConverterSharedData *sharedData,
|
|
|
|
UChar32 cp,
|
2023-05-23 00:05:01 +00:00
|
|
|
const char16_t **source, const char16_t *sourceLimit,
|
2020-08-11 09:10:23 +00:00
|
|
|
uint8_t **target, const uint8_t *targetLimit,
|
|
|
|
int32_t **offsets, int32_t sourceIndex,
|
|
|
|
UBool flush,
|
|
|
|
UErrorCode *pErrorCode) {
|
|
|
|
const int32_t *cx;
|
|
|
|
|
2022-10-28 06:11:55 +00:00
|
|
|
cnv->useSubChar1=false;
|
2020-08-11 09:10:23 +00:00
|
|
|
|
2023-05-23 00:05:01 +00:00
|
|
|
if( (cx=sharedData->mbcs.extIndexes)!=nullptr &&
|
2020-08-11 09:10:23 +00:00
|
|
|
ucnv_extInitialMatchFromU(
|
|
|
|
cnv, cx,
|
|
|
|
cp, source, sourceLimit,
|
|
|
|
(char **)target, (char *)targetLimit,
|
|
|
|
offsets, sourceIndex,
|
|
|
|
flush,
|
|
|
|
pErrorCode)
|
|
|
|
) {
|
|
|
|
return 0; /* an extension mapping handled the input */
|
|
|
|
}
|
|
|
|
|
|
|
|
/* GB 18030 */
|
|
|
|
if((cnv->options&_MBCS_OPTION_GB18030)!=0) {
|
|
|
|
const uint32_t *range;
|
|
|
|
int32_t i;
|
|
|
|
|
|
|
|
range=gb18030Ranges[0];
|
|
|
|
for(i=0; i<UPRV_LENGTHOF(gb18030Ranges); range+=4, ++i) {
|
|
|
|
if(range[0]<=(uint32_t)cp && (uint32_t)cp<=range[1]) {
|
|
|
|
/* found the Unicode code point, output the four-byte sequence for it */
|
|
|
|
uint32_t linear;
|
|
|
|
char bytes[4];
|
|
|
|
|
|
|
|
/* get the linear value of the first GB 18030 code in this range */
|
|
|
|
linear=range[2]-LINEAR_18030_BASE;
|
|
|
|
|
|
|
|
/* add the offset from the beginning of the range */
|
|
|
|
linear+=((uint32_t)cp-range[0]);
|
|
|
|
|
|
|
|
/* turn this into a four-byte sequence */
|
|
|
|
bytes[3]=(char)(0x30+linear%10); linear/=10;
|
|
|
|
bytes[2]=(char)(0x81+linear%126); linear/=126;
|
|
|
|
bytes[1]=(char)(0x30+linear%10); linear/=10;
|
|
|
|
bytes[0]=(char)(0x81+linear);
|
|
|
|
|
|
|
|
/* output this sequence */
|
|
|
|
ucnv_fromUWriteBytes(cnv,
|
|
|
|
bytes, 4, (char **)target, (char *)targetLimit,
|
|
|
|
offsets, sourceIndex, pErrorCode);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* no mapping */
|
|
|
|
*pErrorCode=U_INVALID_CHAR_FOUND;
|
|
|
|
return cp;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Input sequence: cnv->toUBytes[0..length[
|
|
|
|
* @return if(U_FAILURE) return the length (toULength, byteIndex) for the input
|
|
|
|
* else return 0 after output has been written to the target
|
|
|
|
*/
|
|
|
|
static int8_t
|
|
|
|
_extToU(UConverter *cnv, const UConverterSharedData *sharedData,
|
|
|
|
int8_t length,
|
|
|
|
const uint8_t **source, const uint8_t *sourceLimit,
|
2023-05-23 00:05:01 +00:00
|
|
|
char16_t **target, const char16_t *targetLimit,
|
2020-08-11 09:10:23 +00:00
|
|
|
int32_t **offsets, int32_t sourceIndex,
|
|
|
|
UBool flush,
|
|
|
|
UErrorCode *pErrorCode) {
|
|
|
|
const int32_t *cx;
|
|
|
|
|
2023-05-23 00:05:01 +00:00
|
|
|
if( (cx=sharedData->mbcs.extIndexes)!=nullptr &&
|
2020-08-11 09:10:23 +00:00
|
|
|
ucnv_extInitialMatchToU(
|
|
|
|
cnv, cx,
|
|
|
|
length, (const char **)source, (const char *)sourceLimit,
|
|
|
|
target, targetLimit,
|
|
|
|
offsets, sourceIndex,
|
|
|
|
flush,
|
|
|
|
pErrorCode)
|
|
|
|
) {
|
|
|
|
return 0; /* an extension mapping handled the input */
|
|
|
|
}
|
|
|
|
|
|
|
|
/* GB 18030 */
|
|
|
|
if(length==4 && (cnv->options&_MBCS_OPTION_GB18030)!=0) {
|
|
|
|
const uint32_t *range;
|
|
|
|
uint32_t linear;
|
|
|
|
int32_t i;
|
|
|
|
|
|
|
|
linear=LINEAR_18030(cnv->toUBytes[0], cnv->toUBytes[1], cnv->toUBytes[2], cnv->toUBytes[3]);
|
|
|
|
range=gb18030Ranges[0];
|
|
|
|
for(i=0; i<UPRV_LENGTHOF(gb18030Ranges); range+=4, ++i) {
|
|
|
|
if(range[2]<=linear && linear<=range[3]) {
|
|
|
|
/* found the sequence, output the Unicode code point for it */
|
|
|
|
*pErrorCode=U_ZERO_ERROR;
|
|
|
|
|
|
|
|
/* add the linear difference between the input and start sequences to the start code point */
|
|
|
|
linear=range[0]+(linear-range[2]);
|
|
|
|
|
|
|
|
/* output this code point */
|
|
|
|
ucnv_toUWriteCodePoint(cnv, linear, target, targetLimit, offsets, sourceIndex, pErrorCode);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* no mapping */
|
|
|
|
*pErrorCode=U_INVALID_CHAR_FOUND;
|
|
|
|
return length;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* EBCDIC swap LF<->NL ------------------------------------------------------ */
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This code modifies a standard EBCDIC<->Unicode mapping table for
|
|
|
|
* OS/390 (z/OS) Unix System Services (Open Edition).
|
|
|
|
* The difference is in the mapping of Line Feed and New Line control codes:
|
|
|
|
* Standard EBCDIC maps
|
|
|
|
*
|
|
|
|
* <U000A> \x25 |0
|
|
|
|
* <U0085> \x15 |0
|
|
|
|
*
|
|
|
|
* but OS/390 USS EBCDIC swaps the control codes for LF and NL,
|
|
|
|
* mapping
|
|
|
|
*
|
|
|
|
* <U000A> \x15 |0
|
|
|
|
* <U0085> \x25 |0
|
|
|
|
*
|
|
|
|
* This code modifies a loaded standard EBCDIC<->Unicode mapping table
|
|
|
|
* by copying it into allocated memory and swapping the LF and NL values.
|
|
|
|
* It allows to support the same EBCDIC charset in both versions without
|
|
|
|
* duplicating the entire installed table.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* standard EBCDIC codes */
|
|
|
|
#define EBCDIC_LF 0x25
|
|
|
|
#define EBCDIC_NL 0x15
|
|
|
|
|
|
|
|
/* standard EBCDIC codes with roundtrip flag as stored in Unicode-to-single-byte tables */
|
|
|
|
#define EBCDIC_RT_LF 0xf25
|
|
|
|
#define EBCDIC_RT_NL 0xf15
|
|
|
|
|
|
|
|
/* Unicode code points */
|
|
|
|
#define U_LF 0x0a
|
|
|
|
#define U_NL 0x85
|
|
|
|
|
|
|
|
static UBool
|
|
|
|
_EBCDICSwapLFNL(UConverterSharedData *sharedData, UErrorCode *pErrorCode) {
|
|
|
|
UConverterMBCSTable *mbcsTable;
|
|
|
|
|
|
|
|
const uint16_t *table, *results;
|
|
|
|
const uint8_t *bytes;
|
|
|
|
|
|
|
|
int32_t (*newStateTable)[256];
|
|
|
|
uint16_t *newResults;
|
|
|
|
uint8_t *p;
|
|
|
|
char *name;
|
|
|
|
|
|
|
|
uint32_t stage2Entry;
|
|
|
|
uint32_t size, sizeofFromUBytes;
|
|
|
|
|
|
|
|
mbcsTable=&sharedData->mbcs;
|
|
|
|
|
|
|
|
table=mbcsTable->fromUnicodeTable;
|
|
|
|
bytes=mbcsTable->fromUnicodeBytes;
|
|
|
|
results=(const uint16_t *)bytes;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Check that this is an EBCDIC table with SBCS portion -
|
|
|
|
* SBCS or EBCDIC_STATEFUL with standard EBCDIC LF and NL mappings.
|
|
|
|
*
|
|
|
|
* If not, ignore the option. Options are always ignored if they do not apply.
|
|
|
|
*/
|
|
|
|
if(!(
|
|
|
|
(mbcsTable->outputType==MBCS_OUTPUT_1 || mbcsTable->outputType==MBCS_OUTPUT_2_SISO) &&
|
|
|
|
mbcsTable->stateTable[0][EBCDIC_LF]==MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, U_LF) &&
|
|
|
|
mbcsTable->stateTable[0][EBCDIC_NL]==MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, U_NL)
|
|
|
|
)) {
|
2022-10-28 06:11:55 +00:00
|
|
|
return false;
|
2020-08-11 09:10:23 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
if(mbcsTable->outputType==MBCS_OUTPUT_1) {
|
|
|
|
if(!(
|
|
|
|
EBCDIC_RT_LF==MBCS_SINGLE_RESULT_FROM_U(table, results, U_LF) &&
|
|
|
|
EBCDIC_RT_NL==MBCS_SINGLE_RESULT_FROM_U(table, results, U_NL)
|
|
|
|
)) {
|
2022-10-28 06:11:55 +00:00
|
|
|
return false;
|
2020-08-11 09:10:23 +00:00
|
|
|
}
|
|
|
|
} else /* MBCS_OUTPUT_2_SISO */ {
|
|
|
|
stage2Entry=MBCS_STAGE_2_FROM_U(table, U_LF);
|
|
|
|
if(!(
|
|
|
|
MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, U_LF)!=0 &&
|
|
|
|
EBCDIC_LF==MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, U_LF)
|
|
|
|
)) {
|
2022-10-28 06:11:55 +00:00
|
|
|
return false;
|
2020-08-11 09:10:23 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
stage2Entry=MBCS_STAGE_2_FROM_U(table, U_NL);
|
|
|
|
if(!(
|
|
|
|
MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, U_NL)!=0 &&
|
|
|
|
EBCDIC_NL==MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, U_NL)
|
|
|
|
)) {
|
2022-10-28 06:11:55 +00:00
|
|
|
return false;
|
2020-08-11 09:10:23 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if(mbcsTable->fromUBytesLength>0) {
|
|
|
|
/*
|
|
|
|
* We _know_ the number of bytes in the fromUnicodeBytes array
|
|
|
|
* starting with header.version 4.1.
|
|
|
|
*/
|
|
|
|
sizeofFromUBytes=mbcsTable->fromUBytesLength;
|
|
|
|
} else {
|
|
|
|
/*
|
|
|
|
* Otherwise:
|
|
|
|
* There used to be code to enumerate the fromUnicode
|
|
|
|
* trie and find the highest entry, but it was removed in ICU 3.2
|
|
|
|
* because it was not tested and caused a low code coverage number.
|
|
|
|
* See Jitterbug 3674.
|
|
|
|
* This affects only some .cnv file formats with a header.version
|
|
|
|
* below 4.1, and only when swaplfnl is requested.
|
|
|
|
*
|
|
|
|
* ucnvmbcs.c revision 1.99 is the last one with the
|
|
|
|
* ucnv_MBCSSizeofFromUBytes() function.
|
|
|
|
*/
|
|
|
|
*pErrorCode=U_INVALID_FORMAT_ERROR;
|
2022-10-28 06:11:55 +00:00
|
|
|
return false;
|
2020-08-11 09:10:23 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The table has an appropriate format.
|
|
|
|
* Allocate and build
|
|
|
|
* - a modified to-Unicode state table
|
|
|
|
* - a modified from-Unicode output array
|
|
|
|
* - a converter name string with the swap option appended
|
|
|
|
*/
|
|
|
|
size=
|
|
|
|
mbcsTable->countStates*1024+
|
|
|
|
sizeofFromUBytes+
|
|
|
|
UCNV_MAX_CONVERTER_NAME_LENGTH+20;
|
|
|
|
p=(uint8_t *)uprv_malloc(size);
|
2023-05-23 00:05:01 +00:00
|
|
|
if(p==nullptr) {
|
2020-08-11 09:10:23 +00:00
|
|
|
*pErrorCode=U_MEMORY_ALLOCATION_ERROR;
|
2022-10-28 06:11:55 +00:00
|
|
|
return false;
|
2020-08-11 09:10:23 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/* copy and modify the to-Unicode state table */
|
|
|
|
newStateTable=(int32_t (*)[256])p;
|
|
|
|
uprv_memcpy(newStateTable, mbcsTable->stateTable, mbcsTable->countStates*1024);
|
|
|
|
|
|
|
|
newStateTable[0][EBCDIC_LF]=MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, U_NL);
|
|
|
|
newStateTable[0][EBCDIC_NL]=MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, U_LF);
|
|
|
|
|
|
|
|
/* copy and modify the from-Unicode result table */
|
|
|
|
newResults=(uint16_t *)newStateTable[mbcsTable->countStates];
|
|
|
|
uprv_memcpy(newResults, bytes, sizeofFromUBytes);
|
|
|
|
|
|
|
|
/* conveniently, the table access macros work on the left side of expressions */
|
|
|
|
if(mbcsTable->outputType==MBCS_OUTPUT_1) {
|
|
|
|
MBCS_SINGLE_RESULT_FROM_U(table, newResults, U_LF)=EBCDIC_RT_NL;
|
|
|
|
MBCS_SINGLE_RESULT_FROM_U(table, newResults, U_NL)=EBCDIC_RT_LF;
|
|
|
|
} else /* MBCS_OUTPUT_2_SISO */ {
|
|
|
|
stage2Entry=MBCS_STAGE_2_FROM_U(table, U_LF);
|
|
|
|
MBCS_VALUE_2_FROM_STAGE_2(newResults, stage2Entry, U_LF)=EBCDIC_NL;
|
|
|
|
|
|
|
|
stage2Entry=MBCS_STAGE_2_FROM_U(table, U_NL);
|
|
|
|
MBCS_VALUE_2_FROM_STAGE_2(newResults, stage2Entry, U_NL)=EBCDIC_LF;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* set the canonical converter name */
|
|
|
|
name=(char *)newResults+sizeofFromUBytes;
|
|
|
|
uprv_strcpy(name, sharedData->staticData->name);
|
|
|
|
uprv_strcat(name, UCNV_SWAP_LFNL_OPTION_STRING);
|
|
|
|
|
|
|
|
/* set the pointers */
|
2023-05-23 00:05:01 +00:00
|
|
|
icu::umtx_lock(nullptr);
|
|
|
|
if(mbcsTable->swapLFNLStateTable==nullptr) {
|
2020-08-11 09:10:23 +00:00
|
|
|
mbcsTable->swapLFNLStateTable=newStateTable;
|
|
|
|
mbcsTable->swapLFNLFromUnicodeBytes=(uint8_t *)newResults;
|
|
|
|
mbcsTable->swapLFNLName=name;
|
|
|
|
|
2023-05-23 00:05:01 +00:00
|
|
|
newStateTable=nullptr;
|
2020-08-11 09:10:23 +00:00
|
|
|
}
|
2023-05-23 00:05:01 +00:00
|
|
|
icu::umtx_unlock(nullptr);
|
2020-08-11 09:10:23 +00:00
|
|
|
|
|
|
|
/* release the allocated memory if another thread beat us to it */
|
2023-05-23 00:05:01 +00:00
|
|
|
if(newStateTable!=nullptr) {
|
2020-08-11 09:10:23 +00:00
|
|
|
uprv_free(newStateTable);
|
|
|
|
}
|
2022-10-28 06:11:55 +00:00
|
|
|
return true;
|
2020-08-11 09:10:23 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/* reconstitute omitted fromUnicode data ------------------------------------ */
|
|
|
|
|
|
|
|
/* for details, compare with genmbcs.c MBCSAddFromUnicode() and transformEUC() */
|
|
|
|
static UBool U_CALLCONV
|
|
|
|
writeStage3Roundtrip(const void *context, uint32_t value, UChar32 codePoints[32]) {
|
|
|
|
UConverterMBCSTable *mbcsTable=(UConverterMBCSTable *)context;
|
|
|
|
const uint16_t *table;
|
|
|
|
uint32_t *stage2;
|
|
|
|
uint8_t *bytes, *p;
|
|
|
|
UChar32 c;
|
|
|
|
int32_t i, st3;
|
|
|
|
|
|
|
|
table=mbcsTable->fromUnicodeTable;
|
|
|
|
bytes=(uint8_t *)mbcsTable->fromUnicodeBytes;
|
|
|
|
|
|
|
|
/* for EUC outputTypes, modify the value like genmbcs.c's transformEUC() */
|
|
|
|
switch(mbcsTable->outputType) {
|
|
|
|
case MBCS_OUTPUT_3_EUC:
|
|
|
|
if(value<=0xffff) {
|
|
|
|
/* short sequences are stored directly */
|
|
|
|
/* code set 0 or 1 */
|
|
|
|
} else if(value<=0x8effff) {
|
|
|
|
/* code set 2 */
|
|
|
|
value&=0x7fff;
|
|
|
|
} else /* first byte is 0x8f */ {
|
|
|
|
/* code set 3 */
|
|
|
|
value&=0xff7f;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case MBCS_OUTPUT_4_EUC:
|
|
|
|
if(value<=0xffffff) {
|
|
|
|
/* short sequences are stored directly */
|
|
|
|
/* code set 0 or 1 */
|
|
|
|
} else if(value<=0x8effffff) {
|
|
|
|
/* code set 2 */
|
|
|
|
value&=0x7fffff;
|
|
|
|
} else /* first byte is 0x8f */ {
|
|
|
|
/* code set 3 */
|
|
|
|
value&=0xff7fff;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
for(i=0; i<=0x1f; ++value, ++i) {
|
|
|
|
c=codePoints[i];
|
|
|
|
if(c<0) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* locate the stage 2 & 3 data */
|
|
|
|
stage2=((uint32_t *)table)+table[c>>10]+((c>>4)&0x3f);
|
|
|
|
p=bytes;
|
|
|
|
st3=(int32_t)(uint16_t)*stage2*16+(c&0xf);
|
|
|
|
|
|
|
|
/* write the codepage bytes into stage 3 */
|
|
|
|
switch(mbcsTable->outputType) {
|
|
|
|
case MBCS_OUTPUT_3:
|
|
|
|
case MBCS_OUTPUT_4_EUC:
|
|
|
|
p+=st3*3;
|
|
|
|
p[0]=(uint8_t)(value>>16);
|
|
|
|
p[1]=(uint8_t)(value>>8);
|
|
|
|
p[2]=(uint8_t)value;
|
|
|
|
break;
|
|
|
|
case MBCS_OUTPUT_4:
|
|
|
|
((uint32_t *)p)[st3]=value;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
/* 2 bytes per character */
|
|
|
|
((uint16_t *)p)[st3]=(uint16_t)value;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* set the roundtrip flag */
|
|
|
|
*stage2|=(1UL<<(16+(c&0xf)));
|
|
|
|
}
|
2022-10-28 06:11:55 +00:00
|
|
|
return true;
|
2020-08-11 09:10:23 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
reconstituteData(UConverterMBCSTable *mbcsTable,
|
|
|
|
uint32_t stage1Length, uint32_t stage2Length,
|
|
|
|
uint32_t fullStage2Length, /* lengths are numbers of units, not bytes */
|
|
|
|
UErrorCode *pErrorCode) {
|
|
|
|
uint16_t *stage1;
|
|
|
|
uint32_t *stage2;
|
|
|
|
uint32_t dataLength=stage1Length*2+fullStage2Length*4+mbcsTable->fromUBytesLength;
|
|
|
|
mbcsTable->reconstitutedData=(uint8_t *)uprv_malloc(dataLength);
|
2023-05-23 00:05:01 +00:00
|
|
|
if(mbcsTable->reconstitutedData==nullptr) {
|
2020-08-11 09:10:23 +00:00
|
|
|
*pErrorCode=U_MEMORY_ALLOCATION_ERROR;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
uprv_memset(mbcsTable->reconstitutedData, 0, dataLength);
|
|
|
|
|
|
|
|
/* copy existing data and reroute the pointers */
|
|
|
|
stage1=(uint16_t *)mbcsTable->reconstitutedData;
|
|
|
|
uprv_memcpy(stage1, mbcsTable->fromUnicodeTable, stage1Length*2);
|
|
|
|
|
|
|
|
stage2=(uint32_t *)(stage1+stage1Length);
|
|
|
|
uprv_memcpy(stage2+(fullStage2Length-stage2Length),
|
|
|
|
mbcsTable->fromUnicodeTable+stage1Length,
|
|
|
|
stage2Length*4);
|
|
|
|
|
|
|
|
mbcsTable->fromUnicodeTable=stage1;
|
|
|
|
mbcsTable->fromUnicodeBytes=(uint8_t *)(stage2+fullStage2Length);
|
|
|
|
|
|
|
|
/* indexes into stage 2 count from the bottom of the fromUnicodeTable */
|
|
|
|
stage2=(uint32_t *)stage1;
|
|
|
|
|
|
|
|
/* reconstitute the initial part of stage 2 from the mbcsIndex */
|
|
|
|
{
|
|
|
|
int32_t stageUTF8Length=((int32_t)mbcsTable->maxFastUChar+1)>>6;
|
|
|
|
int32_t stageUTF8Index=0;
|
|
|
|
int32_t st1, st2, st3, i;
|
|
|
|
|
|
|
|
for(st1=0; stageUTF8Index<stageUTF8Length; ++st1) {
|
|
|
|
st2=stage1[st1];
|
|
|
|
if(st2!=(int32_t)stage1Length/2) {
|
|
|
|
/* each stage 2 block has 64 entries corresponding to 16 entries in the mbcsIndex */
|
|
|
|
for(i=0; i<16; ++i) {
|
|
|
|
st3=mbcsTable->mbcsIndex[stageUTF8Index++];
|
|
|
|
if(st3!=0) {
|
|
|
|
/* an stage 2 entry's index is per stage 3 16-block, not per stage 3 entry */
|
|
|
|
st3>>=4;
|
|
|
|
/*
|
|
|
|
* 4 stage 2 entries point to 4 consecutive stage 3 16-blocks which are
|
|
|
|
* allocated together as a single 64-block for access from the mbcsIndex
|
|
|
|
*/
|
|
|
|
stage2[st2++]=st3++;
|
|
|
|
stage2[st2++]=st3++;
|
|
|
|
stage2[st2++]=st3++;
|
|
|
|
stage2[st2++]=st3;
|
|
|
|
} else {
|
|
|
|
/* no stage 3 block, skip */
|
|
|
|
st2+=4;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
/* no stage 2 block, skip */
|
|
|
|
stageUTF8Index+=16;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* reconstitute fromUnicodeBytes with roundtrips from toUnicode data */
|
|
|
|
ucnv_MBCSEnumToUnicode(mbcsTable, writeStage3Roundtrip, mbcsTable, pErrorCode);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* MBCS setup functions ----------------------------------------------------- */
|
|
|
|
|
|
|
|
static void U_CALLCONV
|
|
|
|
ucnv_MBCSLoad(UConverterSharedData *sharedData,
|
|
|
|
UConverterLoadArgs *pArgs,
|
|
|
|
const uint8_t *raw,
|
|
|
|
UErrorCode *pErrorCode) {
|
|
|
|
UDataInfo info;
|
|
|
|
UConverterMBCSTable *mbcsTable=&sharedData->mbcs;
|
|
|
|
_MBCSHeader *header=(_MBCSHeader *)raw;
|
|
|
|
uint32_t offset;
|
|
|
|
uint32_t headerLength;
|
2022-10-28 06:11:55 +00:00
|
|
|
UBool noFromU=false;
|
2020-08-11 09:10:23 +00:00
|
|
|
|
|
|
|
if(header->version[0]==4) {
|
|
|
|
headerLength=MBCS_HEADER_V4_LENGTH;
|
|
|
|
} else if(header->version[0]==5 && header->version[1]>=3 &&
|
|
|
|
(header->options&MBCS_OPT_UNKNOWN_INCOMPATIBLE_MASK)==0) {
|
|
|
|
headerLength=header->options&MBCS_OPT_LENGTH_MASK;
|
|
|
|
noFromU=(UBool)((header->options&MBCS_OPT_NO_FROM_U)!=0);
|
|
|
|
} else {
|
|
|
|
*pErrorCode=U_INVALID_TABLE_FORMAT;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
mbcsTable->outputType=(uint8_t)header->flags;
|
|
|
|
if(noFromU && mbcsTable->outputType==MBCS_OUTPUT_1) {
|
|
|
|
*pErrorCode=U_INVALID_TABLE_FORMAT;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* extension data, header version 4.2 and higher */
|
|
|
|
offset=header->flags>>8;
|
|
|
|
if(offset!=0) {
|
|
|
|
mbcsTable->extIndexes=(const int32_t *)(raw+offset);
|
|
|
|
}
|
|
|
|
|
|
|
|
if(mbcsTable->outputType==MBCS_OUTPUT_EXT_ONLY) {
|
|
|
|
UConverterLoadArgs args=UCNV_LOAD_ARGS_INITIALIZER;
|
|
|
|
UConverterSharedData *baseSharedData;
|
|
|
|
const int32_t *extIndexes;
|
|
|
|
const char *baseName;
|
|
|
|
|
|
|
|
/* extension-only file, load the base table and set values appropriately */
|
2023-05-23 00:05:01 +00:00
|
|
|
if((extIndexes=mbcsTable->extIndexes)==nullptr) {
|
2020-08-11 09:10:23 +00:00
|
|
|
/* extension-only file without extension */
|
|
|
|
*pErrorCode=U_INVALID_TABLE_FORMAT;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
if(pArgs->nestedLoads!=1) {
|
|
|
|
/* an extension table must not be loaded as a base table */
|
|
|
|
*pErrorCode=U_INVALID_TABLE_FILE;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* load the base table */
|
|
|
|
baseName=(const char *)header+headerLength*4;
|
|
|
|
if(0==uprv_strcmp(baseName, sharedData->staticData->name)) {
|
|
|
|
/* forbid loading this same extension-only file */
|
|
|
|
*pErrorCode=U_INVALID_TABLE_FORMAT;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* TODO parse package name out of the prefix of the base name in the extension .cnv file? */
|
|
|
|
args.size=sizeof(UConverterLoadArgs);
|
|
|
|
args.nestedLoads=2;
|
|
|
|
args.onlyTestIsLoadable=pArgs->onlyTestIsLoadable;
|
|
|
|
args.reserved=pArgs->reserved;
|
|
|
|
args.options=pArgs->options;
|
|
|
|
args.pkg=pArgs->pkg;
|
|
|
|
args.name=baseName;
|
|
|
|
baseSharedData=ucnv_load(&args, pErrorCode);
|
|
|
|
if(U_FAILURE(*pErrorCode)) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
if( baseSharedData->staticData->conversionType!=UCNV_MBCS ||
|
2023-05-23 00:05:01 +00:00
|
|
|
baseSharedData->mbcs.baseSharedData!=nullptr
|
2020-08-11 09:10:23 +00:00
|
|
|
) {
|
|
|
|
ucnv_unload(baseSharedData);
|
|
|
|
*pErrorCode=U_INVALID_TABLE_FORMAT;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
if(pArgs->onlyTestIsLoadable) {
|
|
|
|
/*
|
|
|
|
* Exit as soon as we know that we can load the converter
|
|
|
|
* and the format is valid and supported.
|
|
|
|
* The worst that can happen in the following code is a memory
|
|
|
|
* allocation error.
|
|
|
|
*/
|
|
|
|
ucnv_unload(baseSharedData);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* copy the base table data */
|
|
|
|
uprv_memcpy(mbcsTable, &baseSharedData->mbcs, sizeof(UConverterMBCSTable));
|
|
|
|
|
|
|
|
/* overwrite values with relevant ones for the extension converter */
|
|
|
|
mbcsTable->baseSharedData=baseSharedData;
|
|
|
|
mbcsTable->extIndexes=extIndexes;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* It would be possible to share the swapLFNL data with a base converter,
|
|
|
|
* but the generated name would have to be different, and the memory
|
|
|
|
* would have to be free'd only once.
|
|
|
|
* It is easier to just create the data for the extension converter
|
|
|
|
* separately when it is requested.
|
|
|
|
*/
|
2023-05-23 00:05:01 +00:00
|
|
|
mbcsTable->swapLFNLStateTable=nullptr;
|
|
|
|
mbcsTable->swapLFNLFromUnicodeBytes=nullptr;
|
|
|
|
mbcsTable->swapLFNLName=nullptr;
|
2020-08-11 09:10:23 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* The reconstitutedData must be deleted only when the base converter
|
|
|
|
* is unloaded.
|
|
|
|
*/
|
2023-05-23 00:05:01 +00:00
|
|
|
mbcsTable->reconstitutedData=nullptr;
|
2020-08-11 09:10:23 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Set a special, runtime-only outputType if the extension converter
|
|
|
|
* is a DBCS version of a base converter that also maps single bytes.
|
|
|
|
*/
|
|
|
|
if( sharedData->staticData->conversionType==UCNV_DBCS ||
|
|
|
|
(sharedData->staticData->conversionType==UCNV_MBCS &&
|
|
|
|
sharedData->staticData->minBytesPerChar>=2)
|
|
|
|
) {
|
|
|
|
if(baseSharedData->mbcs.outputType==MBCS_OUTPUT_2_SISO) {
|
|
|
|
/* the base converter is SI/SO-stateful */
|
|
|
|
int32_t entry;
|
|
|
|
|
|
|
|
/* get the dbcs state from the state table entry for SO=0x0e */
|
|
|
|
entry=mbcsTable->stateTable[0][0xe];
|
|
|
|
if( MBCS_ENTRY_IS_FINAL(entry) &&
|
|
|
|
MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_CHANGE_ONLY &&
|
|
|
|
MBCS_ENTRY_FINAL_STATE(entry)!=0
|
|
|
|
) {
|
|
|
|
mbcsTable->dbcsOnlyState=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry);
|
|
|
|
|
|
|
|
mbcsTable->outputType=MBCS_OUTPUT_DBCS_ONLY;
|
|
|
|
}
|
|
|
|
} else if(
|
|
|
|
baseSharedData->staticData->conversionType==UCNV_MBCS &&
|
|
|
|
baseSharedData->staticData->minBytesPerChar==1 &&
|
|
|
|
baseSharedData->staticData->maxBytesPerChar==2 &&
|
|
|
|
mbcsTable->countStates<=127
|
|
|
|
) {
|
|
|
|
/* non-stateful base converter, need to modify the state table */
|
|
|
|
int32_t (*newStateTable)[256];
|
|
|
|
int32_t *state;
|
|
|
|
int32_t i, count;
|
|
|
|
|
|
|
|
/* allocate a new state table and copy the base state table contents */
|
|
|
|
count=mbcsTable->countStates;
|
|
|
|
newStateTable=(int32_t (*)[256])uprv_malloc((count+1)*1024);
|
2023-05-23 00:05:01 +00:00
|
|
|
if(newStateTable==nullptr) {
|
2020-08-11 09:10:23 +00:00
|
|
|
ucnv_unload(baseSharedData);
|
|
|
|
*pErrorCode=U_MEMORY_ALLOCATION_ERROR;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
uprv_memcpy(newStateTable, mbcsTable->stateTable, count*1024);
|
|
|
|
|
|
|
|
/* change all final single-byte entries to go to a new all-illegal state */
|
|
|
|
state=newStateTable[0];
|
|
|
|
for(i=0; i<256; ++i) {
|
|
|
|
if(MBCS_ENTRY_IS_FINAL(state[i])) {
|
|
|
|
state[i]=MBCS_ENTRY_TRANSITION(count, 0);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* build the new all-illegal state */
|
|
|
|
state=newStateTable[count];
|
|
|
|
for(i=0; i<256; ++i) {
|
|
|
|
state[i]=MBCS_ENTRY_FINAL(0, MBCS_STATE_ILLEGAL, 0);
|
|
|
|
}
|
|
|
|
mbcsTable->stateTable=(const int32_t (*)[256])newStateTable;
|
|
|
|
mbcsTable->countStates=(uint8_t)(count+1);
|
2022-10-28 06:11:55 +00:00
|
|
|
mbcsTable->stateTableOwned=true;
|
2020-08-11 09:10:23 +00:00
|
|
|
|
|
|
|
mbcsTable->outputType=MBCS_OUTPUT_DBCS_ONLY;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* unlike below for files with base tables, do not get the unicodeMask
|
|
|
|
* from the sharedData; instead, use the base table's unicodeMask,
|
|
|
|
* which we copied in the memcpy above;
|
|
|
|
* this is necessary because the static data unicodeMask, especially
|
|
|
|
* the UCNV_HAS_SUPPLEMENTARY flag, is part of the base table data
|
|
|
|
*/
|
|
|
|
} else {
|
|
|
|
/* conversion file with a base table; an additional extension table is optional */
|
|
|
|
/* make sure that the output type is known */
|
|
|
|
switch(mbcsTable->outputType) {
|
|
|
|
case MBCS_OUTPUT_1:
|
|
|
|
case MBCS_OUTPUT_2:
|
|
|
|
case MBCS_OUTPUT_3:
|
|
|
|
case MBCS_OUTPUT_4:
|
|
|
|
case MBCS_OUTPUT_3_EUC:
|
|
|
|
case MBCS_OUTPUT_4_EUC:
|
|
|
|
case MBCS_OUTPUT_2_SISO:
|
|
|
|
/* OK */
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
*pErrorCode=U_INVALID_TABLE_FORMAT;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
if(pArgs->onlyTestIsLoadable) {
|
|
|
|
/*
|
|
|
|
* Exit as soon as we know that we can load the converter
|
|
|
|
* and the format is valid and supported.
|
|
|
|
* The worst that can happen in the following code is a memory
|
|
|
|
* allocation error.
|
|
|
|
*/
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
mbcsTable->countStates=(uint8_t)header->countStates;
|
|
|
|
mbcsTable->countToUFallbacks=header->countToUFallbacks;
|
|
|
|
mbcsTable->stateTable=(const int32_t (*)[256])(raw+headerLength*4);
|
|
|
|
mbcsTable->toUFallbacks=(const _MBCSToUFallback *)(mbcsTable->stateTable+header->countStates);
|
|
|
|
mbcsTable->unicodeCodeUnits=(const uint16_t *)(raw+header->offsetToUCodeUnits);
|
|
|
|
|
|
|
|
mbcsTable->fromUnicodeTable=(const uint16_t *)(raw+header->offsetFromUTable);
|
|
|
|
mbcsTable->fromUnicodeBytes=(const uint8_t *)(raw+header->offsetFromUBytes);
|
|
|
|
mbcsTable->fromUBytesLength=header->fromUBytesLength;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* converter versions 6.1 and up contain a unicodeMask that is
|
|
|
|
* used here to select the most efficient function implementations
|
|
|
|
*/
|
|
|
|
info.size=sizeof(UDataInfo);
|
|
|
|
udata_getInfo((UDataMemory *)sharedData->dataMemory, &info);
|
|
|
|
if(info.formatVersion[0]>6 || (info.formatVersion[0]==6 && info.formatVersion[1]>=1)) {
|
|
|
|
/* mask off possible future extensions to be safe */
|
|
|
|
mbcsTable->unicodeMask=(uint8_t)(sharedData->staticData->unicodeMask&3);
|
|
|
|
} else {
|
|
|
|
/* for older versions, assume worst case: contains anything possible (prevent over-optimizations) */
|
|
|
|
mbcsTable->unicodeMask=UCNV_HAS_SUPPLEMENTARY|UCNV_HAS_SURROGATES;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* _MBCSHeader.version 4.3 adds utf8Friendly data structures.
|
|
|
|
* Check for the header version, SBCS vs. MBCS, and for whether the
|
|
|
|
* data structures are optimized for code points as high as what the
|
|
|
|
* runtime code is designed for.
|
|
|
|
* The implementation does not handle mapping tables with entries for
|
|
|
|
* unpaired surrogates.
|
|
|
|
*/
|
|
|
|
if( header->version[1]>=3 &&
|
|
|
|
(mbcsTable->unicodeMask&UCNV_HAS_SURROGATES)==0 &&
|
|
|
|
(mbcsTable->countStates==1 ?
|
|
|
|
(header->version[2]>=(SBCS_FAST_MAX>>8)) :
|
|
|
|
(header->version[2]>=(MBCS_FAST_MAX>>8))
|
|
|
|
)
|
|
|
|
) {
|
2022-10-28 06:11:55 +00:00
|
|
|
mbcsTable->utf8Friendly=true;
|
2020-08-11 09:10:23 +00:00
|
|
|
|
|
|
|
if(mbcsTable->countStates==1) {
|
|
|
|
/*
|
|
|
|
* SBCS: Stage 3 is allocated in 64-entry blocks for U+0000..SBCS_FAST_MAX or higher.
|
|
|
|
* Build a table with indexes to each block, to be used instead of
|
|
|
|
* the regular stage 1/2 table.
|
|
|
|
*/
|
|
|
|
int32_t i;
|
|
|
|
for(i=0; i<(SBCS_FAST_LIMIT>>6); ++i) {
|
|
|
|
mbcsTable->sbcsIndex[i]=mbcsTable->fromUnicodeTable[mbcsTable->fromUnicodeTable[i>>4]+((i<<2)&0x3c)];
|
|
|
|
}
|
|
|
|
/* set SBCS_FAST_MAX to reflect the reach of sbcsIndex[] even if header->version[2]>(SBCS_FAST_MAX>>8) */
|
|
|
|
mbcsTable->maxFastUChar=SBCS_FAST_MAX;
|
|
|
|
} else {
|
|
|
|
/*
|
|
|
|
* MBCS: Stage 3 is allocated in 64-entry blocks for U+0000..MBCS_FAST_MAX or higher.
|
|
|
|
* The .cnv file is prebuilt with an additional stage table with indexes
|
|
|
|
* to each block.
|
|
|
|
*/
|
|
|
|
mbcsTable->mbcsIndex=(const uint16_t *)
|
|
|
|
(mbcsTable->fromUnicodeBytes+
|
|
|
|
(noFromU ? 0 : mbcsTable->fromUBytesLength));
|
2023-05-23 00:05:01 +00:00
|
|
|
mbcsTable->maxFastUChar=(((char16_t)header->version[2])<<8)|0xff;
|
2020-08-11 09:10:23 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* calculate a bit set of 4 ASCII characters per bit that round-trip to ASCII bytes */
|
|
|
|
{
|
|
|
|
uint32_t asciiRoundtrips=0xffffffff;
|
|
|
|
int32_t i;
|
|
|
|
|
|
|
|
for(i=0; i<0x80; ++i) {
|
|
|
|
if(mbcsTable->stateTable[0][i]!=MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, i)) {
|
|
|
|
asciiRoundtrips&=~((uint32_t)1<<(i>>2));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
mbcsTable->asciiRoundtrips=asciiRoundtrips;
|
|
|
|
}
|
|
|
|
|
|
|
|
if(noFromU) {
|
|
|
|
uint32_t stage1Length=
|
|
|
|
mbcsTable->unicodeMask&UCNV_HAS_SUPPLEMENTARY ?
|
|
|
|
0x440 : 0x40;
|
|
|
|
uint32_t stage2Length=
|
|
|
|
(header->offsetFromUBytes-header->offsetFromUTable)/4-
|
|
|
|
stage1Length/2;
|
|
|
|
reconstituteData(mbcsTable, stage1Length, stage2Length, header->fullStage2Length, pErrorCode);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Set the impl pointer here so that it is set for both extension-only and base tables. */
|
|
|
|
if(mbcsTable->utf8Friendly) {
|
|
|
|
if(mbcsTable->countStates==1) {
|
|
|
|
sharedData->impl=&_SBCSUTF8Impl;
|
|
|
|
} else {
|
|
|
|
if(mbcsTable->outputType==MBCS_OUTPUT_2) {
|
|
|
|
sharedData->impl=&_DBCSUTF8Impl;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if(mbcsTable->outputType==MBCS_OUTPUT_DBCS_ONLY || mbcsTable->outputType==MBCS_OUTPUT_2_SISO) {
|
|
|
|
/*
|
|
|
|
* MBCS_OUTPUT_DBCS_ONLY: No SBCS mappings, therefore ASCII does not roundtrip.
|
|
|
|
* MBCS_OUTPUT_2_SISO: Bypass the ASCII fastpath to handle prevLength correctly.
|
|
|
|
*/
|
|
|
|
mbcsTable->asciiRoundtrips=0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void U_CALLCONV
|
|
|
|
ucnv_MBCSUnload(UConverterSharedData *sharedData) {
|
|
|
|
UConverterMBCSTable *mbcsTable=&sharedData->mbcs;
|
|
|
|
|
2023-05-23 00:05:01 +00:00
|
|
|
if(mbcsTable->swapLFNLStateTable!=nullptr) {
|
2020-08-11 09:10:23 +00:00
|
|
|
uprv_free(mbcsTable->swapLFNLStateTable);
|
|
|
|
}
|
|
|
|
if(mbcsTable->stateTableOwned) {
|
|
|
|
uprv_free((void *)mbcsTable->stateTable);
|
|
|
|
}
|
2023-05-23 00:05:01 +00:00
|
|
|
if(mbcsTable->baseSharedData!=nullptr) {
|
2020-08-11 09:10:23 +00:00
|
|
|
ucnv_unload(mbcsTable->baseSharedData);
|
|
|
|
}
|
2023-05-23 00:05:01 +00:00
|
|
|
if(mbcsTable->reconstitutedData!=nullptr) {
|
2020-08-11 09:10:23 +00:00
|
|
|
uprv_free(mbcsTable->reconstitutedData);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void U_CALLCONV
|
|
|
|
ucnv_MBCSOpen(UConverter *cnv,
|
|
|
|
UConverterLoadArgs *pArgs,
|
|
|
|
UErrorCode *pErrorCode) {
|
|
|
|
UConverterMBCSTable *mbcsTable;
|
|
|
|
const int32_t *extIndexes;
|
|
|
|
uint8_t outputType;
|
|
|
|
int8_t maxBytesPerUChar;
|
|
|
|
|
|
|
|
if(pArgs->onlyTestIsLoadable) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
mbcsTable=&cnv->sharedData->mbcs;
|
|
|
|
outputType=mbcsTable->outputType;
|
|
|
|
|
|
|
|
if(outputType==MBCS_OUTPUT_DBCS_ONLY) {
|
|
|
|
/* the swaplfnl option does not apply, remove it */
|
|
|
|
cnv->options=pArgs->options&=~UCNV_OPTION_SWAP_LFNL;
|
|
|
|
}
|
|
|
|
|
|
|
|
if((pArgs->options&UCNV_OPTION_SWAP_LFNL)!=0) {
|
|
|
|
/* do this because double-checked locking is broken */
|
|
|
|
UBool isCached;
|
|
|
|
|
2023-05-23 00:05:01 +00:00
|
|
|
icu::umtx_lock(nullptr);
|
|
|
|
isCached=mbcsTable->swapLFNLStateTable!=nullptr;
|
|
|
|
icu::umtx_unlock(nullptr);
|
2020-08-11 09:10:23 +00:00
|
|
|
|
|
|
|
if(!isCached) {
|
|
|
|
if(!_EBCDICSwapLFNL(cnv->sharedData, pErrorCode)) {
|
|
|
|
if(U_FAILURE(*pErrorCode)) {
|
|
|
|
return; /* something went wrong */
|
|
|
|
}
|
|
|
|
|
|
|
|
/* the option does not apply, remove it */
|
|
|
|
cnv->options=pArgs->options&=~UCNV_OPTION_SWAP_LFNL;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2023-05-23 00:05:01 +00:00
|
|
|
if(uprv_strstr(pArgs->name, "18030")!=nullptr) {
|
|
|
|
if(uprv_strstr(pArgs->name, "gb18030")!=nullptr || uprv_strstr(pArgs->name, "GB18030")!=nullptr) {
|
2020-08-11 09:10:23 +00:00
|
|
|
/* set a flag for GB 18030 mode, which changes the callback behavior */
|
|
|
|
cnv->options|=_MBCS_OPTION_GB18030;
|
|
|
|
}
|
2023-05-23 00:05:01 +00:00
|
|
|
} else if((uprv_strstr(pArgs->name, "KEIS")!=nullptr) || (uprv_strstr(pArgs->name, "keis")!=nullptr)) {
|
2020-08-11 09:10:23 +00:00
|
|
|
/* set a flag for KEIS converter, which changes the SI/SO character sequence */
|
|
|
|
cnv->options|=_MBCS_OPTION_KEIS;
|
2023-05-23 00:05:01 +00:00
|
|
|
} else if((uprv_strstr(pArgs->name, "JEF")!=nullptr) || (uprv_strstr(pArgs->name, "jef")!=nullptr)) {
|
2020-08-11 09:10:23 +00:00
|
|
|
/* set a flag for JEF converter, which changes the SI/SO character sequence */
|
|
|
|
cnv->options|=_MBCS_OPTION_JEF;
|
2023-05-23 00:05:01 +00:00
|
|
|
} else if((uprv_strstr(pArgs->name, "JIPS")!=nullptr) || (uprv_strstr(pArgs->name, "jips")!=nullptr)) {
|
2020-08-11 09:10:23 +00:00
|
|
|
/* set a flag for JIPS converter, which changes the SI/SO character sequence */
|
|
|
|
cnv->options|=_MBCS_OPTION_JIPS;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* fix maxBytesPerUChar depending on outputType and options etc. */
|
|
|
|
if(outputType==MBCS_OUTPUT_2_SISO) {
|
|
|
|
cnv->maxBytesPerUChar=3; /* SO+DBCS */
|
|
|
|
}
|
|
|
|
|
|
|
|
extIndexes=mbcsTable->extIndexes;
|
2023-05-23 00:05:01 +00:00
|
|
|
if(extIndexes!=nullptr) {
|
2020-08-11 09:10:23 +00:00
|
|
|
maxBytesPerUChar=(int8_t)UCNV_GET_MAX_BYTES_PER_UCHAR(extIndexes);
|
|
|
|
if(outputType==MBCS_OUTPUT_2_SISO) {
|
|
|
|
++maxBytesPerUChar; /* SO + multiple DBCS */
|
|
|
|
}
|
|
|
|
|
|
|
|
if(maxBytesPerUChar>cnv->maxBytesPerUChar) {
|
|
|
|
cnv->maxBytesPerUChar=maxBytesPerUChar;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#if 0
|
|
|
|
/*
|
|
|
|
* documentation of UConverter fields used for status
|
|
|
|
* all of these fields are (re)set to 0 by ucnv_bld.c and ucnv_reset()
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* toUnicode */
|
|
|
|
cnv->toUnicodeStatus=0; /* offset */
|
|
|
|
cnv->mode=0; /* state */
|
|
|
|
cnv->toULength=0; /* byteIndex */
|
|
|
|
|
|
|
|
/* fromUnicode */
|
|
|
|
cnv->fromUChar32=0;
|
|
|
|
cnv->fromUnicodeStatus=1; /* prevLength */
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
U_CDECL_BEGIN
|
|
|
|
|
|
|
|
static const char* U_CALLCONV
|
|
|
|
ucnv_MBCSGetName(const UConverter *cnv) {
|
2023-05-23 00:05:01 +00:00
|
|
|
if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0 && cnv->sharedData->mbcs.swapLFNLName!=nullptr) {
|
2020-08-11 09:10:23 +00:00
|
|
|
return cnv->sharedData->mbcs.swapLFNLName;
|
|
|
|
} else {
|
|
|
|
return cnv->sharedData->staticData->name;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
U_CDECL_END
|
|
|
|
|
|
|
|
|
|
|
|
/* MBCS-to-Unicode conversion functions ------------------------------------- */
|
|
|
|
|
|
|
|
static UChar32 U_CALLCONV
|
|
|
|
ucnv_MBCSGetFallback(UConverterMBCSTable *mbcsTable, uint32_t offset) {
|
|
|
|
const _MBCSToUFallback *toUFallbacks;
|
|
|
|
uint32_t i, start, limit;
|
|
|
|
|
|
|
|
limit=mbcsTable->countToUFallbacks;
|
|
|
|
if(limit>0) {
|
|
|
|
/* do a binary search for the fallback mapping */
|
|
|
|
toUFallbacks=mbcsTable->toUFallbacks;
|
|
|
|
start=0;
|
|
|
|
while(start<limit-1) {
|
|
|
|
i=(start+limit)/2;
|
|
|
|
if(offset<toUFallbacks[i].offset) {
|
|
|
|
limit=i;
|
|
|
|
} else {
|
|
|
|
start=i;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* did we really find it? */
|
|
|
|
if(offset==toUFallbacks[start].offset) {
|
|
|
|
return toUFallbacks[start].codePoint;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0xfffe;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* This version of ucnv_MBCSToUnicodeWithOffsets() is optimized for single-byte, single-state codepages. */
|
|
|
|
static void
|
|
|
|
ucnv_MBCSSingleToUnicodeWithOffsets(UConverterToUnicodeArgs *pArgs,
|
|
|
|
UErrorCode *pErrorCode) {
|
|
|
|
UConverter *cnv;
|
|
|
|
const uint8_t *source, *sourceLimit;
|
2023-05-23 00:05:01 +00:00
|
|
|
char16_t *target;
|
|
|
|
const char16_t *targetLimit;
|
2020-08-11 09:10:23 +00:00
|
|
|
int32_t *offsets;
|
|
|
|
|
|
|
|
const int32_t (*stateTable)[256];
|
|
|
|
|
|
|
|
int32_t sourceIndex;
|
|
|
|
|
|
|
|
int32_t entry;
|
2023-05-23 00:05:01 +00:00
|
|
|
char16_t c;
|
2020-08-11 09:10:23 +00:00
|
|
|
uint8_t action;
|
|
|
|
|
|
|
|
/* set up the local pointers */
|
|
|
|
cnv=pArgs->converter;
|
|
|
|
source=(const uint8_t *)pArgs->source;
|
|
|
|
sourceLimit=(const uint8_t *)pArgs->sourceLimit;
|
|
|
|
target=pArgs->target;
|
|
|
|
targetLimit=pArgs->targetLimit;
|
|
|
|
offsets=pArgs->offsets;
|
|
|
|
|
|
|
|
if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
|
|
|
|
stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable;
|
|
|
|
} else {
|
|
|
|
stateTable=cnv->sharedData->mbcs.stateTable;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* sourceIndex=-1 if the current character began in the previous buffer */
|
|
|
|
sourceIndex=0;
|
|
|
|
|
|
|
|
/* conversion loop */
|
|
|
|
while(source<sourceLimit) {
|
|
|
|
/*
|
|
|
|
* This following test is to see if available input would overflow the output.
|
|
|
|
* It does not catch output of more than one code unit that
|
|
|
|
* overflows as a result of a surrogate pair or callback output
|
|
|
|
* from the last source byte.
|
|
|
|
* Therefore, those situations also test for overflows and will
|
|
|
|
* then break the loop, too.
|
|
|
|
*/
|
|
|
|
if(target>=targetLimit) {
|
|
|
|
/* target is full */
|
|
|
|
*pErrorCode=U_BUFFER_OVERFLOW_ERROR;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
entry=stateTable[0][*source++];
|
|
|
|
/* MBCS_ENTRY_IS_FINAL(entry) */
|
|
|
|
|
|
|
|
/* test the most common case first */
|
|
|
|
if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) {
|
|
|
|
/* output BMP code point */
|
2023-05-23 00:05:01 +00:00
|
|
|
*target++=(char16_t)MBCS_ENTRY_FINAL_VALUE_16(entry);
|
|
|
|
if(offsets!=nullptr) {
|
2020-08-11 09:10:23 +00:00
|
|
|
*offsets++=sourceIndex;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* normal end of action codes: prepare for a new character */
|
|
|
|
++sourceIndex;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* An if-else-if chain provides more reliable performance for
|
|
|
|
* the most common cases compared to a switch.
|
|
|
|
*/
|
|
|
|
action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
|
|
|
|
if(action==MBCS_STATE_VALID_DIRECT_20 ||
|
|
|
|
(action==MBCS_STATE_FALLBACK_DIRECT_20 && UCNV_TO_U_USE_FALLBACK(cnv))
|
|
|
|
) {
|
|
|
|
entry=MBCS_ENTRY_FINAL_VALUE(entry);
|
|
|
|
/* output surrogate pair */
|
2023-05-23 00:05:01 +00:00
|
|
|
*target++=(char16_t)(0xd800|(char16_t)(entry>>10));
|
|
|
|
if(offsets!=nullptr) {
|
2020-08-11 09:10:23 +00:00
|
|
|
*offsets++=sourceIndex;
|
|
|
|
}
|
2023-05-23 00:05:01 +00:00
|
|
|
c=(char16_t)(0xdc00|(char16_t)(entry&0x3ff));
|
2020-08-11 09:10:23 +00:00
|
|
|
if(target<targetLimit) {
|
|
|
|
*target++=c;
|
2023-05-23 00:05:01 +00:00
|
|
|
if(offsets!=nullptr) {
|
2020-08-11 09:10:23 +00:00
|
|
|
*offsets++=sourceIndex;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
/* target overflow */
|
|
|
|
cnv->UCharErrorBuffer[0]=c;
|
|
|
|
cnv->UCharErrorBufferLength=1;
|
|
|
|
*pErrorCode=U_BUFFER_OVERFLOW_ERROR;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
++sourceIndex;
|
|
|
|
continue;
|
|
|
|
} else if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
|
|
|
|
if(UCNV_TO_U_USE_FALLBACK(cnv)) {
|
|
|
|
/* output BMP code point */
|
2023-05-23 00:05:01 +00:00
|
|
|
*target++=(char16_t)MBCS_ENTRY_FINAL_VALUE_16(entry);
|
|
|
|
if(offsets!=nullptr) {
|
2020-08-11 09:10:23 +00:00
|
|
|
*offsets++=sourceIndex;
|
|
|
|
}
|
|
|
|
|
|
|
|
++sourceIndex;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
} else if(action==MBCS_STATE_UNASSIGNED) {
|
|
|
|
/* just fall through */
|
|
|
|
} else if(action==MBCS_STATE_ILLEGAL) {
|
|
|
|
/* callback(illegal) */
|
|
|
|
*pErrorCode=U_ILLEGAL_CHAR_FOUND;
|
|
|
|
} else {
|
|
|
|
/* reserved, must never occur */
|
|
|
|
++sourceIndex;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
if(U_FAILURE(*pErrorCode)) {
|
|
|
|
/* callback(illegal) */
|
|
|
|
break;
|
|
|
|
} else /* unassigned sequences indicated with byteIndex>0 */ {
|
|
|
|
/* try an extension mapping */
|
|
|
|
pArgs->source=(const char *)source;
|
|
|
|
cnv->toUBytes[0]=*(source-1);
|
|
|
|
cnv->toULength=_extToU(cnv, cnv->sharedData,
|
|
|
|
1, &source, sourceLimit,
|
|
|
|
&target, targetLimit,
|
|
|
|
&offsets, sourceIndex,
|
|
|
|
pArgs->flush,
|
|
|
|
pErrorCode);
|
|
|
|
sourceIndex+=1+(int32_t)(source-(const uint8_t *)pArgs->source);
|
|
|
|
|
|
|
|
if(U_FAILURE(*pErrorCode)) {
|
|
|
|
/* not mappable or buffer overflow */
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* write back the updated pointers */
|
|
|
|
pArgs->source=(const char *)source;
|
|
|
|
pArgs->target=target;
|
|
|
|
pArgs->offsets=offsets;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This version of ucnv_MBCSSingleToUnicodeWithOffsets() is optimized for single-byte, single-state codepages
|
|
|
|
* that only map to and from the BMP.
|
|
|
|
* In addition to single-byte optimizations, the offset calculations
|
|
|
|
* become much easier.
|
|
|
|
*/
|
|
|
|
static void
|
|
|
|
ucnv_MBCSSingleToBMPWithOffsets(UConverterToUnicodeArgs *pArgs,
|
|
|
|
UErrorCode *pErrorCode) {
|
|
|
|
UConverter *cnv;
|
|
|
|
const uint8_t *source, *sourceLimit, *lastSource;
|
2023-05-23 00:05:01 +00:00
|
|
|
char16_t *target;
|
2020-08-11 09:10:23 +00:00
|
|
|
int32_t targetCapacity, length;
|
|
|
|
int32_t *offsets;
|
|
|
|
|
|
|
|
const int32_t (*stateTable)[256];
|
|
|
|
|
|
|
|
int32_t sourceIndex;
|
|
|
|
|
|
|
|
int32_t entry;
|
|
|
|
uint8_t action;
|
|
|
|
|
|
|
|
/* set up the local pointers */
|
|
|
|
cnv=pArgs->converter;
|
|
|
|
source=(const uint8_t *)pArgs->source;
|
|
|
|
sourceLimit=(const uint8_t *)pArgs->sourceLimit;
|
|
|
|
target=pArgs->target;
|
|
|
|
targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target);
|
|
|
|
offsets=pArgs->offsets;
|
|
|
|
|
|
|
|
if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
|
|
|
|
stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable;
|
|
|
|
} else {
|
|
|
|
stateTable=cnv->sharedData->mbcs.stateTable;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* sourceIndex=-1 if the current character began in the previous buffer */
|
|
|
|
sourceIndex=0;
|
|
|
|
lastSource=source;
|
|
|
|
|
|
|
|
/*
|
2023-05-23 00:05:01 +00:00
|
|
|
* since the conversion here is 1:1 char16_t:uint8_t, we need only one counter
|
2020-08-11 09:10:23 +00:00
|
|
|
* for the minimum of the sourceLength and targetCapacity
|
|
|
|
*/
|
|
|
|
length=(int32_t)(sourceLimit-source);
|
|
|
|
if(length<targetCapacity) {
|
|
|
|
targetCapacity=length;
|
|
|
|
}
|
|
|
|
|
|
|
|
#if MBCS_UNROLL_SINGLE_TO_BMP
|
|
|
|
/* unrolling makes it faster on Pentium III/Windows 2000 */
|
|
|
|
/* unroll the loop with the most common case */
|
|
|
|
unrolled:
|
|
|
|
if(targetCapacity>=16) {
|
|
|
|
int32_t count, loops, oredEntries;
|
|
|
|
|
|
|
|
loops=count=targetCapacity>>4;
|
|
|
|
do {
|
|
|
|
oredEntries=entry=stateTable[0][*source++];
|
2023-05-23 00:05:01 +00:00
|
|
|
*target++=(char16_t)MBCS_ENTRY_FINAL_VALUE_16(entry);
|
2020-08-11 09:10:23 +00:00
|
|
|
oredEntries|=entry=stateTable[0][*source++];
|
2023-05-23 00:05:01 +00:00
|
|
|
*target++=(char16_t)MBCS_ENTRY_FINAL_VALUE_16(entry);
|
2020-08-11 09:10:23 +00:00
|
|
|
oredEntries|=entry=stateTable[0][*source++];
|
2023-05-23 00:05:01 +00:00
|
|
|
*target++=(char16_t)MBCS_ENTRY_FINAL_VALUE_16(entry);
|
2020-08-11 09:10:23 +00:00
|
|
|
oredEntries|=entry=stateTable[0][*source++];
|
2023-05-23 00:05:01 +00:00
|
|
|
*target++=(char16_t)MBCS_ENTRY_FINAL_VALUE_16(entry);
|
2020-08-11 09:10:23 +00:00
|
|
|
oredEntries|=entry=stateTable[0][*source++];
|
2023-05-23 00:05:01 +00:00
|
|
|
*target++=(char16_t)MBCS_ENTRY_FINAL_VALUE_16(entry);
|
2020-08-11 09:10:23 +00:00
|
|
|
oredEntries|=entry=stateTable[0][*source++];
|
2023-05-23 00:05:01 +00:00
|
|
|
*target++=(char16_t)MBCS_ENTRY_FINAL_VALUE_16(entry);
|
2020-08-11 09:10:23 +00:00
|
|
|
oredEntries|=entry=stateTable[0][*source++];
|
2023-05-23 00:05:01 +00:00
|
|
|
*target++=(char16_t)MBCS_ENTRY_FINAL_VALUE_16(entry);
|
2020-08-11 09:10:23 +00:00
|
|
|
oredEntries|=entry=stateTable[0][*source++];
|
2023-05-23 00:05:01 +00:00
|
|
|
*target++=(char16_t)MBCS_ENTRY_FINAL_VALUE_16(entry);
|
2020-08-11 09:10:23 +00:00
|
|
|
oredEntries|=entry=stateTable[0][*source++];
|
2023-05-23 00:05:01 +00:00
|
|
|
*target++=(char16_t)MBCS_ENTRY_FINAL_VALUE_16(entry);
|
2020-08-11 09:10:23 +00:00
|
|
|
oredEntries|=entry=stateTable[0][*source++];
|
2023-05-23 00:05:01 +00:00
|
|
|
*target++=(char16_t)MBCS_ENTRY_FINAL_VALUE_16(entry);
|
2020-08-11 09:10:23 +00:00
|
|
|
oredEntries|=entry=stateTable[0][*source++];
|
2023-05-23 00:05:01 +00:00
|
|
|
*target++=(char16_t)MBCS_ENTRY_FINAL_VALUE_16(entry);
|
2020-08-11 09:10:23 +00:00
|
|
|
oredEntries|=entry=stateTable[0][*source++];
|
2023-05-23 00:05:01 +00:00
|
|
|
*target++=(char16_t)MBCS_ENTRY_FINAL_VALUE_16(entry);
|
2020-08-11 09:10:23 +00:00
|
|
|
oredEntries|=entry=stateTable[0][*source++];
|
2023-05-23 00:05:01 +00:00
|
|
|
*target++=(char16_t)MBCS_ENTRY_FINAL_VALUE_16(entry);
|
2020-08-11 09:10:23 +00:00
|
|
|
oredEntries|=entry=stateTable[0][*source++];
|
2023-05-23 00:05:01 +00:00
|
|
|
*target++=(char16_t)MBCS_ENTRY_FINAL_VALUE_16(entry);
|
2020-08-11 09:10:23 +00:00
|
|
|
oredEntries|=entry=stateTable[0][*source++];
|
2023-05-23 00:05:01 +00:00
|
|
|
*target++=(char16_t)MBCS_ENTRY_FINAL_VALUE_16(entry);
|
2020-08-11 09:10:23 +00:00
|
|
|
oredEntries|=entry=stateTable[0][*source++];
|
2023-05-23 00:05:01 +00:00
|
|
|
*target++=(char16_t)MBCS_ENTRY_FINAL_VALUE_16(entry);
|
2020-08-11 09:10:23 +00:00
|
|
|
|
|
|
|
/* were all 16 entries really valid? */
|
|
|
|
if(!MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(oredEntries)) {
|
|
|
|
/* no, return to the first of these 16 */
|
|
|
|
source-=16;
|
|
|
|
target-=16;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
} while(--count>0);
|
|
|
|
count=loops-count;
|
|
|
|
targetCapacity-=16*count;
|
|
|
|
|
2023-05-23 00:05:01 +00:00
|
|
|
if(offsets!=nullptr) {
|
2020-08-11 09:10:23 +00:00
|
|
|
lastSource+=16*count;
|
|
|
|
while(count>0) {
|
|
|
|
*offsets++=sourceIndex++;
|
|
|
|
*offsets++=sourceIndex++;
|
|
|
|
*offsets++=sourceIndex++;
|
|
|
|
*offsets++=sourceIndex++;
|
|
|
|
*offsets++=sourceIndex++;
|
|
|
|
*offsets++=sourceIndex++;
|
|
|
|
*offsets++=sourceIndex++;
|
|
|
|
*offsets++=sourceIndex++;
|
|
|
|
*offsets++=sourceIndex++;
|
|
|
|
*offsets++=sourceIndex++;
|
|
|
|
*offsets++=sourceIndex++;
|
|
|
|
*offsets++=sourceIndex++;
|
|
|
|
*offsets++=sourceIndex++;
|
|
|
|
*offsets++=sourceIndex++;
|
|
|
|
*offsets++=sourceIndex++;
|
|
|
|
*offsets++=sourceIndex++;
|
|
|
|
--count;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* conversion loop */
|
|
|
|
while(targetCapacity > 0 && source < sourceLimit) {
|
|
|
|
entry=stateTable[0][*source++];
|
|
|
|
/* MBCS_ENTRY_IS_FINAL(entry) */
|
|
|
|
|
|
|
|
/* test the most common case first */
|
|
|
|
if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) {
|
|
|
|
/* output BMP code point */
|
2023-05-23 00:05:01 +00:00
|
|
|
*target++=(char16_t)MBCS_ENTRY_FINAL_VALUE_16(entry);
|
2020-08-11 09:10:23 +00:00
|
|
|
--targetCapacity;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* An if-else-if chain provides more reliable performance for
|
|
|
|
* the most common cases compared to a switch.
|
|
|
|
*/
|
|
|
|
action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
|
|
|
|
if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
|
|
|
|
if(UCNV_TO_U_USE_FALLBACK(cnv)) {
|
|
|
|
/* output BMP code point */
|
2023-05-23 00:05:01 +00:00
|
|
|
*target++=(char16_t)MBCS_ENTRY_FINAL_VALUE_16(entry);
|
2020-08-11 09:10:23 +00:00
|
|
|
--targetCapacity;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
} else if(action==MBCS_STATE_UNASSIGNED) {
|
|
|
|
/* just fall through */
|
|
|
|
} else if(action==MBCS_STATE_ILLEGAL) {
|
|
|
|
/* callback(illegal) */
|
|
|
|
*pErrorCode=U_ILLEGAL_CHAR_FOUND;
|
|
|
|
} else {
|
|
|
|
/* reserved, must never occur */
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* set offsets since the start or the last extension */
|
2023-05-23 00:05:01 +00:00
|
|
|
if(offsets!=nullptr) {
|
2020-08-11 09:10:23 +00:00
|
|
|
int32_t count=(int32_t)(source-lastSource);
|
|
|
|
|
|
|
|
/* predecrement: do not set the offset for the callback-causing character */
|
|
|
|
while(--count>0) {
|
|
|
|
*offsets++=sourceIndex++;
|
|
|
|
}
|
|
|
|
/* offset and sourceIndex are now set for the current character */
|
|
|
|
}
|
|
|
|
|
|
|
|
if(U_FAILURE(*pErrorCode)) {
|
|
|
|
/* callback(illegal) */
|
|
|
|
break;
|
|
|
|
} else /* unassigned sequences indicated with byteIndex>0 */ {
|
|
|
|
/* try an extension mapping */
|
|
|
|
lastSource=source;
|
|
|
|
cnv->toUBytes[0]=*(source-1);
|
|
|
|
cnv->toULength=_extToU(cnv, cnv->sharedData,
|
|
|
|
1, &source, sourceLimit,
|
|
|
|
&target, pArgs->targetLimit,
|
|
|
|
&offsets, sourceIndex,
|
|
|
|
pArgs->flush,
|
|
|
|
pErrorCode);
|
|
|
|
sourceIndex+=1+(int32_t)(source-lastSource);
|
|
|
|
|
|
|
|
if(U_FAILURE(*pErrorCode)) {
|
|
|
|
/* not mappable or buffer overflow */
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* recalculate the targetCapacity after an extension mapping */
|
|
|
|
targetCapacity=(int32_t)(pArgs->targetLimit-target);
|
|
|
|
length=(int32_t)(sourceLimit-source);
|
|
|
|
if(length<targetCapacity) {
|
|
|
|
targetCapacity=length;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#if MBCS_UNROLL_SINGLE_TO_BMP
|
|
|
|
/* unrolling makes it faster on Pentium III/Windows 2000 */
|
|
|
|
goto unrolled;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
if(U_SUCCESS(*pErrorCode) && source<sourceLimit && target>=pArgs->targetLimit) {
|
|
|
|
/* target is full */
|
|
|
|
*pErrorCode=U_BUFFER_OVERFLOW_ERROR;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* set offsets since the start or the last callback */
|
2023-05-23 00:05:01 +00:00
|
|
|
if(offsets!=nullptr) {
|
2020-08-11 09:10:23 +00:00
|
|
|
size_t count=source-lastSource;
|
|
|
|
while(count>0) {
|
|
|
|
*offsets++=sourceIndex++;
|
|
|
|
--count;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* write back the updated pointers */
|
|
|
|
pArgs->source=(const char *)source;
|
|
|
|
pArgs->target=target;
|
|
|
|
pArgs->offsets=offsets;
|
|
|
|
}
|
|
|
|
|
|
|
|
static UBool
|
|
|
|
hasValidTrailBytes(const int32_t (*stateTable)[256], uint8_t state) {
|
|
|
|
const int32_t *row=stateTable[state];
|
|
|
|
int32_t b, entry;
|
|
|
|
/* First test for final entries in this state for some commonly valid byte values. */
|
|
|
|
entry=row[0xa1];
|
|
|
|
if( !MBCS_ENTRY_IS_TRANSITION(entry) &&
|
|
|
|
MBCS_ENTRY_FINAL_ACTION(entry)!=MBCS_STATE_ILLEGAL
|
|
|
|
) {
|
2022-10-28 06:11:55 +00:00
|
|
|
return true;
|
2020-08-11 09:10:23 +00:00
|
|
|
}
|
|
|
|
entry=row[0x41];
|
|
|
|
if( !MBCS_ENTRY_IS_TRANSITION(entry) &&
|
|
|
|
MBCS_ENTRY_FINAL_ACTION(entry)!=MBCS_STATE_ILLEGAL
|
|
|
|
) {
|
2022-10-28 06:11:55 +00:00
|
|
|
return true;
|
2020-08-11 09:10:23 +00:00
|
|
|
}
|
|
|
|
/* Then test for final entries in this state. */
|
|
|
|
for(b=0; b<=0xff; ++b) {
|
|
|
|
entry=row[b];
|
|
|
|
if( !MBCS_ENTRY_IS_TRANSITION(entry) &&
|
|
|
|
MBCS_ENTRY_FINAL_ACTION(entry)!=MBCS_STATE_ILLEGAL
|
|
|
|
) {
|
2022-10-28 06:11:55 +00:00
|
|
|
return true;
|
2020-08-11 09:10:23 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
/* Then recurse for transition entries. */
|
|
|
|
for(b=0; b<=0xff; ++b) {
|
|
|
|
entry=row[b];
|
|
|
|
if( MBCS_ENTRY_IS_TRANSITION(entry) &&
|
|
|
|
hasValidTrailBytes(stateTable, (uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry))
|
|
|
|
) {
|
2022-10-28 06:11:55 +00:00
|
|
|
return true;
|
2020-08-11 09:10:23 +00:00
|
|
|
}
|
|
|
|
}
|
2022-10-28 06:11:55 +00:00
|
|
|
return false;
|
2020-08-11 09:10:23 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Is byte b a single/lead byte in this state?
|
|
|
|
* Recurse for transition states, because here we don't want to say that
|
|
|
|
* b is a lead byte if all byte sequences that start with b are illegal.
|
|
|
|
*/
|
|
|
|
static UBool
|
|
|
|
isSingleOrLead(const int32_t (*stateTable)[256], uint8_t state, UBool isDBCSOnly, uint8_t b) {
|
|
|
|
const int32_t *row=stateTable[state];
|
|
|
|
int32_t entry=row[b];
|
|
|
|
if(MBCS_ENTRY_IS_TRANSITION(entry)) { /* lead byte */
|
|
|
|
return hasValidTrailBytes(stateTable, (uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry));
|
|
|
|
} else {
|
|
|
|
uint8_t action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
|
|
|
|
if(action==MBCS_STATE_CHANGE_ONLY && isDBCSOnly) {
|
2022-10-28 06:11:55 +00:00
|
|
|
return false; /* SI/SO are illegal for DBCS-only conversion */
|
2020-08-11 09:10:23 +00:00
|
|
|
} else {
|
|
|
|
return action!=MBCS_STATE_ILLEGAL;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
U_CFUNC void
|
|
|
|
ucnv_MBCSToUnicodeWithOffsets(UConverterToUnicodeArgs *pArgs,
|
|
|
|
UErrorCode *pErrorCode) {
|
|
|
|
UConverter *cnv;
|
|
|
|
const uint8_t *source, *sourceLimit;
|
2023-05-23 00:05:01 +00:00
|
|
|
char16_t *target;
|
|
|
|
const char16_t *targetLimit;
|
2020-08-11 09:10:23 +00:00
|
|
|
int32_t *offsets;
|
|
|
|
|
|
|
|
const int32_t (*stateTable)[256];
|
|
|
|
const uint16_t *unicodeCodeUnits;
|
|
|
|
|
|
|
|
uint32_t offset;
|
|
|
|
uint8_t state;
|
|
|
|
int8_t byteIndex;
|
|
|
|
uint8_t *bytes;
|
|
|
|
|
|
|
|
int32_t sourceIndex, nextSourceIndex;
|
|
|
|
|
|
|
|
int32_t entry;
|
2023-05-23 00:05:01 +00:00
|
|
|
char16_t c;
|
2020-08-11 09:10:23 +00:00
|
|
|
uint8_t action;
|
|
|
|
|
|
|
|
/* use optimized function if possible */
|
|
|
|
cnv=pArgs->converter;
|
|
|
|
|
|
|
|
if(cnv->preToULength>0) {
|
|
|
|
/*
|
|
|
|
* pass sourceIndex=-1 because we continue from an earlier buffer
|
|
|
|
* in the future, this may change with continuous offsets
|
|
|
|
*/
|
|
|
|
ucnv_extContinueMatchToU(cnv, pArgs, -1, pErrorCode);
|
|
|
|
|
|
|
|
if(U_FAILURE(*pErrorCode) || cnv->preToULength<0) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if(cnv->sharedData->mbcs.countStates==1) {
|
|
|
|
if(!(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY)) {
|
|
|
|
ucnv_MBCSSingleToBMPWithOffsets(pArgs, pErrorCode);
|
|
|
|
} else {
|
|
|
|
ucnv_MBCSSingleToUnicodeWithOffsets(pArgs, pErrorCode);
|
|
|
|
}
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* set up the local pointers */
|
|
|
|
source=(const uint8_t *)pArgs->source;
|
|
|
|
sourceLimit=(const uint8_t *)pArgs->sourceLimit;
|
|
|
|
target=pArgs->target;
|
|
|
|
targetLimit=pArgs->targetLimit;
|
|
|
|
offsets=pArgs->offsets;
|
|
|
|
|
|
|
|
if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
|
|
|
|
stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable;
|
|
|
|
} else {
|
|
|
|
stateTable=cnv->sharedData->mbcs.stateTable;
|
|
|
|
}
|
|
|
|
unicodeCodeUnits=cnv->sharedData->mbcs.unicodeCodeUnits;
|
|
|
|
|
|
|
|
/* get the converter state from UConverter */
|
|
|
|
offset=cnv->toUnicodeStatus;
|
|
|
|
byteIndex=cnv->toULength;
|
|
|
|
bytes=cnv->toUBytes;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* if we are in the SBCS state for a DBCS-only converter,
|
|
|
|
* then load the DBCS state from the MBCS data
|
|
|
|
* (dbcsOnlyState==0 if it is not a DBCS-only converter)
|
|
|
|
*/
|
|
|
|
if((state=(uint8_t)(cnv->mode))==0) {
|
|
|
|
state=cnv->sharedData->mbcs.dbcsOnlyState;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* sourceIndex=-1 if the current character began in the previous buffer */
|
|
|
|
sourceIndex=byteIndex==0 ? 0 : -1;
|
|
|
|
nextSourceIndex=0;
|
|
|
|
|
|
|
|
/* conversion loop */
|
|
|
|
while(source<sourceLimit) {
|
|
|
|
/*
|
|
|
|
* This following test is to see if available input would overflow the output.
|
|
|
|
* It does not catch output of more than one code unit that
|
|
|
|
* overflows as a result of a surrogate pair or callback output
|
|
|
|
* from the last source byte.
|
|
|
|
* Therefore, those situations also test for overflows and will
|
|
|
|
* then break the loop, too.
|
|
|
|
*/
|
|
|
|
if(target>=targetLimit) {
|
|
|
|
/* target is full */
|
|
|
|
*pErrorCode=U_BUFFER_OVERFLOW_ERROR;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
if(byteIndex==0) {
|
|
|
|
/* optimized loop for 1/2-byte input and BMP output */
|
2023-05-23 00:05:01 +00:00
|
|
|
if(offsets==nullptr) {
|
2020-08-11 09:10:23 +00:00
|
|
|
do {
|
|
|
|
entry=stateTable[state][*source];
|
|
|
|
if(MBCS_ENTRY_IS_TRANSITION(entry)) {
|
|
|
|
state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry);
|
|
|
|
offset=MBCS_ENTRY_TRANSITION_OFFSET(entry);
|
|
|
|
|
|
|
|
++source;
|
|
|
|
if( source<sourceLimit &&
|
|
|
|
MBCS_ENTRY_IS_FINAL(entry=stateTable[state][*source]) &&
|
|
|
|
MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_VALID_16 &&
|
|
|
|
(c=unicodeCodeUnits[offset+MBCS_ENTRY_FINAL_VALUE_16(entry)])<0xfffe
|
|
|
|
) {
|
|
|
|
++source;
|
|
|
|
*target++=c;
|
|
|
|
state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */
|
|
|
|
offset=0;
|
|
|
|
} else {
|
|
|
|
/* set the state and leave the optimized loop */
|
|
|
|
bytes[0]=*(source-1);
|
|
|
|
byteIndex=1;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) {
|
|
|
|
/* output BMP code point */
|
|
|
|
++source;
|
2023-05-23 00:05:01 +00:00
|
|
|
*target++=(char16_t)MBCS_ENTRY_FINAL_VALUE_16(entry);
|
2020-08-11 09:10:23 +00:00
|
|
|
state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */
|
|
|
|
} else {
|
|
|
|
/* leave the optimized loop */
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} while(source<sourceLimit && target<targetLimit);
|
2023-05-23 00:05:01 +00:00
|
|
|
} else /* offsets!=nullptr */ {
|
2020-08-11 09:10:23 +00:00
|
|
|
do {
|
|
|
|
entry=stateTable[state][*source];
|
|
|
|
if(MBCS_ENTRY_IS_TRANSITION(entry)) {
|
|
|
|
state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry);
|
|
|
|
offset=MBCS_ENTRY_TRANSITION_OFFSET(entry);
|
|
|
|
|
|
|
|
++source;
|
|
|
|
if( source<sourceLimit &&
|
|
|
|
MBCS_ENTRY_IS_FINAL(entry=stateTable[state][*source]) &&
|
|
|
|
MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_VALID_16 &&
|
|
|
|
(c=unicodeCodeUnits[offset+MBCS_ENTRY_FINAL_VALUE_16(entry)])<0xfffe
|
|
|
|
) {
|
|
|
|
++source;
|
|
|
|
*target++=c;
|
2023-05-23 00:05:01 +00:00
|
|
|
if(offsets!=nullptr) {
|
2020-08-11 09:10:23 +00:00
|
|
|
*offsets++=sourceIndex;
|
|
|
|
sourceIndex=(nextSourceIndex+=2);
|
|
|
|
}
|
|
|
|
state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */
|
|
|
|
offset=0;
|
|
|
|
} else {
|
|
|
|
/* set the state and leave the optimized loop */
|
|
|
|
++nextSourceIndex;
|
|
|
|
bytes[0]=*(source-1);
|
|
|
|
byteIndex=1;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) {
|
|
|
|
/* output BMP code point */
|
|
|
|
++source;
|
2023-05-23 00:05:01 +00:00
|
|
|
*target++=(char16_t)MBCS_ENTRY_FINAL_VALUE_16(entry);
|
|
|
|
if(offsets!=nullptr) {
|
2020-08-11 09:10:23 +00:00
|
|
|
*offsets++=sourceIndex;
|
|
|
|
sourceIndex=++nextSourceIndex;
|
|
|
|
}
|
|
|
|
state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */
|
|
|
|
} else {
|
|
|
|
/* leave the optimized loop */
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} while(source<sourceLimit && target<targetLimit);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* these tests and break statements could be put inside the loop
|
|
|
|
* if C had "break outerLoop" like Java
|
|
|
|
*/
|
|
|
|
if(source>=sourceLimit) {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
if(target>=targetLimit) {
|
|
|
|
/* target is full */
|
|
|
|
*pErrorCode=U_BUFFER_OVERFLOW_ERROR;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
++nextSourceIndex;
|
|
|
|
bytes[byteIndex++]=*source++;
|
|
|
|
} else /* byteIndex>0 */ {
|
|
|
|
++nextSourceIndex;
|
|
|
|
entry=stateTable[state][bytes[byteIndex++]=*source++];
|
|
|
|
}
|
|
|
|
|
|
|
|
if(MBCS_ENTRY_IS_TRANSITION(entry)) {
|
|
|
|
state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry);
|
|
|
|
offset+=MBCS_ENTRY_TRANSITION_OFFSET(entry);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* save the previous state for proper extension mapping with SI/SO-stateful converters */
|
|
|
|
cnv->mode=state;
|
|
|
|
|
|
|
|
/* set the next state early so that we can reuse the entry variable */
|
|
|
|
state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */
|
|
|
|
|
|
|
|
/*
|
|
|
|
* An if-else-if chain provides more reliable performance for
|
|
|
|
* the most common cases compared to a switch.
|
|
|
|
*/
|
|
|
|
action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
|
|
|
|
if(action==MBCS_STATE_VALID_16) {
|
|
|
|
offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
|
|
|
|
c=unicodeCodeUnits[offset];
|
|
|
|
if(c<0xfffe) {
|
|
|
|
/* output BMP code point */
|
|
|
|
*target++=c;
|
2023-05-23 00:05:01 +00:00
|
|
|
if(offsets!=nullptr) {
|
2020-08-11 09:10:23 +00:00
|
|
|
*offsets++=sourceIndex;
|
|
|
|
}
|
|
|
|
byteIndex=0;
|
|
|
|
} else if(c==0xfffe) {
|
|
|
|
if(UCNV_TO_U_USE_FALLBACK(cnv) && (entry=(int32_t)ucnv_MBCSGetFallback(&cnv->sharedData->mbcs, offset))!=0xfffe) {
|
|
|
|
/* output fallback BMP code point */
|
2023-05-23 00:05:01 +00:00
|
|
|
*target++=(char16_t)entry;
|
|
|
|
if(offsets!=nullptr) {
|
2020-08-11 09:10:23 +00:00
|
|
|
*offsets++=sourceIndex;
|
|
|
|
}
|
|
|
|
byteIndex=0;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
/* callback(illegal) */
|
|
|
|
*pErrorCode=U_ILLEGAL_CHAR_FOUND;
|
|
|
|
}
|
|
|
|
} else if(action==MBCS_STATE_VALID_DIRECT_16) {
|
|
|
|
/* output BMP code point */
|
2023-05-23 00:05:01 +00:00
|
|
|
*target++=(char16_t)MBCS_ENTRY_FINAL_VALUE_16(entry);
|
|
|
|
if(offsets!=nullptr) {
|
2020-08-11 09:10:23 +00:00
|
|
|
*offsets++=sourceIndex;
|
|
|
|
}
|
|
|
|
byteIndex=0;
|
|
|
|
} else if(action==MBCS_STATE_VALID_16_PAIR) {
|
|
|
|
offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
|
|
|
|
c=unicodeCodeUnits[offset++];
|
|
|
|
if(c<0xd800) {
|
|
|
|
/* output BMP code point below 0xd800 */
|
|
|
|
*target++=c;
|
2023-05-23 00:05:01 +00:00
|
|
|
if(offsets!=nullptr) {
|
2020-08-11 09:10:23 +00:00
|
|
|
*offsets++=sourceIndex;
|
|
|
|
}
|
|
|
|
byteIndex=0;
|
|
|
|
} else if(UCNV_TO_U_USE_FALLBACK(cnv) ? c<=0xdfff : c<=0xdbff) {
|
|
|
|
/* output roundtrip or fallback surrogate pair */
|
2023-05-23 00:05:01 +00:00
|
|
|
*target++=(char16_t)(c&0xdbff);
|
|
|
|
if(offsets!=nullptr) {
|
2020-08-11 09:10:23 +00:00
|
|
|
*offsets++=sourceIndex;
|
|
|
|
}
|
|
|
|
byteIndex=0;
|
|
|
|
if(target<targetLimit) {
|
|
|
|
*target++=unicodeCodeUnits[offset];
|
2023-05-23 00:05:01 +00:00
|
|
|
if(offsets!=nullptr) {
|
2020-08-11 09:10:23 +00:00
|
|
|
*offsets++=sourceIndex;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
/* target overflow */
|
|
|
|
cnv->UCharErrorBuffer[0]=unicodeCodeUnits[offset];
|
|
|
|
cnv->UCharErrorBufferLength=1;
|
|
|
|
*pErrorCode=U_BUFFER_OVERFLOW_ERROR;
|
|
|
|
|
|
|
|
offset=0;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
} else if(UCNV_TO_U_USE_FALLBACK(cnv) ? (c&0xfffe)==0xe000 : c==0xe000) {
|
|
|
|
/* output roundtrip BMP code point above 0xd800 or fallback BMP code point */
|
|
|
|
*target++=unicodeCodeUnits[offset];
|
2023-05-23 00:05:01 +00:00
|
|
|
if(offsets!=nullptr) {
|
2020-08-11 09:10:23 +00:00
|
|
|
*offsets++=sourceIndex;
|
|
|
|
}
|
|
|
|
byteIndex=0;
|
|
|
|
} else if(c==0xffff) {
|
|
|
|
/* callback(illegal) */
|
|
|
|
*pErrorCode=U_ILLEGAL_CHAR_FOUND;
|
|
|
|
}
|
|
|
|
} else if(action==MBCS_STATE_VALID_DIRECT_20 ||
|
|
|
|
(action==MBCS_STATE_FALLBACK_DIRECT_20 && UCNV_TO_U_USE_FALLBACK(cnv))
|
|
|
|
) {
|
|
|
|
entry=MBCS_ENTRY_FINAL_VALUE(entry);
|
|
|
|
/* output surrogate pair */
|
2023-05-23 00:05:01 +00:00
|
|
|
*target++=(char16_t)(0xd800|(char16_t)(entry>>10));
|
|
|
|
if(offsets!=nullptr) {
|
2020-08-11 09:10:23 +00:00
|
|
|
*offsets++=sourceIndex;
|
|
|
|
}
|
|
|
|
byteIndex=0;
|
2023-05-23 00:05:01 +00:00
|
|
|
c=(char16_t)(0xdc00|(char16_t)(entry&0x3ff));
|
2020-08-11 09:10:23 +00:00
|
|
|
if(target<targetLimit) {
|
|
|
|
*target++=c;
|
2023-05-23 00:05:01 +00:00
|
|
|
if(offsets!=nullptr) {
|
2020-08-11 09:10:23 +00:00
|
|
|
*offsets++=sourceIndex;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
/* target overflow */
|
|
|
|
cnv->UCharErrorBuffer[0]=c;
|
|
|
|
cnv->UCharErrorBufferLength=1;
|
|
|
|
*pErrorCode=U_BUFFER_OVERFLOW_ERROR;
|
|
|
|
|
|
|
|
offset=0;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
} else if(action==MBCS_STATE_CHANGE_ONLY) {
|
|
|
|
/*
|
|
|
|
* This serves as a state change without any output.
|
|
|
|
* It is useful for reading simple stateful encodings,
|
|
|
|
* for example using just Shift-In/Shift-Out codes.
|
|
|
|
* The 21 unused bits may later be used for more sophisticated
|
|
|
|
* state transitions.
|
|
|
|
*/
|
|
|
|
if(cnv->sharedData->mbcs.dbcsOnlyState==0) {
|
|
|
|
byteIndex=0;
|
|
|
|
} else {
|
|
|
|
/* SI/SO are illegal for DBCS-only conversion */
|
|
|
|
state=(uint8_t)(cnv->mode); /* restore the previous state */
|
|
|
|
|
|
|
|
/* callback(illegal) */
|
|
|
|
*pErrorCode=U_ILLEGAL_CHAR_FOUND;
|
|
|
|
}
|
|
|
|
} else if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
|
|
|
|
if(UCNV_TO_U_USE_FALLBACK(cnv)) {
|
|
|
|
/* output BMP code point */
|
2023-05-23 00:05:01 +00:00
|
|
|
*target++=(char16_t)MBCS_ENTRY_FINAL_VALUE_16(entry);
|
|
|
|
if(offsets!=nullptr) {
|
2020-08-11 09:10:23 +00:00
|
|
|
*offsets++=sourceIndex;
|
|
|
|
}
|
|
|
|
byteIndex=0;
|
|
|
|
}
|
|
|
|
} else if(action==MBCS_STATE_UNASSIGNED) {
|
|
|
|
/* just fall through */
|
|
|
|
} else if(action==MBCS_STATE_ILLEGAL) {
|
|
|
|
/* callback(illegal) */
|
|
|
|
*pErrorCode=U_ILLEGAL_CHAR_FOUND;
|
|
|
|
} else {
|
|
|
|
/* reserved, must never occur */
|
|
|
|
byteIndex=0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* end of action codes: prepare for a new character */
|
|
|
|
offset=0;
|
|
|
|
|
|
|
|
if(byteIndex==0) {
|
|
|
|
sourceIndex=nextSourceIndex;
|
|
|
|
} else if(U_FAILURE(*pErrorCode)) {
|
|
|
|
/* callback(illegal) */
|
|
|
|
if(byteIndex>1) {
|
|
|
|
/*
|
|
|
|
* Ticket 5691: consistent illegal sequences:
|
|
|
|
* - We include at least the first byte in the illegal sequence.
|
|
|
|
* - If any of the non-initial bytes could be the start of a character,
|
|
|
|
* we stop the illegal sequence before the first one of those.
|
|
|
|
*/
|
|
|
|
UBool isDBCSOnly=(UBool)(cnv->sharedData->mbcs.dbcsOnlyState!=0);
|
|
|
|
int8_t i;
|
|
|
|
for(i=1;
|
|
|
|
i<byteIndex && !isSingleOrLead(stateTable, state, isDBCSOnly, bytes[i]);
|
|
|
|
++i) {}
|
|
|
|
if(i<byteIndex) {
|
|
|
|
/* Back out some bytes. */
|
|
|
|
int8_t backOutDistance=byteIndex-i;
|
|
|
|
int32_t bytesFromThisBuffer=(int32_t)(source-(const uint8_t *)pArgs->source);
|
|
|
|
byteIndex=i; /* length of reported illegal byte sequence */
|
|
|
|
if(backOutDistance<=bytesFromThisBuffer) {
|
|
|
|
source-=backOutDistance;
|
|
|
|
} else {
|
|
|
|
/* Back out bytes from the previous buffer: Need to replay them. */
|
|
|
|
cnv->preToULength=(int8_t)(bytesFromThisBuffer-backOutDistance);
|
|
|
|
/* preToULength is negative! */
|
|
|
|
uprv_memcpy(cnv->preToU, bytes+i, -cnv->preToULength);
|
|
|
|
source=(const uint8_t *)pArgs->source;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
} else /* unassigned sequences indicated with byteIndex>0 */ {
|
|
|
|
/* try an extension mapping */
|
|
|
|
pArgs->source=(const char *)source;
|
|
|
|
byteIndex=_extToU(cnv, cnv->sharedData,
|
|
|
|
byteIndex, &source, sourceLimit,
|
|
|
|
&target, targetLimit,
|
|
|
|
&offsets, sourceIndex,
|
|
|
|
pArgs->flush,
|
|
|
|
pErrorCode);
|
|
|
|
sourceIndex=nextSourceIndex+=(int32_t)(source-(const uint8_t *)pArgs->source);
|
|
|
|
|
|
|
|
if(U_FAILURE(*pErrorCode)) {
|
|
|
|
/* not mappable or buffer overflow */
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* set the converter state back into UConverter */
|
|
|
|
cnv->toUnicodeStatus=offset;
|
|
|
|
cnv->mode=state;
|
|
|
|
cnv->toULength=byteIndex;
|
|
|
|
|
|
|
|
/* write back the updated pointers */
|
|
|
|
pArgs->source=(const char *)source;
|
|
|
|
pArgs->target=target;
|
|
|
|
pArgs->offsets=offsets;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This version of ucnv_MBCSGetNextUChar() is optimized for single-byte, single-state codepages.
|
|
|
|
* We still need a conversion loop in case we find reserved action codes, which are to be ignored.
|
|
|
|
*/
|
|
|
|
static UChar32
|
|
|
|
ucnv_MBCSSingleGetNextUChar(UConverterToUnicodeArgs *pArgs,
|
|
|
|
UErrorCode *pErrorCode) {
|
|
|
|
UConverter *cnv;
|
|
|
|
const int32_t (*stateTable)[256];
|
|
|
|
const uint8_t *source, *sourceLimit;
|
|
|
|
|
|
|
|
int32_t entry;
|
|
|
|
uint8_t action;
|
|
|
|
|
|
|
|
/* set up the local pointers */
|
|
|
|
cnv=pArgs->converter;
|
|
|
|
source=(const uint8_t *)pArgs->source;
|
|
|
|
sourceLimit=(const uint8_t *)pArgs->sourceLimit;
|
|
|
|
if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
|
|
|
|
stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable;
|
|
|
|
} else {
|
|
|
|
stateTable=cnv->sharedData->mbcs.stateTable;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* conversion loop */
|
|
|
|
while(source<sourceLimit) {
|
|
|
|
entry=stateTable[0][*source++];
|
|
|
|
/* MBCS_ENTRY_IS_FINAL(entry) */
|
|
|
|
|
|
|
|
/* write back the updated pointer early so that we can return directly */
|
|
|
|
pArgs->source=(const char *)source;
|
|
|
|
|
|
|
|
if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) {
|
|
|
|
/* output BMP code point */
|
2023-05-23 00:05:01 +00:00
|
|
|
return (char16_t)MBCS_ENTRY_FINAL_VALUE_16(entry);
|
2020-08-11 09:10:23 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* An if-else-if chain provides more reliable performance for
|
|
|
|
* the most common cases compared to a switch.
|
|
|
|
*/
|
|
|
|
action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
|
|
|
|
if( action==MBCS_STATE_VALID_DIRECT_20 ||
|
|
|
|
(action==MBCS_STATE_FALLBACK_DIRECT_20 && UCNV_TO_U_USE_FALLBACK(cnv))
|
|
|
|
) {
|
|
|
|
/* output supplementary code point */
|
|
|
|
return (UChar32)(MBCS_ENTRY_FINAL_VALUE(entry)+0x10000);
|
|
|
|
} else if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
|
|
|
|
if(UCNV_TO_U_USE_FALLBACK(cnv)) {
|
|
|
|
/* output BMP code point */
|
2023-05-23 00:05:01 +00:00
|
|
|
return (char16_t)MBCS_ENTRY_FINAL_VALUE_16(entry);
|
2020-08-11 09:10:23 +00:00
|
|
|
}
|
|
|
|
} else if(action==MBCS_STATE_UNASSIGNED) {
|
|
|
|
/* just fall through */
|
|
|
|
} else if(action==MBCS_STATE_ILLEGAL) {
|
|
|
|
/* callback(illegal) */
|
|
|
|
*pErrorCode=U_ILLEGAL_CHAR_FOUND;
|
|
|
|
} else {
|
|
|
|
/* reserved, must never occur */
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
if(U_FAILURE(*pErrorCode)) {
|
|
|
|
/* callback(illegal) */
|
|
|
|
break;
|
|
|
|
} else /* unassigned sequence */ {
|
|
|
|
/* defer to the generic implementation */
|
|
|
|
pArgs->source=(const char *)source-1;
|
|
|
|
return UCNV_GET_NEXT_UCHAR_USE_TO_U;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* no output because of empty input or only state changes */
|
|
|
|
*pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
|
|
|
|
return 0xffff;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Version of _MBCSToUnicodeWithOffsets() optimized for single-character
|
|
|
|
* conversion without offset handling.
|
|
|
|
*
|
|
|
|
* When a character does not have a mapping to Unicode, then we return to the
|
|
|
|
* generic ucnv_getNextUChar() code for extension/GB 18030 and error/callback
|
|
|
|
* handling.
|
|
|
|
* We also defer to the generic code in other complicated cases and have them
|
|
|
|
* ultimately handled by _MBCSToUnicodeWithOffsets() itself.
|
|
|
|
*
|
|
|
|
* All normal mappings and errors are handled here.
|
|
|
|
*/
|
|
|
|
static UChar32 U_CALLCONV
|
|
|
|
ucnv_MBCSGetNextUChar(UConverterToUnicodeArgs *pArgs,
|
|
|
|
UErrorCode *pErrorCode) {
|
|
|
|
UConverter *cnv;
|
|
|
|
const uint8_t *source, *sourceLimit, *lastSource;
|
|
|
|
|
|
|
|
const int32_t (*stateTable)[256];
|
|
|
|
const uint16_t *unicodeCodeUnits;
|
|
|
|
|
|
|
|
uint32_t offset;
|
|
|
|
uint8_t state;
|
|
|
|
|
|
|
|
int32_t entry;
|
|
|
|
UChar32 c;
|
|
|
|
uint8_t action;
|
|
|
|
|
|
|
|
/* use optimized function if possible */
|
|
|
|
cnv=pArgs->converter;
|
|
|
|
|
|
|
|
if(cnv->preToULength>0) {
|
|
|
|
/* use the generic code in ucnv_getNextUChar() to continue with a partial match */
|
|
|
|
return UCNV_GET_NEXT_UCHAR_USE_TO_U;
|
|
|
|
}
|
|
|
|
|
|
|
|
if(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SURROGATES) {
|
|
|
|
/*
|
|
|
|
* Using the generic ucnv_getNextUChar() code lets us deal correctly
|
|
|
|
* with the rare case of a codepage that maps single surrogates
|
|
|
|
* without adding the complexity to this already complicated function here.
|
|
|
|
*/
|
|
|
|
return UCNV_GET_NEXT_UCHAR_USE_TO_U;
|
|
|
|
} else if(cnv->sharedData->mbcs.countStates==1) {
|
|
|
|
return ucnv_MBCSSingleGetNextUChar(pArgs, pErrorCode);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* set up the local pointers */
|
|
|
|
source=lastSource=(const uint8_t *)pArgs->source;
|
|
|
|
sourceLimit=(const uint8_t *)pArgs->sourceLimit;
|
|
|
|
|
|
|
|
if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
|
|
|
|
stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable;
|
|
|
|
} else {
|
|
|
|
stateTable=cnv->sharedData->mbcs.stateTable;
|
|
|
|
}
|
|
|
|
unicodeCodeUnits=cnv->sharedData->mbcs.unicodeCodeUnits;
|
|
|
|
|
|
|
|
/* get the converter state from UConverter */
|
|
|
|
offset=cnv->toUnicodeStatus;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* if we are in the SBCS state for a DBCS-only converter,
|
|
|
|
* then load the DBCS state from the MBCS data
|
|
|
|
* (dbcsOnlyState==0 if it is not a DBCS-only converter)
|
|
|
|
*/
|
|
|
|
if((state=(uint8_t)(cnv->mode))==0) {
|
|
|
|
state=cnv->sharedData->mbcs.dbcsOnlyState;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* conversion loop */
|
|
|
|
c=U_SENTINEL;
|
|
|
|
while(source<sourceLimit) {
|
|
|
|
entry=stateTable[state][*source++];
|
|
|
|
if(MBCS_ENTRY_IS_TRANSITION(entry)) {
|
|
|
|
state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry);
|
|
|
|
offset+=MBCS_ENTRY_TRANSITION_OFFSET(entry);
|
|
|
|
|
|
|
|
/* optimization for 1/2-byte input and BMP output */
|
|
|
|
if( source<sourceLimit &&
|
|
|
|
MBCS_ENTRY_IS_FINAL(entry=stateTable[state][*source]) &&
|
|
|
|
MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_VALID_16 &&
|
|
|
|
(c=unicodeCodeUnits[offset+MBCS_ENTRY_FINAL_VALUE_16(entry)])<0xfffe
|
|
|
|
) {
|
|
|
|
++source;
|
|
|
|
state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */
|
|
|
|
/* output BMP code point */
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
/* save the previous state for proper extension mapping with SI/SO-stateful converters */
|
|
|
|
cnv->mode=state;
|
|
|
|
|
|
|
|
/* set the next state early so that we can reuse the entry variable */
|
|
|
|
state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */
|
|
|
|
|
|
|
|
/*
|
|
|
|
* An if-else-if chain provides more reliable performance for
|
|
|
|
* the most common cases compared to a switch.
|
|
|
|
*/
|
|
|
|
action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
|
|
|
|
if(action==MBCS_STATE_VALID_DIRECT_16) {
|
|
|
|
/* output BMP code point */
|
2023-05-23 00:05:01 +00:00
|
|
|
c=(char16_t)MBCS_ENTRY_FINAL_VALUE_16(entry);
|
2020-08-11 09:10:23 +00:00
|
|
|
break;
|
|
|
|
} else if(action==MBCS_STATE_VALID_16) {
|
|
|
|
offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
|
|
|
|
c=unicodeCodeUnits[offset];
|
|
|
|
if(c<0xfffe) {
|
|
|
|
/* output BMP code point */
|
|
|
|
break;
|
|
|
|
} else if(c==0xfffe) {
|
|
|
|
if(UCNV_TO_U_USE_FALLBACK(cnv) && (c=ucnv_MBCSGetFallback(&cnv->sharedData->mbcs, offset))!=0xfffe) {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
/* callback(illegal) */
|
|
|
|
*pErrorCode=U_ILLEGAL_CHAR_FOUND;
|
|
|
|
}
|
|
|
|
} else if(action==MBCS_STATE_VALID_16_PAIR) {
|
|
|
|
offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
|
|
|
|
c=unicodeCodeUnits[offset++];
|
|
|
|
if(c<0xd800) {
|
|
|
|
/* output BMP code point below 0xd800 */
|
|
|
|
break;
|
|
|
|
} else if(UCNV_TO_U_USE_FALLBACK(cnv) ? c<=0xdfff : c<=0xdbff) {
|
|
|
|
/* output roundtrip or fallback supplementary code point */
|
|
|
|
c=((c&0x3ff)<<10)+unicodeCodeUnits[offset]+(0x10000-0xdc00);
|
|
|
|
break;
|
|
|
|
} else if(UCNV_TO_U_USE_FALLBACK(cnv) ? (c&0xfffe)==0xe000 : c==0xe000) {
|
|
|
|
/* output roundtrip BMP code point above 0xd800 or fallback BMP code point */
|
|
|
|
c=unicodeCodeUnits[offset];
|
|
|
|
break;
|
|
|
|
} else if(c==0xffff) {
|
|
|
|
/* callback(illegal) */
|
|
|
|
*pErrorCode=U_ILLEGAL_CHAR_FOUND;
|
|
|
|
}
|
|
|
|
} else if(action==MBCS_STATE_VALID_DIRECT_20 ||
|
|
|
|
(action==MBCS_STATE_FALLBACK_DIRECT_20 && UCNV_TO_U_USE_FALLBACK(cnv))
|
|
|
|
) {
|
|
|
|
/* output supplementary code point */
|
|
|
|
c=(UChar32)(MBCS_ENTRY_FINAL_VALUE(entry)+0x10000);
|
|
|
|
break;
|
|
|
|
} else if(action==MBCS_STATE_CHANGE_ONLY) {
|
|
|
|
/*
|
|
|
|
* This serves as a state change without any output.
|
|
|
|
* It is useful for reading simple stateful encodings,
|
|
|
|
* for example using just Shift-In/Shift-Out codes.
|
|
|
|
* The 21 unused bits may later be used for more sophisticated
|
|
|
|
* state transitions.
|
|
|
|
*/
|
|
|
|
if(cnv->sharedData->mbcs.dbcsOnlyState!=0) {
|
|
|
|
/* SI/SO are illegal for DBCS-only conversion */
|
|
|
|
state=(uint8_t)(cnv->mode); /* restore the previous state */
|
|
|
|
|
|
|
|
/* callback(illegal) */
|
|
|
|
*pErrorCode=U_ILLEGAL_CHAR_FOUND;
|
|
|
|
}
|
|
|
|
} else if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
|
|
|
|
if(UCNV_TO_U_USE_FALLBACK(cnv)) {
|
|
|
|
/* output BMP code point */
|
2023-05-23 00:05:01 +00:00
|
|
|
c=(char16_t)MBCS_ENTRY_FINAL_VALUE_16(entry);
|
2020-08-11 09:10:23 +00:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
} else if(action==MBCS_STATE_UNASSIGNED) {
|
|
|
|
/* just fall through */
|
|
|
|
} else if(action==MBCS_STATE_ILLEGAL) {
|
|
|
|
/* callback(illegal) */
|
|
|
|
*pErrorCode=U_ILLEGAL_CHAR_FOUND;
|
|
|
|
} else {
|
|
|
|
/* reserved (must never occur), or only state change */
|
|
|
|
offset=0;
|
|
|
|
lastSource=source;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* end of action codes: prepare for a new character */
|
|
|
|
offset=0;
|
|
|
|
|
|
|
|
if(U_FAILURE(*pErrorCode)) {
|
|
|
|
/* callback(illegal) */
|
|
|
|
break;
|
|
|
|
} else /* unassigned sequence */ {
|
|
|
|
/* defer to the generic implementation */
|
|
|
|
cnv->toUnicodeStatus=0;
|
|
|
|
cnv->mode=state;
|
|
|
|
pArgs->source=(const char *)lastSource;
|
|
|
|
return UCNV_GET_NEXT_UCHAR_USE_TO_U;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if(c<0) {
|
|
|
|
if(U_SUCCESS(*pErrorCode) && source==sourceLimit && lastSource<source) {
|
|
|
|
/* incomplete character byte sequence */
|
|
|
|
uint8_t *bytes=cnv->toUBytes;
|
|
|
|
cnv->toULength=(int8_t)(source-lastSource);
|
|
|
|
do {
|
|
|
|
*bytes++=*lastSource++;
|
|
|
|
} while(lastSource<source);
|
|
|
|
*pErrorCode=U_TRUNCATED_CHAR_FOUND;
|
|
|
|
} else if(U_FAILURE(*pErrorCode)) {
|
|
|
|
/* callback(illegal) */
|
|
|
|
/*
|
|
|
|
* Ticket 5691: consistent illegal sequences:
|
|
|
|
* - We include at least the first byte in the illegal sequence.
|
|
|
|
* - If any of the non-initial bytes could be the start of a character,
|
|
|
|
* we stop the illegal sequence before the first one of those.
|
|
|
|
*/
|
|
|
|
UBool isDBCSOnly=(UBool)(cnv->sharedData->mbcs.dbcsOnlyState!=0);
|
|
|
|
uint8_t *bytes=cnv->toUBytes;
|
|
|
|
*bytes++=*lastSource++; /* first byte */
|
|
|
|
if(lastSource==source) {
|
|
|
|
cnv->toULength=1;
|
|
|
|
} else /* lastSource<source: multi-byte character */ {
|
|
|
|
int8_t i;
|
|
|
|
for(i=1;
|
|
|
|
lastSource<source && !isSingleOrLead(stateTable, state, isDBCSOnly, *lastSource);
|
|
|
|
++i
|
|
|
|
) {
|
|
|
|
*bytes++=*lastSource++;
|
|
|
|
}
|
|
|
|
cnv->toULength=i;
|
|
|
|
source=lastSource;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
/* no output because of empty input or only state changes */
|
|
|
|
*pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
|
|
|
|
}
|
|
|
|
c=0xffff;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* set the converter state back into UConverter, ready for a new character */
|
|
|
|
cnv->toUnicodeStatus=0;
|
|
|
|
cnv->mode=state;
|
|
|
|
|
|
|
|
/* write back the updated pointer */
|
|
|
|
pArgs->source=(const char *)source;
|
|
|
|
return c;
|
|
|
|
}
|
|
|
|
|
|
|
|
#if 0
|
|
|
|
/*
|
|
|
|
* Code disabled 2002dec09 (ICU 2.4) because it is not currently used in ICU. markus
|
|
|
|
* Removal improves code coverage.
|
|
|
|
*/
|
|
|
|
/**
|
|
|
|
* This version of ucnv_MBCSSimpleGetNextUChar() is optimized for single-byte, single-state codepages.
|
|
|
|
* It does not handle the EBCDIC swaplfnl option (set in UConverter).
|
|
|
|
* It does not handle conversion extensions (_extToU()).
|
|
|
|
*/
|
|
|
|
U_CFUNC UChar32
|
|
|
|
ucnv_MBCSSingleSimpleGetNextUChar(UConverterSharedData *sharedData,
|
|
|
|
uint8_t b, UBool useFallback) {
|
|
|
|
int32_t entry;
|
|
|
|
uint8_t action;
|
|
|
|
|
|
|
|
entry=sharedData->mbcs.stateTable[0][b];
|
|
|
|
/* MBCS_ENTRY_IS_FINAL(entry) */
|
|
|
|
|
|
|
|
if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) {
|
|
|
|
/* output BMP code point */
|
2023-05-23 00:05:01 +00:00
|
|
|
return (char16_t)MBCS_ENTRY_FINAL_VALUE_16(entry);
|
2020-08-11 09:10:23 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* An if-else-if chain provides more reliable performance for
|
|
|
|
* the most common cases compared to a switch.
|
|
|
|
*/
|
|
|
|
action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
|
|
|
|
if(action==MBCS_STATE_VALID_DIRECT_20) {
|
|
|
|
/* output supplementary code point */
|
|
|
|
return 0x10000+MBCS_ENTRY_FINAL_VALUE(entry);
|
|
|
|
} else if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
|
|
|
|
if(!TO_U_USE_FALLBACK(useFallback)) {
|
|
|
|
return 0xfffe;
|
|
|
|
}
|
|
|
|
/* output BMP code point */
|
2023-05-23 00:05:01 +00:00
|
|
|
return (char16_t)MBCS_ENTRY_FINAL_VALUE_16(entry);
|
2020-08-11 09:10:23 +00:00
|
|
|
} else if(action==MBCS_STATE_FALLBACK_DIRECT_20) {
|
|
|
|
if(!TO_U_USE_FALLBACK(useFallback)) {
|
|
|
|
return 0xfffe;
|
|
|
|
}
|
|
|
|
/* output supplementary code point */
|
|
|
|
return 0x10000+MBCS_ENTRY_FINAL_VALUE(entry);
|
|
|
|
} else if(action==MBCS_STATE_UNASSIGNED) {
|
|
|
|
return 0xfffe;
|
|
|
|
} else if(action==MBCS_STATE_ILLEGAL) {
|
|
|
|
return 0xffff;
|
|
|
|
} else {
|
|
|
|
/* reserved, must never occur */
|
|
|
|
return 0xffff;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This is a simple version of _MBCSGetNextUChar() that is used
|
|
|
|
* by other converter implementations.
|
|
|
|
* It only returns an "assigned" result if it consumes the entire input.
|
|
|
|
* It does not use state from the converter, nor error codes.
|
|
|
|
* It does not handle the EBCDIC swaplfnl option (set in UConverter).
|
|
|
|
* It handles conversion extensions but not GB 18030.
|
|
|
|
*
|
|
|
|
* Return value:
|
|
|
|
* U+fffe unassigned
|
|
|
|
* U+ffff illegal
|
|
|
|
* otherwise the Unicode code point
|
|
|
|
*/
|
|
|
|
U_CFUNC UChar32
|
|
|
|
ucnv_MBCSSimpleGetNextUChar(UConverterSharedData *sharedData,
|
|
|
|
const char *source, int32_t length,
|
|
|
|
UBool useFallback) {
|
|
|
|
const int32_t (*stateTable)[256];
|
|
|
|
const uint16_t *unicodeCodeUnits;
|
|
|
|
|
|
|
|
uint32_t offset;
|
|
|
|
uint8_t state, action;
|
|
|
|
|
|
|
|
UChar32 c;
|
|
|
|
int32_t i, entry;
|
|
|
|
|
|
|
|
if(length<=0) {
|
|
|
|
/* no input at all: "illegal" */
|
|
|
|
return 0xffff;
|
|
|
|
}
|
|
|
|
|
|
|
|
#if 0
|
|
|
|
/*
|
|
|
|
* Code disabled 2002dec09 (ICU 2.4) because it is not currently used in ICU. markus
|
|
|
|
* TODO In future releases, verify that this function is never called for SBCS
|
|
|
|
* conversions, i.e., that sharedData->mbcs.countStates==1 is still true.
|
|
|
|
* Removal improves code coverage.
|
|
|
|
*/
|
|
|
|
/* use optimized function if possible */
|
|
|
|
if(sharedData->mbcs.countStates==1) {
|
|
|
|
if(length==1) {
|
|
|
|
return ucnv_MBCSSingleSimpleGetNextUChar(sharedData, (uint8_t)*source, useFallback);
|
|
|
|
} else {
|
|
|
|
return 0xffff; /* illegal: more than a single byte for an SBCS converter */
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* set up the local pointers */
|
|
|
|
stateTable=sharedData->mbcs.stateTable;
|
|
|
|
unicodeCodeUnits=sharedData->mbcs.unicodeCodeUnits;
|
|
|
|
|
|
|
|
/* converter state */
|
|
|
|
offset=0;
|
|
|
|
state=sharedData->mbcs.dbcsOnlyState;
|
|
|
|
|
|
|
|
/* conversion loop */
|
|
|
|
for(i=0;;) {
|
|
|
|
entry=stateTable[state][(uint8_t)source[i++]];
|
|
|
|
if(MBCS_ENTRY_IS_TRANSITION(entry)) {
|
|
|
|
state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry);
|
|
|
|
offset+=MBCS_ENTRY_TRANSITION_OFFSET(entry);
|
|
|
|
|
|
|
|
if(i==length) {
|
|
|
|
return 0xffff; /* truncated character */
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
/*
|
|
|
|
* An if-else-if chain provides more reliable performance for
|
|
|
|
* the most common cases compared to a switch.
|
|
|
|
*/
|
|
|
|
action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
|
|
|
|
if(action==MBCS_STATE_VALID_16) {
|
|
|
|
offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
|
|
|
|
c=unicodeCodeUnits[offset];
|
|
|
|
if(c!=0xfffe) {
|
|
|
|
/* done */
|
|
|
|
} else if(UCNV_TO_U_USE_FALLBACK(cnv)) {
|
|
|
|
c=ucnv_MBCSGetFallback(&sharedData->mbcs, offset);
|
|
|
|
/* else done with 0xfffe */
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
} else if(action==MBCS_STATE_VALID_DIRECT_16) {
|
|
|
|
/* output BMP code point */
|
2023-05-23 00:05:01 +00:00
|
|
|
c=(char16_t)MBCS_ENTRY_FINAL_VALUE_16(entry);
|
2020-08-11 09:10:23 +00:00
|
|
|
break;
|
|
|
|
} else if(action==MBCS_STATE_VALID_16_PAIR) {
|
|
|
|
offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
|
|
|
|
c=unicodeCodeUnits[offset++];
|
|
|
|
if(c<0xd800) {
|
|
|
|
/* output BMP code point below 0xd800 */
|
|
|
|
} else if(UCNV_TO_U_USE_FALLBACK(cnv) ? c<=0xdfff : c<=0xdbff) {
|
|
|
|
/* output roundtrip or fallback supplementary code point */
|
|
|
|
c=(UChar32)(((c&0x3ff)<<10)+unicodeCodeUnits[offset]+(0x10000-0xdc00));
|
|
|
|
} else if(UCNV_TO_U_USE_FALLBACK(cnv) ? (c&0xfffe)==0xe000 : c==0xe000) {
|
|
|
|
/* output roundtrip BMP code point above 0xd800 or fallback BMP code point */
|
|
|
|
c=unicodeCodeUnits[offset];
|
|
|
|
} else if(c==0xffff) {
|
|
|
|
return 0xffff;
|
|
|
|
} else {
|
|
|
|
c=0xfffe;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
} else if(action==MBCS_STATE_VALID_DIRECT_20) {
|
|
|
|
/* output supplementary code point */
|
|
|
|
c=0x10000+MBCS_ENTRY_FINAL_VALUE(entry);
|
|
|
|
break;
|
|
|
|
} else if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
|
|
|
|
if(!TO_U_USE_FALLBACK(useFallback)) {
|
|
|
|
c=0xfffe;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
/* output BMP code point */
|
2023-05-23 00:05:01 +00:00
|
|
|
c=(char16_t)MBCS_ENTRY_FINAL_VALUE_16(entry);
|
2020-08-11 09:10:23 +00:00
|
|
|
break;
|
|
|
|
} else if(action==MBCS_STATE_FALLBACK_DIRECT_20) {
|
|
|
|
if(!TO_U_USE_FALLBACK(useFallback)) {
|
|
|
|
c=0xfffe;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
/* output supplementary code point */
|
|
|
|
c=0x10000+MBCS_ENTRY_FINAL_VALUE(entry);
|
|
|
|
break;
|
|
|
|
} else if(action==MBCS_STATE_UNASSIGNED) {
|
|
|
|
c=0xfffe;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* forbid MBCS_STATE_CHANGE_ONLY for this function,
|
|
|
|
* and MBCS_STATE_ILLEGAL and reserved action codes
|
|
|
|
*/
|
|
|
|
return 0xffff;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if(i!=length) {
|
|
|
|
/* illegal for this function: not all input consumed */
|
|
|
|
return 0xffff;
|
|
|
|
}
|
|
|
|
|
|
|
|
if(c==0xfffe) {
|
|
|
|
/* try an extension mapping */
|
|
|
|
const int32_t *cx=sharedData->mbcs.extIndexes;
|
2023-05-23 00:05:01 +00:00
|
|
|
if(cx!=nullptr) {
|
2020-08-11 09:10:23 +00:00
|
|
|
return ucnv_extSimpleMatchToU(cx, source, length, useFallback);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return c;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* MBCS-from-Unicode conversion functions ----------------------------------- */
|
|
|
|
|
|
|
|
/* This version of ucnv_MBCSFromUnicodeWithOffsets() is optimized for double-byte codepages. */
|
|
|
|
static void
|
|
|
|
ucnv_MBCSDoubleFromUnicodeWithOffsets(UConverterFromUnicodeArgs *pArgs,
|
|
|
|
UErrorCode *pErrorCode) {
|
|
|
|
UConverter *cnv;
|
2023-05-23 00:05:01 +00:00
|
|
|
const char16_t *source, *sourceLimit;
|
2020-08-11 09:10:23 +00:00
|
|
|
uint8_t *target;
|
|
|
|
int32_t targetCapacity;
|
|
|
|
int32_t *offsets;
|
|
|
|
|
|
|
|
const uint16_t *table;
|
|
|
|
const uint16_t *mbcsIndex;
|
|
|
|
const uint8_t *bytes;
|
|
|
|
|
|
|
|
UChar32 c;
|
|
|
|
|
|
|
|
int32_t sourceIndex, nextSourceIndex;
|
|
|
|
|
|
|
|
uint32_t stage2Entry;
|
|
|
|
uint32_t asciiRoundtrips;
|
|
|
|
uint32_t value;
|
|
|
|
uint8_t unicodeMask;
|
|
|
|
|
|
|
|
/* use optimized function if possible */
|
|
|
|
cnv=pArgs->converter;
|
|
|
|
unicodeMask=cnv->sharedData->mbcs.unicodeMask;
|
|
|
|
|
|
|
|
/* set up the local pointers */
|
|
|
|
source=pArgs->source;
|
|
|
|
sourceLimit=pArgs->sourceLimit;
|
|
|
|
target=(uint8_t *)pArgs->target;
|
|
|
|
targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target);
|
|
|
|
offsets=pArgs->offsets;
|
|
|
|
|
|
|
|
table=cnv->sharedData->mbcs.fromUnicodeTable;
|
|
|
|
mbcsIndex=cnv->sharedData->mbcs.mbcsIndex;
|
|
|
|
if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
|
|
|
|
bytes=cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes;
|
|
|
|
} else {
|
|
|
|
bytes=cnv->sharedData->mbcs.fromUnicodeBytes;
|
|
|
|
}
|
|
|
|
asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips;
|
|
|
|
|
|
|
|
/* get the converter state from UConverter */
|
|
|
|
c=cnv->fromUChar32;
|
|
|
|
|
|
|
|
/* sourceIndex=-1 if the current character began in the previous buffer */
|
|
|
|
sourceIndex= c==0 ? 0 : -1;
|
|
|
|
nextSourceIndex=0;
|
|
|
|
|
|
|
|
/* conversion loop */
|
|
|
|
if(c!=0 && targetCapacity>0) {
|
|
|
|
goto getTrail;
|
|
|
|
}
|
|
|
|
|
|
|
|
while(source<sourceLimit) {
|
|
|
|
/*
|
|
|
|
* This following test is to see if available input would overflow the output.
|
|
|
|
* It does not catch output of more than one byte that
|
|
|
|
* overflows as a result of a multi-byte character or callback output
|
|
|
|
* from the last source character.
|
|
|
|
* Therefore, those situations also test for overflows and will
|
|
|
|
* then break the loop, too.
|
|
|
|
*/
|
|
|
|
if(targetCapacity>0) {
|
|
|
|
/*
|
|
|
|
* Get a correct Unicode code point:
|
2023-05-23 00:05:01 +00:00
|
|
|
* a single char16_t for a BMP code point or
|
2020-08-11 09:10:23 +00:00
|
|
|
* a matched surrogate pair for a "supplementary code point".
|
|
|
|
*/
|
|
|
|
c=*source++;
|
|
|
|
++nextSourceIndex;
|
|
|
|
if(c<=0x7f && IS_ASCII_ROUNDTRIP(c, asciiRoundtrips)) {
|
|
|
|
*target++=(uint8_t)c;
|
2023-05-23 00:05:01 +00:00
|
|
|
if(offsets!=nullptr) {
|
2020-08-11 09:10:23 +00:00
|
|
|
*offsets++=sourceIndex;
|
|
|
|
sourceIndex=nextSourceIndex;
|
|
|
|
}
|
|
|
|
--targetCapacity;
|
|
|
|
c=0;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* utf8Friendly table: Test for <=0xd7ff rather than <=MBCS_FAST_MAX
|
|
|
|
* to avoid dealing with surrogates.
|
|
|
|
* MBCS_FAST_MAX must be >=0xd7ff.
|
|
|
|
*/
|
|
|
|
if(c<=0xd7ff) {
|
|
|
|
value=DBCS_RESULT_FROM_MOST_BMP(mbcsIndex, (const uint16_t *)bytes, c);
|
|
|
|
/* There are only roundtrips (!=0) and no-mapping (==0) entries. */
|
|
|
|
if(value==0) {
|
|
|
|
goto unassigned;
|
|
|
|
}
|
|
|
|
/* output the value */
|
|
|
|
} else {
|
|
|
|
/*
|
|
|
|
* This also tests if the codepage maps single surrogates.
|
|
|
|
* If it does, then surrogates are not paired but mapped separately.
|
|
|
|
* Note that in this case unmatched surrogates are not detected.
|
|
|
|
*/
|
|
|
|
if(U16_IS_SURROGATE(c) && !(unicodeMask&UCNV_HAS_SURROGATES)) {
|
|
|
|
if(U16_IS_SURROGATE_LEAD(c)) {
|
|
|
|
getTrail:
|
|
|
|
if(source<sourceLimit) {
|
|
|
|
/* test the following code unit */
|
2023-05-23 00:05:01 +00:00
|
|
|
char16_t trail=*source;
|
2020-08-11 09:10:23 +00:00
|
|
|
if(U16_IS_TRAIL(trail)) {
|
|
|
|
++source;
|
|
|
|
++nextSourceIndex;
|
|
|
|
c=U16_GET_SUPPLEMENTARY(c, trail);
|
|
|
|
if(!(unicodeMask&UCNV_HAS_SUPPLEMENTARY)) {
|
|
|
|
/* BMP-only codepages are stored without stage 1 entries for supplementary code points */
|
|
|
|
/* callback(unassigned) */
|
|
|
|
goto unassigned;
|
|
|
|
}
|
|
|
|
/* convert this supplementary code point */
|
|
|
|
/* exit this condition tree */
|
|
|
|
} else {
|
|
|
|
/* this is an unmatched lead code unit (1st surrogate) */
|
|
|
|
/* callback(illegal) */
|
|
|
|
*pErrorCode=U_ILLEGAL_CHAR_FOUND;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
/* no more input */
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
/* this is an unmatched trail code unit (2nd surrogate) */
|
|
|
|
/* callback(illegal) */
|
|
|
|
*pErrorCode=U_ILLEGAL_CHAR_FOUND;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* convert the Unicode code point in c into codepage bytes */
|
|
|
|
stage2Entry=MBCS_STAGE_2_FROM_U(table, c);
|
|
|
|
|
|
|
|
/* get the bytes and the length for the output */
|
|
|
|
/* MBCS_OUTPUT_2 */
|
|
|
|
value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c);
|
|
|
|
|
|
|
|
/* is this code point assigned, or do we use fallbacks? */
|
|
|
|
if(!(MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c) ||
|
|
|
|
(UCNV_FROM_U_USE_FALLBACK(cnv, c) && value!=0))
|
|
|
|
) {
|
|
|
|
/*
|
|
|
|
* We allow a 0 byte output if the "assigned" bit is set for this entry.
|
|
|
|
* There is no way with this data structure for fallback output
|
|
|
|
* to be a zero byte.
|
|
|
|
*/
|
|
|
|
|
|
|
|
unassigned:
|
|
|
|
/* try an extension mapping */
|
|
|
|
pArgs->source=source;
|
|
|
|
c=_extFromU(cnv, cnv->sharedData,
|
|
|
|
c, &source, sourceLimit,
|
|
|
|
&target, target+targetCapacity,
|
|
|
|
&offsets, sourceIndex,
|
|
|
|
pArgs->flush,
|
|
|
|
pErrorCode);
|
|
|
|
nextSourceIndex+=(int32_t)(source-pArgs->source);
|
|
|
|
|
|
|
|
if(U_FAILURE(*pErrorCode)) {
|
|
|
|
/* not mappable or buffer overflow */
|
|
|
|
break;
|
|
|
|
} else {
|
|
|
|
/* a mapping was written to the target, continue */
|
|
|
|
|
|
|
|
/* recalculate the targetCapacity after an extension mapping */
|
|
|
|
targetCapacity=(int32_t)(pArgs->targetLimit-(char *)target);
|
|
|
|
|
|
|
|
/* normal end of conversion: prepare for a new character */
|
|
|
|
sourceIndex=nextSourceIndex;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* write the output character bytes from value and length */
|
|
|
|
/* from the first if in the loop we know that targetCapacity>0 */
|
|
|
|
if(value<=0xff) {
|
|
|
|
/* this is easy because we know that there is enough space */
|
|
|
|
*target++=(uint8_t)value;
|
2023-05-23 00:05:01 +00:00
|
|
|
if(offsets!=nullptr) {
|
2020-08-11 09:10:23 +00:00
|
|
|
*offsets++=sourceIndex;
|
|
|
|
}
|
|
|
|
--targetCapacity;
|
|
|
|
} else /* length==2 */ {
|
|
|
|
*target++=(uint8_t)(value>>8);
|
|
|
|
if(2<=targetCapacity) {
|
|
|
|
*target++=(uint8_t)value;
|
2023-05-23 00:05:01 +00:00
|
|
|
if(offsets!=nullptr) {
|
2020-08-11 09:10:23 +00:00
|
|
|
*offsets++=sourceIndex;
|
|
|
|
*offsets++=sourceIndex;
|
|
|
|
}
|
|
|
|
targetCapacity-=2;
|
|
|
|
} else {
|
2023-05-23 00:05:01 +00:00
|
|
|
if(offsets!=nullptr) {
|
2020-08-11 09:10:23 +00:00
|
|
|
*offsets++=sourceIndex;
|
|
|
|
}
|
|
|
|
cnv->charErrorBuffer[0]=(char)value;
|
|
|
|
cnv->charErrorBufferLength=1;
|
|
|
|
|
|
|
|
/* target overflow */
|
|
|
|
targetCapacity=0;
|
|
|
|
*pErrorCode=U_BUFFER_OVERFLOW_ERROR;
|
|
|
|
c=0;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* normal end of conversion: prepare for a new character */
|
|
|
|
c=0;
|
|
|
|
sourceIndex=nextSourceIndex;
|
|
|
|
continue;
|
|
|
|
} else {
|
|
|
|
/* target is full */
|
|
|
|
*pErrorCode=U_BUFFER_OVERFLOW_ERROR;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* set the converter state back into UConverter */
|
|
|
|
cnv->fromUChar32=c;
|
|
|
|
|
|
|
|
/* write back the updated pointers */
|
|
|
|
pArgs->source=source;
|
|
|
|
pArgs->target=(char *)target;
|
|
|
|
pArgs->offsets=offsets;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* This version of ucnv_MBCSFromUnicodeWithOffsets() is optimized for single-byte codepages. */
|
|
|
|
static void
|
|
|
|
ucnv_MBCSSingleFromUnicodeWithOffsets(UConverterFromUnicodeArgs *pArgs,
|
|
|
|
UErrorCode *pErrorCode) {
|
|
|
|
UConverter *cnv;
|
2023-05-23 00:05:01 +00:00
|
|
|
const char16_t *source, *sourceLimit;
|
2020-08-11 09:10:23 +00:00
|
|
|
uint8_t *target;
|
|
|
|
int32_t targetCapacity;
|
|
|
|
int32_t *offsets;
|
|
|
|
|
|
|
|
const uint16_t *table;
|
|
|
|
const uint16_t *results;
|
|
|
|
|
|
|
|
UChar32 c;
|
|
|
|
|
|
|
|
int32_t sourceIndex, nextSourceIndex;
|
|
|
|
|
|
|
|
uint16_t value, minValue;
|
|
|
|
UBool hasSupplementary;
|
|
|
|
|
|
|
|
/* set up the local pointers */
|
|
|
|
cnv=pArgs->converter;
|
|
|
|
source=pArgs->source;
|
|
|
|
sourceLimit=pArgs->sourceLimit;
|
|
|
|
target=(uint8_t *)pArgs->target;
|
|
|
|
targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target);
|
|
|
|
offsets=pArgs->offsets;
|
|
|
|
|
|
|
|
table=cnv->sharedData->mbcs.fromUnicodeTable;
|
|
|
|
if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
|
|
|
|
results=(uint16_t *)cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes;
|
|
|
|
} else {
|
|
|
|
results=(uint16_t *)cnv->sharedData->mbcs.fromUnicodeBytes;
|
|
|
|
}
|
|
|
|
|
|
|
|
if(cnv->useFallback) {
|
|
|
|
/* use all roundtrip and fallback results */
|
|
|
|
minValue=0x800;
|
|
|
|
} else {
|
|
|
|
/* use only roundtrips and fallbacks from private-use characters */
|
|
|
|
minValue=0xc00;
|
|
|
|
}
|
|
|
|
hasSupplementary=(UBool)(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY);
|
|
|
|
|
|
|
|
/* get the converter state from UConverter */
|
|
|
|
c=cnv->fromUChar32;
|
|
|
|
|
|
|
|
/* sourceIndex=-1 if the current character began in the previous buffer */
|
|
|
|
sourceIndex= c==0 ? 0 : -1;
|
|
|
|
nextSourceIndex=0;
|
|
|
|
|
|
|
|
/* conversion loop */
|
|
|
|
if(c!=0 && targetCapacity>0) {
|
|
|
|
goto getTrail;
|
|
|
|
}
|
|
|
|
|
|
|
|
while(source<sourceLimit) {
|
|
|
|
/*
|
|
|
|
* This following test is to see if available input would overflow the output.
|
|
|
|
* It does not catch output of more than one byte that
|
|
|
|
* overflows as a result of a multi-byte character or callback output
|
|
|
|
* from the last source character.
|
|
|
|
* Therefore, those situations also test for overflows and will
|
|
|
|
* then break the loop, too.
|
|
|
|
*/
|
|
|
|
if(targetCapacity>0) {
|
|
|
|
/*
|
|
|
|
* Get a correct Unicode code point:
|
2023-05-23 00:05:01 +00:00
|
|
|
* a single char16_t for a BMP code point or
|
2020-08-11 09:10:23 +00:00
|
|
|
* a matched surrogate pair for a "supplementary code point".
|
|
|
|
*/
|
|
|
|
c=*source++;
|
|
|
|
++nextSourceIndex;
|
|
|
|
if(U16_IS_SURROGATE(c)) {
|
|
|
|
if(U16_IS_SURROGATE_LEAD(c)) {
|
|
|
|
getTrail:
|
|
|
|
if(source<sourceLimit) {
|
|
|
|
/* test the following code unit */
|
2023-05-23 00:05:01 +00:00
|
|
|
char16_t trail=*source;
|
2020-08-11 09:10:23 +00:00
|
|
|
if(U16_IS_TRAIL(trail)) {
|
|
|
|
++source;
|
|
|
|
++nextSourceIndex;
|
|
|
|
c=U16_GET_SUPPLEMENTARY(c, trail);
|
|
|
|
if(!hasSupplementary) {
|
|
|
|
/* BMP-only codepages are stored without stage 1 entries for supplementary code points */
|
|
|
|
/* callback(unassigned) */
|
|
|
|
goto unassigned;
|
|
|
|
}
|
|
|
|
/* convert this supplementary code point */
|
|
|
|
/* exit this condition tree */
|
|
|
|
} else {
|
|
|
|
/* this is an unmatched lead code unit (1st surrogate) */
|
|
|
|
/* callback(illegal) */
|
|
|
|
*pErrorCode=U_ILLEGAL_CHAR_FOUND;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
/* no more input */
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
/* this is an unmatched trail code unit (2nd surrogate) */
|
|
|
|
/* callback(illegal) */
|
|
|
|
*pErrorCode=U_ILLEGAL_CHAR_FOUND;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* convert the Unicode code point in c into codepage bytes */
|
|
|
|
value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
|
|
|
|
|
|
|
|
/* is this code point assigned, or do we use fallbacks? */
|
|
|
|
if(value>=minValue) {
|
|
|
|
/* assigned, write the output character bytes from value and length */
|
|
|
|
/* length==1 */
|
|
|
|
/* this is easy because we know that there is enough space */
|
|
|
|
*target++=(uint8_t)value;
|
2023-05-23 00:05:01 +00:00
|
|
|
if(offsets!=nullptr) {
|
2020-08-11 09:10:23 +00:00
|
|
|
*offsets++=sourceIndex;
|
|
|
|
}
|
|
|
|
--targetCapacity;
|
|
|
|
|
|
|
|
/* normal end of conversion: prepare for a new character */
|
|
|
|
c=0;
|
|
|
|
sourceIndex=nextSourceIndex;
|
|
|
|
} else { /* unassigned */
|
|
|
|
unassigned:
|
|
|
|
/* try an extension mapping */
|
|
|
|
pArgs->source=source;
|
|
|
|
c=_extFromU(cnv, cnv->sharedData,
|
|
|
|
c, &source, sourceLimit,
|
|
|
|
&target, target+targetCapacity,
|
|
|
|
&offsets, sourceIndex,
|
|
|
|
pArgs->flush,
|
|
|
|
pErrorCode);
|
|
|
|
nextSourceIndex+=(int32_t)(source-pArgs->source);
|
|
|
|
|
|
|
|
if(U_FAILURE(*pErrorCode)) {
|
|
|
|
/* not mappable or buffer overflow */
|
|
|
|
break;
|
|
|
|
} else {
|
|
|
|
/* a mapping was written to the target, continue */
|
|
|
|
|
|
|
|
/* recalculate the targetCapacity after an extension mapping */
|
|
|
|
targetCapacity=(int32_t)(pArgs->targetLimit-(char *)target);
|
|
|
|
|
|
|
|
/* normal end of conversion: prepare for a new character */
|
|
|
|
sourceIndex=nextSourceIndex;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
/* target is full */
|
|
|
|
*pErrorCode=U_BUFFER_OVERFLOW_ERROR;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* set the converter state back into UConverter */
|
|
|
|
cnv->fromUChar32=c;
|
|
|
|
|
|
|
|
/* write back the updated pointers */
|
|
|
|
pArgs->source=source;
|
|
|
|
pArgs->target=(char *)target;
|
|
|
|
pArgs->offsets=offsets;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This version of ucnv_MBCSFromUnicode() is optimized for single-byte codepages
|
|
|
|
* that map only to and from the BMP.
|
|
|
|
* In addition to single-byte/state optimizations, the offset calculations
|
|
|
|
* become much easier.
|
|
|
|
* It would be possible to use the sbcsIndex for UTF-8-friendly tables,
|
|
|
|
* but measurements have shown that this diminishes performance
|
|
|
|
* in more cases than it improves it.
|
|
|
|
* See SVN revision 21013 (2007-feb-06) for the last version with #if switches
|
|
|
|
* for various MBCS and SBCS optimizations.
|
|
|
|
*/
|
|
|
|
static void
|
|
|
|
ucnv_MBCSSingleFromBMPWithOffsets(UConverterFromUnicodeArgs *pArgs,
|
|
|
|
UErrorCode *pErrorCode) {
|
|
|
|
UConverter *cnv;
|
2023-05-23 00:05:01 +00:00
|
|
|
const char16_t *source, *sourceLimit, *lastSource;
|
2020-08-11 09:10:23 +00:00
|
|
|
uint8_t *target;
|
|
|
|
int32_t targetCapacity, length;
|
|
|
|
int32_t *offsets;
|
|
|
|
|
|
|
|
const uint16_t *table;
|
|
|
|
const uint16_t *results;
|
|
|
|
|
|
|
|
UChar32 c;
|
|
|
|
|
|
|
|
int32_t sourceIndex;
|
|
|
|
|
|
|
|
uint32_t asciiRoundtrips;
|
|
|
|
uint16_t value, minValue;
|
|
|
|
|
|
|
|
/* set up the local pointers */
|
|
|
|
cnv=pArgs->converter;
|
|
|
|
source=pArgs->source;
|
|
|
|
sourceLimit=pArgs->sourceLimit;
|
|
|
|
target=(uint8_t *)pArgs->target;
|
|
|
|
targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target);
|
|
|
|
offsets=pArgs->offsets;
|
|
|
|
|
|
|
|
table=cnv->sharedData->mbcs.fromUnicodeTable;
|
|
|
|
if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
|
|
|
|
results=(uint16_t *)cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes;
|
|
|
|
} else {
|
|
|
|
results=(uint16_t *)cnv->sharedData->mbcs.fromUnicodeBytes;
|
|
|
|
}
|
|
|
|
asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips;
|
|
|
|
|
|
|
|
if(cnv->useFallback) {
|
|
|
|
/* use all roundtrip and fallback results */
|
|
|
|
minValue=0x800;
|
|
|
|
} else {
|
|
|
|
/* use only roundtrips and fallbacks from private-use characters */
|
|
|
|
minValue=0xc00;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* get the converter state from UConverter */
|
|
|
|
c=cnv->fromUChar32;
|
|
|
|
|
|
|
|
/* sourceIndex=-1 if the current character began in the previous buffer */
|
|
|
|
sourceIndex= c==0 ? 0 : -1;
|
|
|
|
lastSource=source;
|
|
|
|
|
|
|
|
/*
|
2023-05-23 00:05:01 +00:00
|
|
|
* since the conversion here is 1:1 char16_t:uint8_t, we need only one counter
|
2020-08-11 09:10:23 +00:00
|
|
|
* for the minimum of the sourceLength and targetCapacity
|
|
|
|
*/
|
|
|
|
length=(int32_t)(sourceLimit-source);
|
|
|
|
if(length<targetCapacity) {
|
|
|
|
targetCapacity=length;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* conversion loop */
|
|
|
|
if(c!=0 && targetCapacity>0) {
|
|
|
|
goto getTrail;
|
|
|
|
}
|
|
|
|
|
|
|
|
#if MBCS_UNROLL_SINGLE_FROM_BMP
|
|
|
|
/* unrolling makes it slower on Pentium III/Windows 2000?! */
|
|
|
|
/* unroll the loop with the most common case */
|
|
|
|
unrolled:
|
|
|
|
if(targetCapacity>=4) {
|
|
|
|
int32_t count, loops;
|
|
|
|
uint16_t andedValues;
|
|
|
|
|
|
|
|
loops=count=targetCapacity>>2;
|
|
|
|
do {
|
|
|
|
c=*source++;
|
|
|
|
andedValues=value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
|
|
|
|
*target++=(uint8_t)value;
|
|
|
|
c=*source++;
|
|
|
|
andedValues&=value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
|
|
|
|
*target++=(uint8_t)value;
|
|
|
|
c=*source++;
|
|
|
|
andedValues&=value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
|
|
|
|
*target++=(uint8_t)value;
|
|
|
|
c=*source++;
|
|
|
|
andedValues&=value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
|
|
|
|
*target++=(uint8_t)value;
|
|
|
|
|
|
|
|
/* were all 4 entries really valid? */
|
|
|
|
if(andedValues<minValue) {
|
|
|
|
/* no, return to the first of these 4 */
|
|
|
|
source-=4;
|
|
|
|
target-=4;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
} while(--count>0);
|
|
|
|
count=loops-count;
|
|
|
|
targetCapacity-=4*count;
|
|
|
|
|
2023-05-23 00:05:01 +00:00
|
|
|
if(offsets!=nullptr) {
|
2020-08-11 09:10:23 +00:00
|
|
|
lastSource+=4*count;
|
|
|
|
while(count>0) {
|
|
|
|
*offsets++=sourceIndex++;
|
|
|
|
*offsets++=sourceIndex++;
|
|
|
|
*offsets++=sourceIndex++;
|
|
|
|
*offsets++=sourceIndex++;
|
|
|
|
--count;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
c=0;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
while(targetCapacity>0) {
|
|
|
|
/*
|
|
|
|
* Get a correct Unicode code point:
|
2023-05-23 00:05:01 +00:00
|
|
|
* a single char16_t for a BMP code point or
|
2020-08-11 09:10:23 +00:00
|
|
|
* a matched surrogate pair for a "supplementary code point".
|
|
|
|
*/
|
|
|
|
c=*source++;
|
|
|
|
/*
|
|
|
|
* Do not immediately check for single surrogates:
|
|
|
|
* Assume that they are unassigned and check for them in that case.
|
|
|
|
* This speeds up the conversion of assigned characters.
|
|
|
|
*/
|
|
|
|
/* convert the Unicode code point in c into codepage bytes */
|
|
|
|
if(c<=0x7f && IS_ASCII_ROUNDTRIP(c, asciiRoundtrips)) {
|
|
|
|
*target++=(uint8_t)c;
|
|
|
|
--targetCapacity;
|
|
|
|
c=0;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
|
|
|
|
/* is this code point assigned, or do we use fallbacks? */
|
|
|
|
if(value>=minValue) {
|
|
|
|
/* assigned, write the output character bytes from value and length */
|
|
|
|
/* length==1 */
|
|
|
|
/* this is easy because we know that there is enough space */
|
|
|
|
*target++=(uint8_t)value;
|
|
|
|
--targetCapacity;
|
|
|
|
|
|
|
|
/* normal end of conversion: prepare for a new character */
|
|
|
|
c=0;
|
|
|
|
continue;
|
|
|
|
} else if(!U16_IS_SURROGATE(c)) {
|
|
|
|
/* normal, unassigned BMP character */
|
|
|
|
} else if(U16_IS_SURROGATE_LEAD(c)) {
|
|
|
|
getTrail:
|
|
|
|
if(source<sourceLimit) {
|
|
|
|
/* test the following code unit */
|
2023-05-23 00:05:01 +00:00
|
|
|
char16_t trail=*source;
|
2020-08-11 09:10:23 +00:00
|
|
|
if(U16_IS_TRAIL(trail)) {
|
|
|
|
++source;
|
|
|
|
c=U16_GET_SUPPLEMENTARY(c, trail);
|
|
|
|
/* this codepage does not map supplementary code points */
|
|
|
|
/* callback(unassigned) */
|
|
|
|
} else {
|
|
|
|
/* this is an unmatched lead code unit (1st surrogate) */
|
|
|
|
/* callback(illegal) */
|
|
|
|
*pErrorCode=U_ILLEGAL_CHAR_FOUND;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
/* no more input */
|
|
|
|
if (pArgs->flush) {
|
|
|
|
*pErrorCode=U_TRUNCATED_CHAR_FOUND;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
/* this is an unmatched trail code unit (2nd surrogate) */
|
|
|
|
/* callback(illegal) */
|
|
|
|
*pErrorCode=U_ILLEGAL_CHAR_FOUND;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* c does not have a mapping */
|
|
|
|
|
|
|
|
/* get the number of code units for c to correctly advance sourceIndex */
|
|
|
|
length=U16_LENGTH(c);
|
|
|
|
|
|
|
|
/* set offsets since the start or the last extension */
|
2023-05-23 00:05:01 +00:00
|
|
|
if(offsets!=nullptr) {
|
2020-08-11 09:10:23 +00:00
|
|
|
int32_t count=(int32_t)(source-lastSource);
|
|
|
|
|
|
|
|
/* do not set the offset for this character */
|
|
|
|
count-=length;
|
|
|
|
|
|
|
|
while(count>0) {
|
|
|
|
*offsets++=sourceIndex++;
|
|
|
|
--count;
|
|
|
|
}
|
|
|
|
/* offsets and sourceIndex are now set for the current character */
|
|
|
|
}
|
|
|
|
|
|
|
|
/* try an extension mapping */
|
|
|
|
lastSource=source;
|
|
|
|
c=_extFromU(cnv, cnv->sharedData,
|
|
|
|
c, &source, sourceLimit,
|
|
|
|
&target, (const uint8_t *)(pArgs->targetLimit),
|
|
|
|
&offsets, sourceIndex,
|
|
|
|
pArgs->flush,
|
|
|
|
pErrorCode);
|
|
|
|
sourceIndex+=length+(int32_t)(source-lastSource);
|
|
|
|
lastSource=source;
|
|
|
|
|
|
|
|
if(U_FAILURE(*pErrorCode)) {
|
|
|
|
/* not mappable or buffer overflow */
|
|
|
|
break;
|
|
|
|
} else {
|
|
|
|
/* a mapping was written to the target, continue */
|
|
|
|
|
|
|
|
/* recalculate the targetCapacity after an extension mapping */
|
|
|
|
targetCapacity=(int32_t)(pArgs->targetLimit-(char *)target);
|
|
|
|
length=(int32_t)(sourceLimit-source);
|
|
|
|
if(length<targetCapacity) {
|
|
|
|
targetCapacity=length;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#if MBCS_UNROLL_SINGLE_FROM_BMP
|
|
|
|
/* unrolling makes it slower on Pentium III/Windows 2000?! */
|
|
|
|
goto unrolled;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
if(U_SUCCESS(*pErrorCode) && source<sourceLimit && target>=(uint8_t *)pArgs->targetLimit) {
|
|
|
|
/* target is full */
|
|
|
|
*pErrorCode=U_BUFFER_OVERFLOW_ERROR;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* set offsets since the start or the last callback */
|
2023-05-23 00:05:01 +00:00
|
|
|
if(offsets!=nullptr) {
|
2020-08-11 09:10:23 +00:00
|
|
|
size_t count=source-lastSource;
|
|
|
|
if (count > 0 && *pErrorCode == U_TRUNCATED_CHAR_FOUND) {
|
|
|
|
/*
|
|
|
|
Caller gave us a partial supplementary character,
|
|
|
|
which this function couldn't convert in any case.
|
|
|
|
The callback will handle the offset.
|
|
|
|
*/
|
|
|
|
count--;
|
|
|
|
}
|
|
|
|
while(count>0) {
|
|
|
|
*offsets++=sourceIndex++;
|
|
|
|
--count;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* set the converter state back into UConverter */
|
|
|
|
cnv->fromUChar32=c;
|
|
|
|
|
|
|
|
/* write back the updated pointers */
|
|
|
|
pArgs->source=source;
|
|
|
|
pArgs->target=(char *)target;
|
|
|
|
pArgs->offsets=offsets;
|
|
|
|
}
|
|
|
|
|
|
|
|
U_CFUNC void
|
|
|
|
ucnv_MBCSFromUnicodeWithOffsets(UConverterFromUnicodeArgs *pArgs,
|
|
|
|
UErrorCode *pErrorCode) {
|
|
|
|
UConverter *cnv;
|
2023-05-23 00:05:01 +00:00
|
|
|
const char16_t *source, *sourceLimit;
|
2020-08-11 09:10:23 +00:00
|
|
|
uint8_t *target;
|
|
|
|
int32_t targetCapacity;
|
|
|
|
int32_t *offsets;
|
|
|
|
|
|
|
|
const uint16_t *table;
|
|
|
|
const uint16_t *mbcsIndex;
|
|
|
|
const uint8_t *p, *bytes;
|
|
|
|
uint8_t outputType;
|
|
|
|
|
|
|
|
UChar32 c;
|
|
|
|
|
|
|
|
int32_t prevSourceIndex, sourceIndex, nextSourceIndex;
|
|
|
|
|
|
|
|
uint32_t stage2Entry;
|
|
|
|
uint32_t asciiRoundtrips;
|
|
|
|
uint32_t value;
|
|
|
|
/* Shift-In and Shift-Out byte sequences differ by encoding scheme. */
|
|
|
|
uint8_t siBytes[2] = {0, 0};
|
|
|
|
uint8_t soBytes[2] = {0, 0};
|
|
|
|
uint8_t siLength, soLength;
|
|
|
|
int32_t length = 0, prevLength;
|
|
|
|
uint8_t unicodeMask;
|
|
|
|
|
|
|
|
cnv=pArgs->converter;
|
|
|
|
|
|
|
|
if(cnv->preFromUFirstCP>=0) {
|
|
|
|
/*
|
|
|
|
* pass sourceIndex=-1 because we continue from an earlier buffer
|
|
|
|
* in the future, this may change with continuous offsets
|
|
|
|
*/
|
|
|
|
ucnv_extContinueMatchFromU(cnv, pArgs, -1, pErrorCode);
|
|
|
|
|
|
|
|
if(U_FAILURE(*pErrorCode) || cnv->preFromULength<0) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* use optimized function if possible */
|
|
|
|
outputType=cnv->sharedData->mbcs.outputType;
|
|
|
|
unicodeMask=cnv->sharedData->mbcs.unicodeMask;
|
|
|
|
if(outputType==MBCS_OUTPUT_1 && !(unicodeMask&UCNV_HAS_SURROGATES)) {
|
|
|
|
if(!(unicodeMask&UCNV_HAS_SUPPLEMENTARY)) {
|
|
|
|
ucnv_MBCSSingleFromBMPWithOffsets(pArgs, pErrorCode);
|
|
|
|
} else {
|
|
|
|
ucnv_MBCSSingleFromUnicodeWithOffsets(pArgs, pErrorCode);
|
|
|
|
}
|
|
|
|
return;
|
|
|
|
} else if(outputType==MBCS_OUTPUT_2 && cnv->sharedData->mbcs.utf8Friendly) {
|
|
|
|
ucnv_MBCSDoubleFromUnicodeWithOffsets(pArgs, pErrorCode);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* set up the local pointers */
|
|
|
|
source=pArgs->source;
|
|
|
|
sourceLimit=pArgs->sourceLimit;
|
|
|
|
target=(uint8_t *)pArgs->target;
|
|
|
|
targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target);
|
|
|
|
offsets=pArgs->offsets;
|
|
|
|
|
|
|
|
table=cnv->sharedData->mbcs.fromUnicodeTable;
|
|
|
|
if(cnv->sharedData->mbcs.utf8Friendly) {
|
|
|
|
mbcsIndex=cnv->sharedData->mbcs.mbcsIndex;
|
|
|
|
} else {
|
2023-05-23 00:05:01 +00:00
|
|
|
mbcsIndex=nullptr;
|
2020-08-11 09:10:23 +00:00
|
|
|
}
|
|
|
|
if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
|
|
|
|
bytes=cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes;
|
|
|
|
} else {
|
|
|
|
bytes=cnv->sharedData->mbcs.fromUnicodeBytes;
|
|
|
|
}
|
|
|
|
asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips;
|
|
|
|
|
|
|
|
/* get the converter state from UConverter */
|
|
|
|
c=cnv->fromUChar32;
|
|
|
|
|
|
|
|
if(outputType==MBCS_OUTPUT_2_SISO) {
|
|
|
|
prevLength=cnv->fromUnicodeStatus;
|
|
|
|
if(prevLength==0) {
|
|
|
|
/* set the real value */
|
|
|
|
prevLength=1;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
/* prevent fromUnicodeStatus from being set to something non-0 */
|
|
|
|
prevLength=0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* sourceIndex=-1 if the current character began in the previous buffer */
|
|
|
|
prevSourceIndex=-1;
|
|
|
|
sourceIndex= c==0 ? 0 : -1;
|
|
|
|
nextSourceIndex=0;
|
|
|
|
|
|
|
|
/* Get the SI/SO character for the converter */
|
|
|
|
siLength = static_cast<uint8_t>(getSISOBytes(SI, cnv->options, siBytes));
|
|
|
|
soLength = static_cast<uint8_t>(getSISOBytes(SO, cnv->options, soBytes));
|
|
|
|
|
|
|
|
/* conversion loop */
|
|
|
|
/*
|
|
|
|
* This is another piece of ugly code:
|
|
|
|
* A goto into the loop if the converter state contains a first surrogate
|
|
|
|
* from the previous function call.
|
|
|
|
* It saves me to check in each loop iteration a check of if(c==0)
|
|
|
|
* and duplicating the trail-surrogate-handling code in the else
|
|
|
|
* branch of that check.
|
|
|
|
* I could not find any other way to get around this other than
|
|
|
|
* using a function call for the conversion and callback, which would
|
|
|
|
* be even more inefficient.
|
|
|
|
*
|
|
|
|
* Markus Scherer 2000-jul-19
|
|
|
|
*/
|
|
|
|
if(c!=0 && targetCapacity>0) {
|
|
|
|
goto getTrail;
|
|
|
|
}
|
|
|
|
|
|
|
|
while(source<sourceLimit) {
|
|
|
|
/*
|
|
|
|
* This following test is to see if available input would overflow the output.
|
|
|
|
* It does not catch output of more than one byte that
|
|
|
|
* overflows as a result of a multi-byte character or callback output
|
|
|
|
* from the last source character.
|
|
|
|
* Therefore, those situations also test for overflows and will
|
|
|
|
* then break the loop, too.
|
|
|
|
*/
|
|
|
|
if(targetCapacity>0) {
|
|
|
|
/*
|
|
|
|
* Get a correct Unicode code point:
|
2023-05-23 00:05:01 +00:00
|
|
|
* a single char16_t for a BMP code point or
|
2020-08-11 09:10:23 +00:00
|
|
|
* a matched surrogate pair for a "supplementary code point".
|
|
|
|
*/
|
|
|
|
c=*source++;
|
|
|
|
++nextSourceIndex;
|
|
|
|
if(c<=0x7f && IS_ASCII_ROUNDTRIP(c, asciiRoundtrips)) {
|
|
|
|
*target++=(uint8_t)c;
|
2023-05-23 00:05:01 +00:00
|
|
|
if(offsets!=nullptr) {
|
2020-08-11 09:10:23 +00:00
|
|
|
*offsets++=sourceIndex;
|
|
|
|
prevSourceIndex=sourceIndex;
|
|
|
|
sourceIndex=nextSourceIndex;
|
|
|
|
}
|
|
|
|
--targetCapacity;
|
|
|
|
c=0;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* utf8Friendly table: Test for <=0xd7ff rather than <=MBCS_FAST_MAX
|
|
|
|
* to avoid dealing with surrogates.
|
|
|
|
* MBCS_FAST_MAX must be >=0xd7ff.
|
|
|
|
*/
|
2023-05-23 00:05:01 +00:00
|
|
|
if(c<=0xd7ff && mbcsIndex!=nullptr) {
|
2020-08-11 09:10:23 +00:00
|
|
|
value=mbcsIndex[c>>6];
|
|
|
|
|
|
|
|
/* get the bytes and the length for the output (copied from below and adapted for utf8Friendly data) */
|
|
|
|
/* There are only roundtrips (!=0) and no-mapping (==0) entries. */
|
|
|
|
switch(outputType) {
|
|
|
|
case MBCS_OUTPUT_2:
|
|
|
|
value=((const uint16_t *)bytes)[value +(c&0x3f)];
|
|
|
|
if(value<=0xff) {
|
|
|
|
if(value==0) {
|
|
|
|
goto unassigned;
|
|
|
|
} else {
|
|
|
|
length=1;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
length=2;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case MBCS_OUTPUT_2_SISO:
|
|
|
|
/* 1/2-byte stateful with Shift-In/Shift-Out */
|
|
|
|
/*
|
|
|
|
* Save the old state in the converter object
|
|
|
|
* right here, then change the local prevLength state variable if necessary.
|
|
|
|
* Then, if this character turns out to be unassigned or a fallback that
|
|
|
|
* is not taken, the callback code must not save the new state in the converter
|
|
|
|
* because the new state is for a character that is not output.
|
|
|
|
* However, the callback must still restore the state from the converter
|
|
|
|
* in case the callback function changed it for its output.
|
|
|
|
*/
|
|
|
|
cnv->fromUnicodeStatus=prevLength; /* save the old state */
|
|
|
|
value=((const uint16_t *)bytes)[value +(c&0x3f)];
|
|
|
|
if(value<=0xff) {
|
|
|
|
if(value==0) {
|
|
|
|
goto unassigned;
|
|
|
|
} else if(prevLength<=1) {
|
|
|
|
length=1;
|
|
|
|
} else {
|
|
|
|
/* change from double-byte mode to single-byte */
|
|
|
|
if (siLength == 1) {
|
|
|
|
value|=(uint32_t)siBytes[0]<<8;
|
|
|
|
length = 2;
|
|
|
|
} else if (siLength == 2) {
|
|
|
|
value|=(uint32_t)siBytes[1]<<8;
|
|
|
|
value|=(uint32_t)siBytes[0]<<16;
|
|
|
|
length = 3;
|
|
|
|
}
|
|
|
|
prevLength=1;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
if(prevLength==2) {
|
|
|
|
length=2;
|
|
|
|
} else {
|
|
|
|
/* change from single-byte mode to double-byte */
|
|
|
|
if (soLength == 1) {
|
|
|
|
value|=(uint32_t)soBytes[0]<<16;
|
|
|
|
length = 3;
|
|
|
|
} else if (soLength == 2) {
|
|
|
|
value|=(uint32_t)soBytes[1]<<16;
|
|
|
|
value|=(uint32_t)soBytes[0]<<24;
|
|
|
|
length = 4;
|
|
|
|
}
|
|
|
|
prevLength=2;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case MBCS_OUTPUT_DBCS_ONLY:
|
|
|
|
/* table with single-byte results, but only DBCS mappings used */
|
|
|
|
value=((const uint16_t *)bytes)[value +(c&0x3f)];
|
|
|
|
if(value<=0xff) {
|
|
|
|
/* no mapping or SBCS result, not taken for DBCS-only */
|
|
|
|
goto unassigned;
|
|
|
|
} else {
|
|
|
|
length=2;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case MBCS_OUTPUT_3:
|
|
|
|
p=bytes+(value+(c&0x3f))*3;
|
|
|
|
value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2];
|
|
|
|
if(value<=0xff) {
|
|
|
|
if(value==0) {
|
|
|
|
goto unassigned;
|
|
|
|
} else {
|
|
|
|
length=1;
|
|
|
|
}
|
|
|
|
} else if(value<=0xffff) {
|
|
|
|
length=2;
|
|
|
|
} else {
|
|
|
|
length=3;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case MBCS_OUTPUT_4:
|
|
|
|
value=((const uint32_t *)bytes)[value +(c&0x3f)];
|
|
|
|
if(value<=0xff) {
|
|
|
|
if(value==0) {
|
|
|
|
goto unassigned;
|
|
|
|
} else {
|
|
|
|
length=1;
|
|
|
|
}
|
|
|
|
} else if(value<=0xffff) {
|
|
|
|
length=2;
|
|
|
|
} else if(value<=0xffffff) {
|
|
|
|
length=3;
|
|
|
|
} else {
|
|
|
|
length=4;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case MBCS_OUTPUT_3_EUC:
|
|
|
|
value=((const uint16_t *)bytes)[value +(c&0x3f)];
|
|
|
|
/* EUC 16-bit fixed-length representation */
|
|
|
|
if(value<=0xff) {
|
|
|
|
if(value==0) {
|
|
|
|
goto unassigned;
|
|
|
|
} else {
|
|
|
|
length=1;
|
|
|
|
}
|
|
|
|
} else if((value&0x8000)==0) {
|
|
|
|
value|=0x8e8000;
|
|
|
|
length=3;
|
|
|
|
} else if((value&0x80)==0) {
|
|
|
|
value|=0x8f0080;
|
|
|
|
length=3;
|
|
|
|
} else {
|
|
|
|
length=2;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case MBCS_OUTPUT_4_EUC:
|
|
|
|
p=bytes+(value+(c&0x3f))*3;
|
|
|
|
value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2];
|
|
|
|
/* EUC 16-bit fixed-length representation applied to the first two bytes */
|
|
|
|
if(value<=0xff) {
|
|
|
|
if(value==0) {
|
|
|
|
goto unassigned;
|
|
|
|
} else {
|
|
|
|
length=1;
|
|
|
|
}
|
|
|
|
} else if(value<=0xffff) {
|
|
|
|
length=2;
|
|
|
|
} else if((value&0x800000)==0) {
|
|
|
|
value|=0x8e800000;
|
|
|
|
length=4;
|
|
|
|
} else if((value&0x8000)==0) {
|
|
|
|
value|=0x8f008000;
|
|
|
|
length=4;
|
|
|
|
} else {
|
|
|
|
length=3;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
/* must not occur */
|
|
|
|
/*
|
|
|
|
* To avoid compiler warnings that value & length may be
|
|
|
|
* used without having been initialized, we set them here.
|
|
|
|
* In reality, this is unreachable code.
|
|
|
|
* Not having a default branch also causes warnings with
|
|
|
|
* some compilers.
|
|
|
|
*/
|
|
|
|
value=0;
|
|
|
|
length=0;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
/* output the value */
|
|
|
|
} else {
|
|
|
|
/*
|
|
|
|
* This also tests if the codepage maps single surrogates.
|
|
|
|
* If it does, then surrogates are not paired but mapped separately.
|
|
|
|
* Note that in this case unmatched surrogates are not detected.
|
|
|
|
*/
|
|
|
|
if(U16_IS_SURROGATE(c) && !(unicodeMask&UCNV_HAS_SURROGATES)) {
|
|
|
|
if(U16_IS_SURROGATE_LEAD(c)) {
|
|
|
|
getTrail:
|
|
|
|
if(source<sourceLimit) {
|
|
|
|
/* test the following code unit */
|
2023-05-23 00:05:01 +00:00
|
|
|
char16_t trail=*source;
|
2020-08-11 09:10:23 +00:00
|
|
|
if(U16_IS_TRAIL(trail)) {
|
|
|
|
++source;
|
|
|
|
++nextSourceIndex;
|
|
|
|
c=U16_GET_SUPPLEMENTARY(c, trail);
|
|
|
|
if(!(unicodeMask&UCNV_HAS_SUPPLEMENTARY)) {
|
|
|
|
/* BMP-only codepages are stored without stage 1 entries for supplementary code points */
|
|
|
|
cnv->fromUnicodeStatus=prevLength; /* save the old state */
|
|
|
|
/* callback(unassigned) */
|
|
|
|
goto unassigned;
|
|
|
|
}
|
|
|
|
/* convert this supplementary code point */
|
|
|
|
/* exit this condition tree */
|
|
|
|
} else {
|
|
|
|
/* this is an unmatched lead code unit (1st surrogate) */
|
|
|
|
/* callback(illegal) */
|
|
|
|
*pErrorCode=U_ILLEGAL_CHAR_FOUND;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
/* no more input */
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
/* this is an unmatched trail code unit (2nd surrogate) */
|
|
|
|
/* callback(illegal) */
|
|
|
|
*pErrorCode=U_ILLEGAL_CHAR_FOUND;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* convert the Unicode code point in c into codepage bytes */
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The basic lookup is a triple-stage compact array (trie) lookup.
|
|
|
|
* For details see the beginning of this file.
|
|
|
|
*
|
|
|
|
* Single-byte codepages are handled with a different data structure
|
|
|
|
* by _MBCSSingle... functions.
|
|
|
|
*
|
|
|
|
* The result consists of a 32-bit value from stage 2 and
|
|
|
|
* a pointer to as many bytes as are stored per character.
|
|
|
|
* The pointer points to the character's bytes in stage 3.
|
|
|
|
* Bits 15..0 of the stage 2 entry contain the stage 3 index
|
|
|
|
* for that pointer, while bits 31..16 are flags for which of
|
|
|
|
* the 16 characters in the block are roundtrip-assigned.
|
|
|
|
*
|
|
|
|
* For 2-byte and 4-byte codepages, the bytes are stored as uint16_t
|
|
|
|
* respectively as uint32_t, in the platform encoding.
|
|
|
|
* For 3-byte codepages, the bytes are always stored in big-endian order.
|
|
|
|
*
|
|
|
|
* For EUC encodings that use only either 0x8e or 0x8f as the first
|
|
|
|
* byte of their longest byte sequences, the first two bytes in
|
|
|
|
* this third stage indicate with their 7th bits whether these bytes
|
2021-10-28 06:15:28 +00:00
|
|
|
* are to be written directly or actually need to be preceded by
|
2020-08-11 09:10:23 +00:00
|
|
|
* one of the two Single-Shift codes. With this, the third stage
|
|
|
|
* stores one byte fewer per character than the actual maximum length of
|
|
|
|
* EUC byte sequences.
|
|
|
|
*
|
|
|
|
* Other than that, leading zero bytes are removed and the other
|
|
|
|
* bytes output. A single zero byte may be output if the "assigned"
|
|
|
|
* bit in stage 2 was on.
|
|
|
|
* The data structure does not support zero byte output as a fallback,
|
|
|
|
* and also does not allow output of leading zeros.
|
|
|
|
*/
|
|
|
|
stage2Entry=MBCS_STAGE_2_FROM_U(table, c);
|
|
|
|
|
|
|
|
/* get the bytes and the length for the output */
|
|
|
|
switch(outputType) {
|
|
|
|
case MBCS_OUTPUT_2:
|
|
|
|
value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c);
|
|
|
|
if(value<=0xff) {
|
|
|
|
length=1;
|
|
|
|
} else {
|
|
|
|
length=2;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case MBCS_OUTPUT_2_SISO:
|
|
|
|
/* 1/2-byte stateful with Shift-In/Shift-Out */
|
|
|
|
/*
|
|
|
|
* Save the old state in the converter object
|
|
|
|
* right here, then change the local prevLength state variable if necessary.
|
|
|
|
* Then, if this character turns out to be unassigned or a fallback that
|
|
|
|
* is not taken, the callback code must not save the new state in the converter
|
|
|
|
* because the new state is for a character that is not output.
|
|
|
|
* However, the callback must still restore the state from the converter
|
|
|
|
* in case the callback function changed it for its output.
|
|
|
|
*/
|
|
|
|
cnv->fromUnicodeStatus=prevLength; /* save the old state */
|
|
|
|
value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c);
|
|
|
|
if(value<=0xff) {
|
|
|
|
if(value==0 && MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c)==0) {
|
|
|
|
/* no mapping, leave value==0 */
|
|
|
|
length=0;
|
|
|
|
} else if(prevLength<=1) {
|
|
|
|
length=1;
|
|
|
|
} else {
|
|
|
|
/* change from double-byte mode to single-byte */
|
|
|
|
if (siLength == 1) {
|
|
|
|
value|=(uint32_t)siBytes[0]<<8;
|
|
|
|
length = 2;
|
|
|
|
} else if (siLength == 2) {
|
|
|
|
value|=(uint32_t)siBytes[1]<<8;
|
|
|
|
value|=(uint32_t)siBytes[0]<<16;
|
|
|
|
length = 3;
|
|
|
|
}
|
|
|
|
prevLength=1;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
if(prevLength==2) {
|
|
|
|
length=2;
|
|
|
|
} else {
|
|
|
|
/* change from single-byte mode to double-byte */
|
|
|
|
if (soLength == 1) {
|
|
|
|
value|=(uint32_t)soBytes[0]<<16;
|
|
|
|
length = 3;
|
|
|
|
} else if (soLength == 2) {
|
|
|
|
value|=(uint32_t)soBytes[1]<<16;
|
|
|
|
value|=(uint32_t)soBytes[0]<<24;
|
|
|
|
length = 4;
|
|
|
|
}
|
|
|
|
prevLength=2;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case MBCS_OUTPUT_DBCS_ONLY:
|
|
|
|
/* table with single-byte results, but only DBCS mappings used */
|
|
|
|
value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c);
|
|
|
|
if(value<=0xff) {
|
|
|
|
/* no mapping or SBCS result, not taken for DBCS-only */
|
|
|
|
value=stage2Entry=0; /* stage2Entry=0 to reset roundtrip flags */
|
|
|
|
length=0;
|
|
|
|
} else {
|
|
|
|
length=2;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case MBCS_OUTPUT_3:
|
|
|
|
p=MBCS_POINTER_3_FROM_STAGE_2(bytes, stage2Entry, c);
|
|
|
|
value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2];
|
|
|
|
if(value<=0xff) {
|
|
|
|
length=1;
|
|
|
|
} else if(value<=0xffff) {
|
|
|
|
length=2;
|
|
|
|
} else {
|
|
|
|
length=3;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case MBCS_OUTPUT_4:
|
|
|
|
value=MBCS_VALUE_4_FROM_STAGE_2(bytes, stage2Entry, c);
|
|
|
|
if(value<=0xff) {
|
|
|
|
length=1;
|
|
|
|
} else if(value<=0xffff) {
|
|
|
|
length=2;
|
|
|
|
} else if(value<=0xffffff) {
|
|
|
|
length=3;
|
|
|
|
} else {
|
|
|
|
length=4;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case MBCS_OUTPUT_3_EUC:
|
|
|
|
value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c);
|
|
|
|
/* EUC 16-bit fixed-length representation */
|
|
|
|
if(value<=0xff) {
|
|
|
|
length=1;
|
|
|
|
} else if((value&0x8000)==0) {
|
|
|
|
value|=0x8e8000;
|
|
|
|
length=3;
|
|
|
|
} else if((value&0x80)==0) {
|
|
|
|
value|=0x8f0080;
|
|
|
|
length=3;
|
|
|
|
} else {
|
|
|
|
length=2;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case MBCS_OUTPUT_4_EUC:
|
|
|
|
p=MBCS_POINTER_3_FROM_STAGE_2(bytes, stage2Entry, c);
|
|
|
|
value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2];
|
|
|
|
/* EUC 16-bit fixed-length representation applied to the first two bytes */
|
|
|
|
if(value<=0xff) {
|
|
|
|
length=1;
|
|
|
|
} else if(value<=0xffff) {
|
|
|
|
length=2;
|
|
|
|
} else if((value&0x800000)==0) {
|
|
|
|
value|=0x8e800000;
|
|
|
|
length=4;
|
|
|
|
} else if((value&0x8000)==0) {
|
|
|
|
value|=0x8f008000;
|
|
|
|
length=4;
|
|
|
|
} else {
|
|
|
|
length=3;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
/* must not occur */
|
|
|
|
/*
|
|
|
|
* To avoid compiler warnings that value & length may be
|
|
|
|
* used without having been initialized, we set them here.
|
|
|
|
* In reality, this is unreachable code.
|
|
|
|
* Not having a default branch also causes warnings with
|
|
|
|
* some compilers.
|
|
|
|
*/
|
|
|
|
value=stage2Entry=0; /* stage2Entry=0 to reset roundtrip flags */
|
|
|
|
length=0;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* is this code point assigned, or do we use fallbacks? */
|
|
|
|
if(!(MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c)!=0 ||
|
|
|
|
(UCNV_FROM_U_USE_FALLBACK(cnv, c) && value!=0))
|
|
|
|
) {
|
|
|
|
/*
|
|
|
|
* We allow a 0 byte output if the "assigned" bit is set for this entry.
|
|
|
|
* There is no way with this data structure for fallback output
|
|
|
|
* to be a zero byte.
|
|
|
|
*/
|
|
|
|
|
|
|
|
unassigned:
|
|
|
|
/* try an extension mapping */
|
|
|
|
pArgs->source=source;
|
|
|
|
c=_extFromU(cnv, cnv->sharedData,
|
|
|
|
c, &source, sourceLimit,
|
|
|
|
&target, target+targetCapacity,
|
|
|
|
&offsets, sourceIndex,
|
|
|
|
pArgs->flush,
|
|
|
|
pErrorCode);
|
|
|
|
nextSourceIndex+=(int32_t)(source-pArgs->source);
|
|
|
|
prevLength=cnv->fromUnicodeStatus; /* restore SISO state */
|
|
|
|
|
|
|
|
if(U_FAILURE(*pErrorCode)) {
|
|
|
|
/* not mappable or buffer overflow */
|
|
|
|
break;
|
|
|
|
} else {
|
|
|
|
/* a mapping was written to the target, continue */
|
|
|
|
|
|
|
|
/* recalculate the targetCapacity after an extension mapping */
|
|
|
|
targetCapacity=(int32_t)(pArgs->targetLimit-(char *)target);
|
|
|
|
|
|
|
|
/* normal end of conversion: prepare for a new character */
|
2023-05-23 00:05:01 +00:00
|
|
|
if(offsets!=nullptr) {
|
2020-08-11 09:10:23 +00:00
|
|
|
prevSourceIndex=sourceIndex;
|
|
|
|
sourceIndex=nextSourceIndex;
|
|
|
|
}
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* write the output character bytes from value and length */
|
|
|
|
/* from the first if in the loop we know that targetCapacity>0 */
|
|
|
|
if(length<=targetCapacity) {
|
2023-05-23 00:05:01 +00:00
|
|
|
if(offsets==nullptr) {
|
2020-08-11 09:10:23 +00:00
|
|
|
switch(length) {
|
|
|
|
/* each branch falls through to the next one */
|
|
|
|
case 4:
|
|
|
|
*target++=(uint8_t)(value>>24);
|
|
|
|
U_FALLTHROUGH;
|
|
|
|
case 3:
|
|
|
|
*target++=(uint8_t)(value>>16);
|
|
|
|
U_FALLTHROUGH;
|
|
|
|
case 2:
|
|
|
|
*target++=(uint8_t)(value>>8);
|
|
|
|
U_FALLTHROUGH;
|
|
|
|
case 1:
|
|
|
|
*target++=(uint8_t)value;
|
|
|
|
U_FALLTHROUGH;
|
|
|
|
default:
|
|
|
|
/* will never occur */
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
switch(length) {
|
|
|
|
/* each branch falls through to the next one */
|
|
|
|
case 4:
|
|
|
|
*target++=(uint8_t)(value>>24);
|
|
|
|
*offsets++=sourceIndex;
|
|
|
|
U_FALLTHROUGH;
|
|
|
|
case 3:
|
|
|
|
*target++=(uint8_t)(value>>16);
|
|
|
|
*offsets++=sourceIndex;
|
|
|
|
U_FALLTHROUGH;
|
|
|
|
case 2:
|
|
|
|
*target++=(uint8_t)(value>>8);
|
|
|
|
*offsets++=sourceIndex;
|
|
|
|
U_FALLTHROUGH;
|
|
|
|
case 1:
|
|
|
|
*target++=(uint8_t)value;
|
|
|
|
*offsets++=sourceIndex;
|
|
|
|
U_FALLTHROUGH;
|
|
|
|
default:
|
|
|
|
/* will never occur */
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
targetCapacity-=length;
|
|
|
|
} else {
|
|
|
|
uint8_t *charErrorBuffer;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* We actually do this backwards here:
|
|
|
|
* In order to save an intermediate variable, we output
|
|
|
|
* first to the overflow buffer what does not fit into the
|
|
|
|
* regular target.
|
|
|
|
*/
|
|
|
|
/* we know that 1<=targetCapacity<length<=4 */
|
|
|
|
length-=targetCapacity;
|
|
|
|
charErrorBuffer=(uint8_t *)cnv->charErrorBuffer;
|
|
|
|
switch(length) {
|
|
|
|
/* each branch falls through to the next one */
|
|
|
|
case 3:
|
|
|
|
*charErrorBuffer++=(uint8_t)(value>>16);
|
|
|
|
U_FALLTHROUGH;
|
|
|
|
case 2:
|
|
|
|
*charErrorBuffer++=(uint8_t)(value>>8);
|
|
|
|
U_FALLTHROUGH;
|
|
|
|
case 1:
|
|
|
|
*charErrorBuffer=(uint8_t)value;
|
|
|
|
U_FALLTHROUGH;
|
|
|
|
default:
|
|
|
|
/* will never occur */
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
cnv->charErrorBufferLength=(int8_t)length;
|
|
|
|
|
|
|
|
/* now output what fits into the regular target */
|
|
|
|
value>>=8*length; /* length was reduced by targetCapacity */
|
|
|
|
switch(targetCapacity) {
|
|
|
|
/* each branch falls through to the next one */
|
|
|
|
case 3:
|
|
|
|
*target++=(uint8_t)(value>>16);
|
2023-05-23 00:05:01 +00:00
|
|
|
if(offsets!=nullptr) {
|
2020-08-11 09:10:23 +00:00
|
|
|
*offsets++=sourceIndex;
|
|
|
|
}
|
|
|
|
U_FALLTHROUGH;
|
|
|
|
case 2:
|
|
|
|
*target++=(uint8_t)(value>>8);
|
2023-05-23 00:05:01 +00:00
|
|
|
if(offsets!=nullptr) {
|
2020-08-11 09:10:23 +00:00
|
|
|
*offsets++=sourceIndex;
|
|
|
|
}
|
|
|
|
U_FALLTHROUGH;
|
|
|
|
case 1:
|
|
|
|
*target++=(uint8_t)value;
|
2023-05-23 00:05:01 +00:00
|
|
|
if(offsets!=nullptr) {
|
2020-08-11 09:10:23 +00:00
|
|
|
*offsets++=sourceIndex;
|
|
|
|
}
|
|
|
|
U_FALLTHROUGH;
|
|
|
|
default:
|
|
|
|
/* will never occur */
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* target overflow */
|
|
|
|
targetCapacity=0;
|
|
|
|
*pErrorCode=U_BUFFER_OVERFLOW_ERROR;
|
|
|
|
c=0;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* normal end of conversion: prepare for a new character */
|
|
|
|
c=0;
|
2023-05-23 00:05:01 +00:00
|
|
|
if(offsets!=nullptr) {
|
2020-08-11 09:10:23 +00:00
|
|
|
prevSourceIndex=sourceIndex;
|
|
|
|
sourceIndex=nextSourceIndex;
|
|
|
|
}
|
|
|
|
continue;
|
|
|
|
} else {
|
|
|
|
/* target is full */
|
|
|
|
*pErrorCode=U_BUFFER_OVERFLOW_ERROR;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* the end of the input stream and detection of truncated input
|
|
|
|
* are handled by the framework, but for EBCDIC_STATEFUL conversion
|
|
|
|
* we need to emit an SI at the very end
|
|
|
|
*
|
|
|
|
* conditions:
|
|
|
|
* successful
|
|
|
|
* EBCDIC_STATEFUL in DBCS mode
|
|
|
|
* end of input and no truncated input
|
|
|
|
*/
|
|
|
|
if( U_SUCCESS(*pErrorCode) &&
|
|
|
|
outputType==MBCS_OUTPUT_2_SISO && prevLength==2 &&
|
|
|
|
pArgs->flush && source>=sourceLimit && c==0
|
|
|
|
) {
|
|
|
|
/* EBCDIC_STATEFUL ending with DBCS: emit an SI to return the output stream to SBCS */
|
|
|
|
if(targetCapacity>0) {
|
|
|
|
*target++=(uint8_t)siBytes[0];
|
|
|
|
if (siLength == 2) {
|
|
|
|
if (targetCapacity<2) {
|
|
|
|
cnv->charErrorBuffer[0]=(uint8_t)siBytes[1];
|
|
|
|
cnv->charErrorBufferLength=1;
|
|
|
|
*pErrorCode=U_BUFFER_OVERFLOW_ERROR;
|
|
|
|
} else {
|
|
|
|
*target++=(uint8_t)siBytes[1];
|
|
|
|
}
|
|
|
|
}
|
2023-05-23 00:05:01 +00:00
|
|
|
if(offsets!=nullptr) {
|
2020-08-11 09:10:23 +00:00
|
|
|
/* set the last source character's index (sourceIndex points at sourceLimit now) */
|
|
|
|
*offsets++=prevSourceIndex;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
/* target is full */
|
|
|
|
cnv->charErrorBuffer[0]=(uint8_t)siBytes[0];
|
|
|
|
if (siLength == 2) {
|
|
|
|
cnv->charErrorBuffer[1]=(uint8_t)siBytes[1];
|
|
|
|
}
|
|
|
|
cnv->charErrorBufferLength=siLength;
|
|
|
|
*pErrorCode=U_BUFFER_OVERFLOW_ERROR;
|
|
|
|
}
|
|
|
|
prevLength=1; /* we switched into SBCS */
|
|
|
|
}
|
|
|
|
|
|
|
|
/* set the converter state back into UConverter */
|
|
|
|
cnv->fromUChar32=c;
|
|
|
|
cnv->fromUnicodeStatus=prevLength;
|
|
|
|
|
|
|
|
/* write back the updated pointers */
|
|
|
|
pArgs->source=source;
|
|
|
|
pArgs->target=(char *)target;
|
|
|
|
pArgs->offsets=offsets;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This is another simple conversion function for internal use by other
|
|
|
|
* conversion implementations.
|
|
|
|
* It does not use the converter state nor call callbacks.
|
|
|
|
* It does not handle the EBCDIC swaplfnl option (set in UConverter).
|
|
|
|
* It handles conversion extensions but not GB 18030.
|
|
|
|
*
|
|
|
|
* It converts one single Unicode code point into codepage bytes, encoded
|
|
|
|
* as one 32-bit value. The function returns the number of bytes in *pValue:
|
|
|
|
* 1..4 the number of bytes in *pValue
|
|
|
|
* 0 unassigned (*pValue undefined)
|
|
|
|
* -1 illegal (currently not used, *pValue undefined)
|
|
|
|
*
|
|
|
|
* *pValue will contain the resulting bytes with the last byte in bits 7..0,
|
|
|
|
* the second to last byte in bits 15..8, etc.
|
|
|
|
* Currently, the function assumes but does not check that 0<=c<=0x10ffff.
|
|
|
|
*/
|
|
|
|
U_CFUNC int32_t
|
|
|
|
ucnv_MBCSFromUChar32(UConverterSharedData *sharedData,
|
|
|
|
UChar32 c, uint32_t *pValue,
|
|
|
|
UBool useFallback) {
|
|
|
|
const int32_t *cx;
|
|
|
|
const uint16_t *table;
|
|
|
|
#if 0
|
|
|
|
/* #if 0 because this is not currently used in ICU - reduce code, increase code coverage */
|
|
|
|
const uint8_t *p;
|
|
|
|
#endif
|
|
|
|
uint32_t stage2Entry;
|
|
|
|
uint32_t value;
|
|
|
|
int32_t length;
|
|
|
|
|
|
|
|
/* BMP-only codepages are stored without stage 1 entries for supplementary code points */
|
|
|
|
if(c<=0xffff || (sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY)) {
|
|
|
|
table=sharedData->mbcs.fromUnicodeTable;
|
|
|
|
|
|
|
|
/* convert the Unicode code point in c into codepage bytes (same as in _MBCSFromUnicodeWithOffsets) */
|
|
|
|
if(sharedData->mbcs.outputType==MBCS_OUTPUT_1) {
|
|
|
|
value=MBCS_SINGLE_RESULT_FROM_U(table, (uint16_t *)sharedData->mbcs.fromUnicodeBytes, c);
|
|
|
|
/* is this code point assigned, or do we use fallbacks? */
|
|
|
|
if(useFallback ? value>=0x800 : value>=0xc00) {
|
|
|
|
*pValue=value&0xff;
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
} else /* outputType!=MBCS_OUTPUT_1 */ {
|
|
|
|
stage2Entry=MBCS_STAGE_2_FROM_U(table, c);
|
|
|
|
|
|
|
|
/* get the bytes and the length for the output */
|
|
|
|
switch(sharedData->mbcs.outputType) {
|
|
|
|
case MBCS_OUTPUT_2:
|
|
|
|
value=MBCS_VALUE_2_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c);
|
|
|
|
if(value<=0xff) {
|
|
|
|
length=1;
|
|
|
|
} else {
|
|
|
|
length=2;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
#if 0
|
|
|
|
/* #if 0 because this is not currently used in ICU - reduce code, increase code coverage */
|
|
|
|
case MBCS_OUTPUT_DBCS_ONLY:
|
|
|
|
/* table with single-byte results, but only DBCS mappings used */
|
|
|
|
value=MBCS_VALUE_2_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c);
|
|
|
|
if(value<=0xff) {
|
|
|
|
/* no mapping or SBCS result, not taken for DBCS-only */
|
|
|
|
value=stage2Entry=0; /* stage2Entry=0 to reset roundtrip flags */
|
|
|
|
length=0;
|
|
|
|
} else {
|
|
|
|
length=2;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case MBCS_OUTPUT_3:
|
|
|
|
p=MBCS_POINTER_3_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c);
|
|
|
|
value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2];
|
|
|
|
if(value<=0xff) {
|
|
|
|
length=1;
|
|
|
|
} else if(value<=0xffff) {
|
|
|
|
length=2;
|
|
|
|
} else {
|
|
|
|
length=3;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case MBCS_OUTPUT_4:
|
|
|
|
value=MBCS_VALUE_4_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c);
|
|
|
|
if(value<=0xff) {
|
|
|
|
length=1;
|
|
|
|
} else if(value<=0xffff) {
|
|
|
|
length=2;
|
|
|
|
} else if(value<=0xffffff) {
|
|
|
|
length=3;
|
|
|
|
} else {
|
|
|
|
length=4;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case MBCS_OUTPUT_3_EUC:
|
|
|
|
value=MBCS_VALUE_2_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c);
|
|
|
|
/* EUC 16-bit fixed-length representation */
|
|
|
|
if(value<=0xff) {
|
|
|
|
length=1;
|
|
|
|
} else if((value&0x8000)==0) {
|
|
|
|
value|=0x8e8000;
|
|
|
|
length=3;
|
|
|
|
} else if((value&0x80)==0) {
|
|
|
|
value|=0x8f0080;
|
|
|
|
length=3;
|
|
|
|
} else {
|
|
|
|
length=2;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case MBCS_OUTPUT_4_EUC:
|
|
|
|
p=MBCS_POINTER_3_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c);
|
|
|
|
value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2];
|
|
|
|
/* EUC 16-bit fixed-length representation applied to the first two bytes */
|
|
|
|
if(value<=0xff) {
|
|
|
|
length=1;
|
|
|
|
} else if(value<=0xffff) {
|
|
|
|
length=2;
|
|
|
|
} else if((value&0x800000)==0) {
|
|
|
|
value|=0x8e800000;
|
|
|
|
length=4;
|
|
|
|
} else if((value&0x8000)==0) {
|
|
|
|
value|=0x8f008000;
|
|
|
|
length=4;
|
|
|
|
} else {
|
|
|
|
length=3;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
#endif
|
|
|
|
default:
|
|
|
|
/* must not occur */
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* is this code point assigned, or do we use fallbacks? */
|
|
|
|
if( MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c) ||
|
|
|
|
(FROM_U_USE_FALLBACK(useFallback, c) && value!=0)
|
|
|
|
) {
|
|
|
|
/*
|
|
|
|
* We allow a 0 byte output if the "assigned" bit is set for this entry.
|
|
|
|
* There is no way with this data structure for fallback output
|
|
|
|
* to be a zero byte.
|
|
|
|
*/
|
|
|
|
/* assigned */
|
|
|
|
*pValue=value;
|
|
|
|
return length;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
cx=sharedData->mbcs.extIndexes;
|
2023-05-23 00:05:01 +00:00
|
|
|
if(cx!=nullptr) {
|
2020-08-11 09:10:23 +00:00
|
|
|
length=ucnv_extSimpleMatchFromU(cx, c, pValue, useFallback);
|
|
|
|
return length>=0 ? length : -length; /* return abs(length); */
|
|
|
|
}
|
|
|
|
|
|
|
|
/* unassigned */
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
#if 0
|
|
|
|
/*
|
|
|
|
* This function has been moved to ucnv2022.c for inlining.
|
|
|
|
* This implementation is here only for documentation purposes
|
|
|
|
*/
|
|
|
|
|
|
|
|
/**
|
|
|
|
* This version of ucnv_MBCSFromUChar32() is optimized for single-byte codepages.
|
|
|
|
* It does not handle the EBCDIC swaplfnl option (set in UConverter).
|
|
|
|
* It does not handle conversion extensions (_extFromU()).
|
|
|
|
*
|
|
|
|
* It returns the codepage byte for the code point, or -1 if it is unassigned.
|
|
|
|
*/
|
|
|
|
U_CFUNC int32_t
|
|
|
|
ucnv_MBCSSingleFromUChar32(UConverterSharedData *sharedData,
|
|
|
|
UChar32 c,
|
|
|
|
UBool useFallback) {
|
|
|
|
const uint16_t *table;
|
|
|
|
int32_t value;
|
|
|
|
|
|
|
|
/* BMP-only codepages are stored without stage 1 entries for supplementary code points */
|
|
|
|
if(c>=0x10000 && !(sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY)) {
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* convert the Unicode code point in c into codepage bytes (same as in _MBCSFromUnicodeWithOffsets) */
|
|
|
|
table=sharedData->mbcs.fromUnicodeTable;
|
|
|
|
|
|
|
|
/* get the byte for the output */
|
|
|
|
value=MBCS_SINGLE_RESULT_FROM_U(table, (uint16_t *)sharedData->mbcs.fromUnicodeBytes, c);
|
|
|
|
/* is this code point assigned, or do we use fallbacks? */
|
|
|
|
if(useFallback ? value>=0x800 : value>=0xc00) {
|
|
|
|
return value&0xff;
|
|
|
|
} else {
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* MBCS-from-UTF-8 conversion functions ------------------------------------- */
|
|
|
|
|
|
|
|
/* offsets for n-byte UTF-8 sequences that were calculated with ((lead<<6)+trail)<<6+trail... */
|
|
|
|
static const UChar32
|
|
|
|
utf8_offsets[5]={ 0, 0, 0x3080, 0xE2080, 0x3C82080 };
|
|
|
|
|
|
|
|
static void U_CALLCONV
|
|
|
|
ucnv_SBCSFromUTF8(UConverterFromUnicodeArgs *pFromUArgs,
|
|
|
|
UConverterToUnicodeArgs *pToUArgs,
|
|
|
|
UErrorCode *pErrorCode) {
|
|
|
|
UConverter *utf8, *cnv;
|
|
|
|
const uint8_t *source, *sourceLimit;
|
|
|
|
uint8_t *target;
|
|
|
|
int32_t targetCapacity;
|
|
|
|
|
|
|
|
const uint16_t *table, *sbcsIndex;
|
|
|
|
const uint16_t *results;
|
|
|
|
|
|
|
|
int8_t oldToULength, toULength, toULimit;
|
|
|
|
|
|
|
|
UChar32 c;
|
|
|
|
uint8_t b, t1, t2;
|
|
|
|
|
|
|
|
uint32_t asciiRoundtrips;
|
|
|
|
uint16_t value, minValue = 0;
|
|
|
|
UBool hasSupplementary;
|
|
|
|
|
|
|
|
/* set up the local pointers */
|
|
|
|
utf8=pToUArgs->converter;
|
|
|
|
cnv=pFromUArgs->converter;
|
|
|
|
source=(uint8_t *)pToUArgs->source;
|
|
|
|
sourceLimit=(uint8_t *)pToUArgs->sourceLimit;
|
|
|
|
target=(uint8_t *)pFromUArgs->target;
|
|
|
|
targetCapacity=(int32_t)(pFromUArgs->targetLimit-pFromUArgs->target);
|
|
|
|
|
|
|
|
table=cnv->sharedData->mbcs.fromUnicodeTable;
|
|
|
|
sbcsIndex=cnv->sharedData->mbcs.sbcsIndex;
|
|
|
|
if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
|
|
|
|
results=(uint16_t *)cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes;
|
|
|
|
} else {
|
|
|
|
results=(uint16_t *)cnv->sharedData->mbcs.fromUnicodeBytes;
|
|
|
|
}
|
|
|
|
asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips;
|
|
|
|
|
|
|
|
if(cnv->useFallback) {
|
|
|
|
/* use all roundtrip and fallback results */
|
|
|
|
minValue=0x800;
|
|
|
|
} else {
|
|
|
|
/* use only roundtrips and fallbacks from private-use characters */
|
|
|
|
minValue=0xc00;
|
|
|
|
}
|
|
|
|
hasSupplementary=(UBool)(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY);
|
|
|
|
|
|
|
|
/* get the converter state from the UTF-8 UConverter */
|
|
|
|
if(utf8->toULength > 0) {
|
|
|
|
toULength=oldToULength=utf8->toULength;
|
|
|
|
toULimit=(int8_t)utf8->mode;
|
|
|
|
c=(UChar32)utf8->toUnicodeStatus;
|
|
|
|
} else {
|
|
|
|
toULength=oldToULength=toULimit=0;
|
|
|
|
c = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
// The conversion loop checks source<sourceLimit only once per 1/2/3-byte character.
|
|
|
|
// If the buffer ends with a truncated 2- or 3-byte sequence,
|
|
|
|
// then we reduce the sourceLimit to before that,
|
|
|
|
// and collect the remaining bytes after the conversion loop.
|
|
|
|
{
|
|
|
|
// Do not go back into the bytes that will be read for finishing a partial
|
|
|
|
// sequence from the previous buffer.
|
|
|
|
int32_t length=(int32_t)(sourceLimit-source) - (toULimit-oldToULength);
|
|
|
|
if(length>0) {
|
|
|
|
uint8_t b1=*(sourceLimit-1);
|
|
|
|
if(U8_IS_SINGLE(b1)) {
|
|
|
|
// common ASCII character
|
|
|
|
} else if(U8_IS_TRAIL(b1) && length>=2) {
|
|
|
|
uint8_t b2=*(sourceLimit-2);
|
|
|
|
if(0xe0<=b2 && b2<0xf0 && U8_IS_VALID_LEAD3_AND_T1(b2, b1)) {
|
|
|
|
// truncated 3-byte sequence
|
|
|
|
sourceLimit-=2;
|
|
|
|
}
|
|
|
|
} else if(0xc2<=b1 && b1<0xf0) {
|
|
|
|
// truncated 2- or 3-byte sequence
|
|
|
|
--sourceLimit;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if(c!=0 && targetCapacity>0) {
|
|
|
|
utf8->toUnicodeStatus=0;
|
|
|
|
utf8->toULength=0;
|
|
|
|
goto moreBytes;
|
|
|
|
/*
|
|
|
|
* Note: We could avoid the goto by duplicating some of the moreBytes
|
|
|
|
* code, but only up to the point of collecting a complete UTF-8
|
|
|
|
* sequence; then recurse for the toUBytes[toULength]
|
|
|
|
* and then continue with normal conversion.
|
|
|
|
*
|
|
|
|
* If so, move this code to just after initializing the minimum
|
|
|
|
* set of local variables for reading the UTF-8 input
|
|
|
|
* (utf8, source, target, limits but not cnv, table, minValue, etc.).
|
|
|
|
*
|
|
|
|
* Potential advantages:
|
|
|
|
* - avoid the goto
|
|
|
|
* - oldToULength could become a local variable in just those code blocks
|
|
|
|
* that deal with buffer boundaries
|
|
|
|
* - possibly faster if the goto prevents some compiler optimizations
|
|
|
|
* (this would need measuring to confirm)
|
|
|
|
* Disadvantage:
|
|
|
|
* - code duplication
|
|
|
|
*/
|
|
|
|
}
|
|
|
|
|
|
|
|
/* conversion loop */
|
|
|
|
while(source<sourceLimit) {
|
|
|
|
if(targetCapacity>0) {
|
|
|
|
b=*source++;
|
|
|
|
if(U8_IS_SINGLE(b)) {
|
|
|
|
/* convert ASCII */
|
|
|
|
if(IS_ASCII_ROUNDTRIP(b, asciiRoundtrips)) {
|
|
|
|
*target++=(uint8_t)b;
|
|
|
|
--targetCapacity;
|
|
|
|
continue;
|
|
|
|
} else {
|
|
|
|
c=b;
|
|
|
|
value=SBCS_RESULT_FROM_UTF8(sbcsIndex, results, 0, c);
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
if(b<0xe0) {
|
|
|
|
if( /* handle U+0080..U+07FF inline */
|
|
|
|
b>=0xc2 &&
|
|
|
|
(t1=(uint8_t)(*source-0x80)) <= 0x3f
|
|
|
|
) {
|
|
|
|
c=b&0x1f;
|
|
|
|
++source;
|
|
|
|
value=SBCS_RESULT_FROM_UTF8(sbcsIndex, results, c, t1);
|
|
|
|
if(value>=minValue) {
|
|
|
|
*target++=(uint8_t)value;
|
|
|
|
--targetCapacity;
|
|
|
|
continue;
|
|
|
|
} else {
|
|
|
|
c=(c<<6)|t1;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
c=-1;
|
|
|
|
}
|
|
|
|
} else if(b==0xe0) {
|
|
|
|
if( /* handle U+0800..U+0FFF inline */
|
|
|
|
(t1=(uint8_t)(source[0]-0x80)) <= 0x3f && t1 >= 0x20 &&
|
|
|
|
(t2=(uint8_t)(source[1]-0x80)) <= 0x3f
|
|
|
|
) {
|
|
|
|
c=t1;
|
|
|
|
source+=2;
|
|
|
|
value=SBCS_RESULT_FROM_UTF8(sbcsIndex, results, c, t2);
|
|
|
|
if(value>=minValue) {
|
|
|
|
*target++=(uint8_t)value;
|
|
|
|
--targetCapacity;
|
|
|
|
continue;
|
|
|
|
} else {
|
|
|
|
c=(c<<6)|t2;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
c=-1;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
c=-1;
|
|
|
|
}
|
|
|
|
|
|
|
|
if(c<0) {
|
|
|
|
/* handle "complicated" and error cases, and continuing partial characters */
|
|
|
|
oldToULength=0;
|
|
|
|
toULength=1;
|
|
|
|
toULimit=U8_COUNT_BYTES_NON_ASCII(b);
|
|
|
|
c=b;
|
|
|
|
moreBytes:
|
|
|
|
while(toULength<toULimit) {
|
|
|
|
/*
|
|
|
|
* The sourceLimit may have been adjusted before the conversion loop
|
|
|
|
* to stop before a truncated sequence.
|
|
|
|
* Here we need to use the real limit in case we have two truncated
|
|
|
|
* sequences at the end.
|
|
|
|
* See ticket #7492.
|
|
|
|
*/
|
|
|
|
if(source<(uint8_t *)pToUArgs->sourceLimit) {
|
|
|
|
b=*source;
|
|
|
|
if(icu::UTF8::isValidTrail(c, b, toULength, toULimit)) {
|
|
|
|
++source;
|
|
|
|
++toULength;
|
|
|
|
c=(c<<6)+b;
|
|
|
|
} else {
|
|
|
|
break; /* sequence too short, stop with toULength<toULimit */
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
/* store the partial UTF-8 character, compatible with the regular UTF-8 converter */
|
|
|
|
source-=(toULength-oldToULength);
|
|
|
|
while(oldToULength<toULength) {
|
|
|
|
utf8->toUBytes[oldToULength++]=*source++;
|
|
|
|
}
|
|
|
|
utf8->toUnicodeStatus=c;
|
|
|
|
utf8->toULength=toULength;
|
|
|
|
utf8->mode=toULimit;
|
|
|
|
pToUArgs->source=(char *)source;
|
|
|
|
pFromUArgs->target=(char *)target;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if(toULength==toULimit) {
|
|
|
|
c-=utf8_offsets[toULength];
|
|
|
|
if(toULength<=3) { /* BMP */
|
|
|
|
value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
|
|
|
|
} else {
|
|
|
|
/* supplementary code point */
|
|
|
|
if(!hasSupplementary) {
|
|
|
|
/* BMP-only codepages are stored without stage 1 entries for supplementary code points */
|
|
|
|
value=0;
|
|
|
|
} else {
|
|
|
|
value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
/* error handling: illegal UTF-8 byte sequence */
|
|
|
|
source-=(toULength-oldToULength);
|
|
|
|
while(oldToULength<toULength) {
|
|
|
|
utf8->toUBytes[oldToULength++]=*source++;
|
|
|
|
}
|
|
|
|
utf8->toULength=toULength;
|
|
|
|
pToUArgs->source=(char *)source;
|
|
|
|
pFromUArgs->target=(char *)target;
|
|
|
|
*pErrorCode=U_ILLEGAL_CHAR_FOUND;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if(value>=minValue) {
|
|
|
|
/* output the mapping for c */
|
|
|
|
*target++=(uint8_t)value;
|
|
|
|
--targetCapacity;
|
|
|
|
} else {
|
|
|
|
/* value<minValue means c is unassigned (unmappable) */
|
|
|
|
/*
|
|
|
|
* Try an extension mapping.
|
|
|
|
* Pass in no source because we don't have UTF-16 input.
|
|
|
|
* If we have a partial match on c, we will return and revert
|
|
|
|
* to UTF-8->UTF-16->charset conversion.
|
|
|
|
*/
|
2023-05-23 00:05:01 +00:00
|
|
|
static const char16_t nul=0;
|
|
|
|
const char16_t *noSource=&nul;
|
2020-08-11 09:10:23 +00:00
|
|
|
c=_extFromU(cnv, cnv->sharedData,
|
|
|
|
c, &noSource, noSource,
|
|
|
|
&target, target+targetCapacity,
|
2023-05-23 00:05:01 +00:00
|
|
|
nullptr, -1,
|
2020-08-11 09:10:23 +00:00
|
|
|
pFromUArgs->flush,
|
|
|
|
pErrorCode);
|
|
|
|
|
|
|
|
if(U_FAILURE(*pErrorCode)) {
|
|
|
|
/* not mappable or buffer overflow */
|
|
|
|
cnv->fromUChar32=c;
|
|
|
|
break;
|
|
|
|
} else if(cnv->preFromUFirstCP>=0) {
|
|
|
|
/*
|
|
|
|
* Partial match, return and revert to pivoting.
|
|
|
|
* In normal from-UTF-16 conversion, we would just continue
|
|
|
|
* but then exit the loop because the extension match would
|
|
|
|
* have consumed the source.
|
|
|
|
*/
|
|
|
|
*pErrorCode=U_USING_DEFAULT_WARNING;
|
|
|
|
break;
|
|
|
|
} else {
|
|
|
|
/* a mapping was written to the target, continue */
|
|
|
|
|
|
|
|
/* recalculate the targetCapacity after an extension mapping */
|
|
|
|
targetCapacity=(int32_t)(pFromUArgs->targetLimit-(char *)target);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
/* target is full */
|
|
|
|
*pErrorCode=U_BUFFER_OVERFLOW_ERROR;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The sourceLimit may have been adjusted before the conversion loop
|
|
|
|
* to stop before a truncated sequence.
|
|
|
|
* If so, then collect the truncated sequence now.
|
|
|
|
*/
|
|
|
|
if(U_SUCCESS(*pErrorCode) &&
|
|
|
|
cnv->preFromUFirstCP<0 &&
|
|
|
|
source<(sourceLimit=(uint8_t *)pToUArgs->sourceLimit)) {
|
|
|
|
c=utf8->toUBytes[0]=b=*source++;
|
|
|
|
toULength=1;
|
|
|
|
toULimit=U8_COUNT_BYTES(b);
|
|
|
|
while(source<sourceLimit) {
|
|
|
|
utf8->toUBytes[toULength++]=b=*source++;
|
|
|
|
c=(c<<6)+b;
|
|
|
|
}
|
|
|
|
utf8->toUnicodeStatus=c;
|
|
|
|
utf8->toULength=toULength;
|
|
|
|
utf8->mode=toULimit;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* write back the updated pointers */
|
|
|
|
pToUArgs->source=(char *)source;
|
|
|
|
pFromUArgs->target=(char *)target;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void U_CALLCONV
|
|
|
|
ucnv_DBCSFromUTF8(UConverterFromUnicodeArgs *pFromUArgs,
|
|
|
|
UConverterToUnicodeArgs *pToUArgs,
|
|
|
|
UErrorCode *pErrorCode) {
|
|
|
|
UConverter *utf8, *cnv;
|
|
|
|
const uint8_t *source, *sourceLimit;
|
|
|
|
uint8_t *target;
|
|
|
|
int32_t targetCapacity;
|
|
|
|
|
|
|
|
const uint16_t *table, *mbcsIndex;
|
|
|
|
const uint16_t *results;
|
|
|
|
|
|
|
|
int8_t oldToULength, toULength, toULimit;
|
|
|
|
|
|
|
|
UChar32 c;
|
|
|
|
uint8_t b, t1, t2;
|
|
|
|
|
|
|
|
uint32_t stage2Entry;
|
|
|
|
uint32_t asciiRoundtrips;
|
|
|
|
uint16_t value = 0;
|
|
|
|
UBool hasSupplementary;
|
|
|
|
|
|
|
|
/* set up the local pointers */
|
|
|
|
utf8=pToUArgs->converter;
|
|
|
|
cnv=pFromUArgs->converter;
|
|
|
|
source=(uint8_t *)pToUArgs->source;
|
|
|
|
sourceLimit=(uint8_t *)pToUArgs->sourceLimit;
|
|
|
|
target=(uint8_t *)pFromUArgs->target;
|
|
|
|
targetCapacity=(int32_t)(pFromUArgs->targetLimit-pFromUArgs->target);
|
|
|
|
|
|
|
|
table=cnv->sharedData->mbcs.fromUnicodeTable;
|
|
|
|
mbcsIndex=cnv->sharedData->mbcs.mbcsIndex;
|
|
|
|
if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
|
|
|
|
results=(uint16_t *)cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes;
|
|
|
|
} else {
|
|
|
|
results=(uint16_t *)cnv->sharedData->mbcs.fromUnicodeBytes;
|
|
|
|
}
|
|
|
|
asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips;
|
|
|
|
|
|
|
|
hasSupplementary=(UBool)(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY);
|
|
|
|
|
|
|
|
/* get the converter state from the UTF-8 UConverter */
|
|
|
|
if(utf8->toULength > 0) {
|
|
|
|
toULength=oldToULength=utf8->toULength;
|
|
|
|
toULimit=(int8_t)utf8->mode;
|
|
|
|
c=(UChar32)utf8->toUnicodeStatus;
|
|
|
|
} else {
|
|
|
|
toULength=oldToULength=toULimit=0;
|
|
|
|
c = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
// The conversion loop checks source<sourceLimit only once per 1/2/3-byte character.
|
|
|
|
// If the buffer ends with a truncated 2- or 3-byte sequence,
|
|
|
|
// then we reduce the sourceLimit to before that,
|
|
|
|
// and collect the remaining bytes after the conversion loop.
|
|
|
|
{
|
|
|
|
// Do not go back into the bytes that will be read for finishing a partial
|
|
|
|
// sequence from the previous buffer.
|
|
|
|
int32_t length=(int32_t)(sourceLimit-source) - (toULimit-oldToULength);
|
|
|
|
if(length>0) {
|
|
|
|
uint8_t b1=*(sourceLimit-1);
|
|
|
|
if(U8_IS_SINGLE(b1)) {
|
|
|
|
// common ASCII character
|
|
|
|
} else if(U8_IS_TRAIL(b1) && length>=2) {
|
|
|
|
uint8_t b2=*(sourceLimit-2);
|
|
|
|
if(0xe0<=b2 && b2<0xf0 && U8_IS_VALID_LEAD3_AND_T1(b2, b1)) {
|
|
|
|
// truncated 3-byte sequence
|
|
|
|
sourceLimit-=2;
|
|
|
|
}
|
|
|
|
} else if(0xc2<=b1 && b1<0xf0) {
|
|
|
|
// truncated 2- or 3-byte sequence
|
|
|
|
--sourceLimit;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if(c!=0 && targetCapacity>0) {
|
|
|
|
utf8->toUnicodeStatus=0;
|
|
|
|
utf8->toULength=0;
|
|
|
|
goto moreBytes;
|
|
|
|
/* See note in ucnv_SBCSFromUTF8() about this goto. */
|
|
|
|
}
|
|
|
|
|
|
|
|
/* conversion loop */
|
|
|
|
while(source<sourceLimit) {
|
|
|
|
if(targetCapacity>0) {
|
|
|
|
b=*source++;
|
|
|
|
if(U8_IS_SINGLE(b)) {
|
|
|
|
/* convert ASCII */
|
|
|
|
if(IS_ASCII_ROUNDTRIP(b, asciiRoundtrips)) {
|
|
|
|
*target++=b;
|
|
|
|
--targetCapacity;
|
|
|
|
continue;
|
|
|
|
} else {
|
|
|
|
value=DBCS_RESULT_FROM_UTF8(mbcsIndex, results, 0, b);
|
|
|
|
if(value==0) {
|
|
|
|
c=b;
|
|
|
|
goto unassigned;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
if(b>=0xe0) {
|
|
|
|
if( /* handle U+0800..U+D7FF inline */
|
|
|
|
b<=0xed && // do not assume maxFastUChar>0xd7ff
|
|
|
|
U8_IS_VALID_LEAD3_AND_T1(b, t1=source[0]) &&
|
|
|
|
(t2=(uint8_t)(source[1]-0x80)) <= 0x3f
|
|
|
|
) {
|
|
|
|
c=((b&0xf)<<6)|(t1&0x3f);
|
|
|
|
source+=2;
|
|
|
|
value=DBCS_RESULT_FROM_UTF8(mbcsIndex, results, c, t2);
|
|
|
|
if(value==0) {
|
|
|
|
c=(c<<6)|t2;
|
|
|
|
goto unassigned;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
c=-1;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
if( /* handle U+0080..U+07FF inline */
|
|
|
|
b>=0xc2 &&
|
|
|
|
(t1=(uint8_t)(*source-0x80)) <= 0x3f
|
|
|
|
) {
|
|
|
|
c=b&0x1f;
|
|
|
|
++source;
|
|
|
|
value=DBCS_RESULT_FROM_UTF8(mbcsIndex, results, c, t1);
|
|
|
|
if(value==0) {
|
|
|
|
c=(c<<6)|t1;
|
|
|
|
goto unassigned;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
c=-1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if(c<0) {
|
|
|
|
/* handle "complicated" and error cases, and continuing partial characters */
|
|
|
|
oldToULength=0;
|
|
|
|
toULength=1;
|
|
|
|
toULimit=U8_COUNT_BYTES_NON_ASCII(b);
|
|
|
|
c=b;
|
|
|
|
moreBytes:
|
|
|
|
while(toULength<toULimit) {
|
|
|
|
/*
|
|
|
|
* The sourceLimit may have been adjusted before the conversion loop
|
|
|
|
* to stop before a truncated sequence.
|
|
|
|
* Here we need to use the real limit in case we have two truncated
|
|
|
|
* sequences at the end.
|
|
|
|
* See ticket #7492.
|
|
|
|
*/
|
|
|
|
if(source<(uint8_t *)pToUArgs->sourceLimit) {
|
|
|
|
b=*source;
|
|
|
|
if(icu::UTF8::isValidTrail(c, b, toULength, toULimit)) {
|
|
|
|
++source;
|
|
|
|
++toULength;
|
|
|
|
c=(c<<6)+b;
|
|
|
|
} else {
|
|
|
|
break; /* sequence too short, stop with toULength<toULimit */
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
/* store the partial UTF-8 character, compatible with the regular UTF-8 converter */
|
|
|
|
source-=(toULength-oldToULength);
|
|
|
|
while(oldToULength<toULength) {
|
|
|
|
utf8->toUBytes[oldToULength++]=*source++;
|
|
|
|
}
|
|
|
|
utf8->toUnicodeStatus=c;
|
|
|
|
utf8->toULength=toULength;
|
|
|
|
utf8->mode=toULimit;
|
|
|
|
pToUArgs->source=(char *)source;
|
|
|
|
pFromUArgs->target=(char *)target;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if(toULength==toULimit) {
|
|
|
|
c-=utf8_offsets[toULength];
|
|
|
|
if(toULength<=3) { /* BMP */
|
|
|
|
stage2Entry=MBCS_STAGE_2_FROM_U(table, c);
|
|
|
|
} else {
|
|
|
|
/* supplementary code point */
|
|
|
|
if(!hasSupplementary) {
|
|
|
|
/* BMP-only codepages are stored without stage 1 entries for supplementary code points */
|
|
|
|
stage2Entry=0;
|
|
|
|
} else {
|
|
|
|
stage2Entry=MBCS_STAGE_2_FROM_U(table, c);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
/* error handling: illegal UTF-8 byte sequence */
|
|
|
|
source-=(toULength-oldToULength);
|
|
|
|
while(oldToULength<toULength) {
|
|
|
|
utf8->toUBytes[oldToULength++]=*source++;
|
|
|
|
}
|
|
|
|
utf8->toULength=toULength;
|
|
|
|
pToUArgs->source=(char *)source;
|
|
|
|
pFromUArgs->target=(char *)target;
|
|
|
|
*pErrorCode=U_ILLEGAL_CHAR_FOUND;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* get the bytes and the length for the output */
|
|
|
|
/* MBCS_OUTPUT_2 */
|
|
|
|
value=MBCS_VALUE_2_FROM_STAGE_2(results, stage2Entry, c);
|
|
|
|
|
|
|
|
/* is this code point assigned, or do we use fallbacks? */
|
|
|
|
if(!(MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c) ||
|
|
|
|
(UCNV_FROM_U_USE_FALLBACK(cnv, c) && value!=0))
|
|
|
|
) {
|
|
|
|
goto unassigned;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* write the output character bytes from value and length */
|
|
|
|
/* from the first if in the loop we know that targetCapacity>0 */
|
|
|
|
if(value<=0xff) {
|
|
|
|
/* this is easy because we know that there is enough space */
|
|
|
|
*target++=(uint8_t)value;
|
|
|
|
--targetCapacity;
|
|
|
|
} else /* length==2 */ {
|
|
|
|
*target++=(uint8_t)(value>>8);
|
|
|
|
if(2<=targetCapacity) {
|
|
|
|
*target++=(uint8_t)value;
|
|
|
|
targetCapacity-=2;
|
|
|
|
} else {
|
|
|
|
cnv->charErrorBuffer[0]=(char)value;
|
|
|
|
cnv->charErrorBufferLength=1;
|
|
|
|
|
|
|
|
/* target overflow */
|
|
|
|
*pErrorCode=U_BUFFER_OVERFLOW_ERROR;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
continue;
|
|
|
|
|
|
|
|
unassigned:
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
* Try an extension mapping.
|
|
|
|
* Pass in no source because we don't have UTF-16 input.
|
|
|
|
* If we have a partial match on c, we will return and revert
|
|
|
|
* to UTF-8->UTF-16->charset conversion.
|
|
|
|
*/
|
2023-05-23 00:05:01 +00:00
|
|
|
static const char16_t nul=0;
|
|
|
|
const char16_t *noSource=&nul;
|
2020-08-11 09:10:23 +00:00
|
|
|
c=_extFromU(cnv, cnv->sharedData,
|
|
|
|
c, &noSource, noSource,
|
|
|
|
&target, target+targetCapacity,
|
2023-05-23 00:05:01 +00:00
|
|
|
nullptr, -1,
|
2020-08-11 09:10:23 +00:00
|
|
|
pFromUArgs->flush,
|
|
|
|
pErrorCode);
|
|
|
|
|
|
|
|
if(U_FAILURE(*pErrorCode)) {
|
|
|
|
/* not mappable or buffer overflow */
|
|
|
|
cnv->fromUChar32=c;
|
|
|
|
break;
|
|
|
|
} else if(cnv->preFromUFirstCP>=0) {
|
|
|
|
/*
|
|
|
|
* Partial match, return and revert to pivoting.
|
|
|
|
* In normal from-UTF-16 conversion, we would just continue
|
|
|
|
* but then exit the loop because the extension match would
|
|
|
|
* have consumed the source.
|
|
|
|
*/
|
|
|
|
*pErrorCode=U_USING_DEFAULT_WARNING;
|
|
|
|
break;
|
|
|
|
} else {
|
|
|
|
/* a mapping was written to the target, continue */
|
|
|
|
|
|
|
|
/* recalculate the targetCapacity after an extension mapping */
|
|
|
|
targetCapacity=(int32_t)(pFromUArgs->targetLimit-(char *)target);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
/* target is full */
|
|
|
|
*pErrorCode=U_BUFFER_OVERFLOW_ERROR;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The sourceLimit may have been adjusted before the conversion loop
|
|
|
|
* to stop before a truncated sequence.
|
|
|
|
* If so, then collect the truncated sequence now.
|
|
|
|
*/
|
|
|
|
if(U_SUCCESS(*pErrorCode) &&
|
|
|
|
cnv->preFromUFirstCP<0 &&
|
|
|
|
source<(sourceLimit=(uint8_t *)pToUArgs->sourceLimit)) {
|
|
|
|
c=utf8->toUBytes[0]=b=*source++;
|
|
|
|
toULength=1;
|
|
|
|
toULimit=U8_COUNT_BYTES(b);
|
|
|
|
while(source<sourceLimit) {
|
|
|
|
utf8->toUBytes[toULength++]=b=*source++;
|
|
|
|
c=(c<<6)+b;
|
|
|
|
}
|
|
|
|
utf8->toUnicodeStatus=c;
|
|
|
|
utf8->toULength=toULength;
|
|
|
|
utf8->mode=toULimit;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* write back the updated pointers */
|
|
|
|
pToUArgs->source=(char *)source;
|
|
|
|
pFromUArgs->target=(char *)target;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* miscellaneous ------------------------------------------------------------ */
|
|
|
|
|
|
|
|
static void U_CALLCONV
|
|
|
|
ucnv_MBCSGetStarters(const UConverter* cnv,
|
|
|
|
UBool starters[256],
|
|
|
|
UErrorCode *) {
|
|
|
|
const int32_t *state0;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
state0=cnv->sharedData->mbcs.stateTable[cnv->sharedData->mbcs.dbcsOnlyState];
|
|
|
|
for(i=0; i<256; ++i) {
|
|
|
|
/* all bytes that cause a state transition from state 0 are lead bytes */
|
|
|
|
starters[i]= (UBool)MBCS_ENTRY_IS_TRANSITION(state0[i]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This is an internal function that allows other converter implementations
|
|
|
|
* to check whether a byte is a lead byte.
|
|
|
|
*/
|
|
|
|
U_CFUNC UBool
|
|
|
|
ucnv_MBCSIsLeadByte(UConverterSharedData *sharedData, char byte) {
|
|
|
|
return (UBool)MBCS_ENTRY_IS_TRANSITION(sharedData->mbcs.stateTable[0][(uint8_t)byte]);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void U_CALLCONV
|
|
|
|
ucnv_MBCSWriteSub(UConverterFromUnicodeArgs *pArgs,
|
|
|
|
int32_t offsetIndex,
|
|
|
|
UErrorCode *pErrorCode) {
|
|
|
|
UConverter *cnv=pArgs->converter;
|
|
|
|
char *p, *subchar;
|
|
|
|
char buffer[4];
|
|
|
|
int32_t length;
|
|
|
|
|
|
|
|
/* first, select between subChar and subChar1 */
|
|
|
|
if( cnv->subChar1!=0 &&
|
2023-05-23 00:05:01 +00:00
|
|
|
(cnv->sharedData->mbcs.extIndexes!=nullptr ?
|
2020-08-11 09:10:23 +00:00
|
|
|
cnv->useSubChar1 :
|
|
|
|
(cnv->invalidUCharBuffer[0]<=0xff))
|
|
|
|
) {
|
|
|
|
/* select subChar1 if it is set (not 0) and the unmappable Unicode code point is up to U+00ff (IBM MBCS behavior) */
|
|
|
|
subchar=(char *)&cnv->subChar1;
|
|
|
|
length=1;
|
|
|
|
} else {
|
|
|
|
/* select subChar in all other cases */
|
|
|
|
subchar=(char *)cnv->subChars;
|
|
|
|
length=cnv->subCharLen;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* reset the selector for the next code point */
|
2022-10-28 06:11:55 +00:00
|
|
|
cnv->useSubChar1=false;
|
2020-08-11 09:10:23 +00:00
|
|
|
|
|
|
|
if (cnv->sharedData->mbcs.outputType == MBCS_OUTPUT_2_SISO) {
|
|
|
|
p=buffer;
|
|
|
|
|
|
|
|
/* fromUnicodeStatus contains prevLength */
|
|
|
|
switch(length) {
|
|
|
|
case 1:
|
|
|
|
if(cnv->fromUnicodeStatus==2) {
|
|
|
|
/* DBCS mode and SBCS sub char: change to SBCS */
|
|
|
|
cnv->fromUnicodeStatus=1;
|
|
|
|
*p++=UCNV_SI;
|
|
|
|
}
|
|
|
|
*p++=subchar[0];
|
|
|
|
break;
|
|
|
|
case 2:
|
|
|
|
if(cnv->fromUnicodeStatus<=1) {
|
|
|
|
/* SBCS mode and DBCS sub char: change to DBCS */
|
|
|
|
cnv->fromUnicodeStatus=2;
|
|
|
|
*p++=UCNV_SO;
|
|
|
|
}
|
|
|
|
*p++=subchar[0];
|
|
|
|
*p++=subchar[1];
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
*pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
subchar=buffer;
|
|
|
|
length=(int32_t)(p-buffer);
|
|
|
|
}
|
|
|
|
|
|
|
|
ucnv_cbFromUWriteBytes(pArgs, subchar, length, offsetIndex, pErrorCode);
|
|
|
|
}
|
|
|
|
|
|
|
|
U_CFUNC UConverterType
|
|
|
|
ucnv_MBCSGetType(const UConverter* converter) {
|
|
|
|
/* SBCS, DBCS, and EBCDIC_STATEFUL are replaced by MBCS, but here we cheat a little */
|
|
|
|
if(converter->sharedData->mbcs.countStates==1) {
|
|
|
|
return (UConverterType)UCNV_SBCS;
|
|
|
|
} else if((converter->sharedData->mbcs.outputType&0xff)==MBCS_OUTPUT_2_SISO) {
|
|
|
|
return (UConverterType)UCNV_EBCDIC_STATEFUL;
|
|
|
|
} else if(converter->sharedData->staticData->minBytesPerChar==2 && converter->sharedData->staticData->maxBytesPerChar==2) {
|
|
|
|
return (UConverterType)UCNV_DBCS;
|
|
|
|
}
|
|
|
|
return (UConverterType)UCNV_MBCS;
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif /* #if !UCONFIG_NO_LEGACY_CONVERSION */
|