2015-10-02 17:20:50 +00:00
|
|
|
/* Copyright (c) 2007-2008 CSIRO
|
|
|
|
Copyright (c) 2007-2009 Xiph.Org Foundation
|
|
|
|
Written by Jean-Marc Valin */
|
|
|
|
/*
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
|
|
modification, are permitted provided that the following conditions
|
|
|
|
are met:
|
|
|
|
|
|
|
|
- Redistributions of source code must retain the above copyright
|
|
|
|
notice, this list of conditions and the following disclaimer.
|
|
|
|
|
|
|
|
- Redistributions in binary form must reproduce the above copyright
|
|
|
|
notice, this list of conditions and the following disclaimer in the
|
|
|
|
documentation and/or other materials provided with the distribution.
|
|
|
|
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
|
|
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
|
|
|
|
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
|
|
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
|
|
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
|
|
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
|
|
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
|
|
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
|
|
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
*/
|
2015-11-27 21:29:48 +00:00
|
|
|
#include "opus/opus_config.h"
|
2015-10-02 17:20:50 +00:00
|
|
|
|
2015-11-27 21:29:48 +00:00
|
|
|
#include "opus/celt/mathops.h"
|
|
|
|
#include "opus/celt/cwrs.h"
|
|
|
|
#include "opus/celt/vq.h"
|
|
|
|
#include "opus/celt/arch.h"
|
|
|
|
#include "opus/celt/os_support.h"
|
|
|
|
#include "opus/celt/bands.h"
|
|
|
|
#include "opus/celt/rate.h"
|
2016-05-01 15:48:46 +00:00
|
|
|
#include "opus/celt/pitch.h"
|
2015-10-02 17:20:50 +00:00
|
|
|
|
2016-05-01 15:48:46 +00:00
|
|
|
#ifndef OVERRIDE_vq_exp_rotation1
|
2015-10-02 17:20:50 +00:00
|
|
|
static void exp_rotation1(celt_norm *X, int len, int stride, opus_val16 c, opus_val16 s)
|
|
|
|
{
|
|
|
|
int i;
|
2016-05-01 15:48:46 +00:00
|
|
|
opus_val16 ms;
|
2015-10-02 17:20:50 +00:00
|
|
|
celt_norm *Xptr;
|
|
|
|
Xptr = X;
|
2016-05-01 15:48:46 +00:00
|
|
|
ms = NEG16(s);
|
2015-10-02 17:20:50 +00:00
|
|
|
for (i=0;i<len-stride;i++)
|
|
|
|
{
|
|
|
|
celt_norm x1, x2;
|
|
|
|
x1 = Xptr[0];
|
|
|
|
x2 = Xptr[stride];
|
2016-05-01 15:48:46 +00:00
|
|
|
Xptr[stride] = EXTRACT16(PSHR32(MAC16_16(MULT16_16(c, x2), s, x1), 15));
|
|
|
|
*Xptr++ = EXTRACT16(PSHR32(MAC16_16(MULT16_16(c, x1), ms, x2), 15));
|
2015-10-02 17:20:50 +00:00
|
|
|
}
|
|
|
|
Xptr = &X[len-2*stride-1];
|
|
|
|
for (i=len-2*stride-1;i>=0;i--)
|
|
|
|
{
|
|
|
|
celt_norm x1, x2;
|
|
|
|
x1 = Xptr[0];
|
|
|
|
x2 = Xptr[stride];
|
2016-05-01 15:48:46 +00:00
|
|
|
Xptr[stride] = EXTRACT16(PSHR32(MAC16_16(MULT16_16(c, x2), s, x1), 15));
|
|
|
|
*Xptr-- = EXTRACT16(PSHR32(MAC16_16(MULT16_16(c, x1), ms, x2), 15));
|
2015-10-02 17:20:50 +00:00
|
|
|
}
|
|
|
|
}
|
2016-05-01 15:48:46 +00:00
|
|
|
#endif /* OVERRIDE_vq_exp_rotation1 */
|
2015-10-02 17:20:50 +00:00
|
|
|
|
|
|
|
static void exp_rotation(celt_norm *X, int len, int dir, int stride, int K, int spread)
|
|
|
|
{
|
|
|
|
static const int SPREAD_FACTOR[3]={15,10,5};
|
|
|
|
int i;
|
|
|
|
opus_val16 c, s;
|
|
|
|
opus_val16 gain, theta;
|
|
|
|
int stride2=0;
|
|
|
|
int factor;
|
|
|
|
|
|
|
|
if (2*K>=len || spread==SPREAD_NONE)
|
|
|
|
return;
|
|
|
|
factor = SPREAD_FACTOR[spread-1];
|
|
|
|
|
|
|
|
gain = celt_div((opus_val32)MULT16_16(Q15_ONE,len),(opus_val32)(len+factor*K));
|
|
|
|
theta = HALF16(MULT16_16_Q15(gain,gain));
|
|
|
|
|
|
|
|
c = celt_cos_norm(EXTEND32(theta));
|
|
|
|
s = celt_cos_norm(EXTEND32(SUB16(Q15ONE,theta))); /* sin(theta) */
|
|
|
|
|
|
|
|
if (len>=8*stride)
|
|
|
|
{
|
|
|
|
stride2 = 1;
|
|
|
|
/* This is just a simple (equivalent) way of computing sqrt(len/stride) with rounding.
|
|
|
|
It's basically incrementing long as (stride2+0.5)^2 < len/stride. */
|
|
|
|
while ((stride2*stride2+stride2)*stride + (stride>>2) < len)
|
|
|
|
stride2++;
|
|
|
|
}
|
|
|
|
/*NOTE: As a minor optimization, we could be passing around log2(B), not B, for both this and for
|
|
|
|
extract_collapse_mask().*/
|
2016-05-01 15:48:46 +00:00
|
|
|
len = celt_udiv(len, stride);
|
2015-10-02 17:20:50 +00:00
|
|
|
for (i=0;i<stride;i++)
|
|
|
|
{
|
|
|
|
if (dir < 0)
|
|
|
|
{
|
|
|
|
if (stride2)
|
|
|
|
exp_rotation1(X+i*len, len, stride2, s, c);
|
|
|
|
exp_rotation1(X+i*len, len, 1, c, s);
|
|
|
|
} else {
|
|
|
|
exp_rotation1(X+i*len, len, 1, c, -s);
|
|
|
|
if (stride2)
|
|
|
|
exp_rotation1(X+i*len, len, stride2, s, -c);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Takes the pitch vector and the decoded residual vector, computes the gain
|
|
|
|
that will give ||p+g*y||=1 and mixes the residual with the pitch. */
|
|
|
|
static void normalise_residual(int * OPUS_RESTRICT iy, celt_norm * OPUS_RESTRICT X,
|
|
|
|
int N, opus_val32 Ryy, opus_val16 gain)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
#ifdef OPUS_FIXED_POINT
|
|
|
|
int k;
|
|
|
|
#endif
|
|
|
|
opus_val32 t;
|
|
|
|
opus_val16 g;
|
|
|
|
|
|
|
|
#ifdef OPUS_FIXED_POINT
|
|
|
|
k = celt_ilog2(Ryy)>>1;
|
|
|
|
#endif
|
|
|
|
t = VSHR32(Ryy, 2*(k-7));
|
|
|
|
g = MULT16_16_P15(celt_rsqrt_norm(t),gain);
|
|
|
|
|
|
|
|
i=0;
|
|
|
|
do
|
|
|
|
X[i] = EXTRACT16(PSHR32(MULT16_16(g, iy[i]), k+1));
|
|
|
|
while (++i < N);
|
|
|
|
}
|
|
|
|
|
|
|
|
static unsigned extract_collapse_mask(int *iy, int N, int B)
|
|
|
|
{
|
|
|
|
unsigned collapse_mask;
|
|
|
|
int N0;
|
|
|
|
int i;
|
|
|
|
if (B<=1)
|
|
|
|
return 1;
|
|
|
|
/*NOTE: As a minor optimization, we could be passing around log2(B), not B, for both this and for
|
|
|
|
exp_rotation().*/
|
2016-05-01 15:48:46 +00:00
|
|
|
N0 = celt_udiv(N, B);
|
2015-10-02 17:20:50 +00:00
|
|
|
collapse_mask = 0;
|
|
|
|
i=0; do {
|
|
|
|
int j;
|
2016-05-01 15:48:46 +00:00
|
|
|
unsigned tmp=0;
|
2015-10-02 17:20:50 +00:00
|
|
|
j=0; do {
|
2016-05-01 15:48:46 +00:00
|
|
|
tmp |= iy[i*N0+j];
|
2015-10-02 17:20:50 +00:00
|
|
|
} while (++j<N0);
|
2016-05-01 15:48:46 +00:00
|
|
|
collapse_mask |= (tmp!=0)<<i;
|
2015-10-02 17:20:50 +00:00
|
|
|
} while (++i<B);
|
|
|
|
return collapse_mask;
|
|
|
|
}
|
|
|
|
|
|
|
|
unsigned alg_quant(celt_norm *X, int N, int K, int spread, int B, ec_enc *enc
|
|
|
|
#ifdef RESYNTH
|
|
|
|
, opus_val16 gain
|
|
|
|
#endif
|
|
|
|
)
|
|
|
|
{
|
|
|
|
VARDECL(celt_norm, y);
|
|
|
|
VARDECL(int, iy);
|
|
|
|
VARDECL(opus_val16, signx);
|
|
|
|
int i, j;
|
|
|
|
opus_val16 s;
|
|
|
|
int pulsesLeft;
|
|
|
|
opus_val32 sum;
|
|
|
|
opus_val32 xy;
|
|
|
|
opus_val16 yy;
|
|
|
|
unsigned collapse_mask;
|
|
|
|
SAVE_STACK;
|
|
|
|
|
|
|
|
celt_assert2(K>0, "alg_quant() needs at least one pulse");
|
|
|
|
celt_assert2(N>1, "alg_quant() needs at least two dimensions");
|
|
|
|
|
|
|
|
ALLOC(y, N, celt_norm);
|
|
|
|
ALLOC(iy, N, int);
|
|
|
|
ALLOC(signx, N, opus_val16);
|
|
|
|
|
|
|
|
exp_rotation(X, N, 1, B, K, spread);
|
|
|
|
|
|
|
|
/* Get rid of the sign */
|
|
|
|
sum = 0;
|
|
|
|
j=0; do {
|
|
|
|
if (X[j]>0)
|
|
|
|
signx[j]=1;
|
|
|
|
else {
|
|
|
|
signx[j]=-1;
|
|
|
|
X[j]=-X[j];
|
|
|
|
}
|
|
|
|
iy[j] = 0;
|
|
|
|
y[j] = 0;
|
|
|
|
} while (++j<N);
|
|
|
|
|
|
|
|
xy = yy = 0;
|
|
|
|
|
|
|
|
pulsesLeft = K;
|
|
|
|
|
|
|
|
/* Do a pre-search by projecting on the pyramid */
|
|
|
|
if (K > (N>>1))
|
|
|
|
{
|
|
|
|
opus_val16 rcp;
|
|
|
|
j=0; do {
|
|
|
|
sum += X[j];
|
|
|
|
} while (++j<N);
|
|
|
|
|
|
|
|
/* If X is too small, just replace it with a pulse at 0 */
|
|
|
|
#ifdef OPUS_FIXED_POINT
|
|
|
|
if (sum <= K)
|
|
|
|
#else
|
|
|
|
/* Prevents infinities and NaNs from causing too many pulses
|
|
|
|
to be allocated. 64 is an approximation of infinity here. */
|
|
|
|
if (!(sum > EPSILON && sum < 64))
|
|
|
|
#endif
|
|
|
|
{
|
|
|
|
X[0] = QCONST16(1.f,14);
|
|
|
|
j=1; do
|
|
|
|
X[j]=0;
|
|
|
|
while (++j<N);
|
|
|
|
sum = QCONST16(1.f,14);
|
|
|
|
}
|
|
|
|
rcp = EXTRACT16(MULT16_32_Q16(K-1, celt_rcp(sum)));
|
|
|
|
j=0; do {
|
|
|
|
#ifdef OPUS_FIXED_POINT
|
|
|
|
/* It's really important to round *towards zero* here */
|
|
|
|
iy[j] = MULT16_16_Q15(X[j],rcp);
|
|
|
|
#else
|
|
|
|
iy[j] = (int)floor(rcp*X[j]);
|
|
|
|
#endif
|
|
|
|
y[j] = (celt_norm)iy[j];
|
|
|
|
yy = MAC16_16(yy, y[j],y[j]);
|
|
|
|
xy = MAC16_16(xy, X[j],y[j]);
|
|
|
|
y[j] *= 2;
|
|
|
|
pulsesLeft -= iy[j];
|
|
|
|
} while (++j<N);
|
|
|
|
}
|
|
|
|
celt_assert2(pulsesLeft>=1, "Allocated too many pulses in the quick pass");
|
|
|
|
|
|
|
|
/* This should never happen, but just in case it does (e.g. on silence)
|
|
|
|
we fill the first bin with pulses. */
|
|
|
|
#ifdef OPUS_FIXED_POINT_DEBUG
|
|
|
|
celt_assert2(pulsesLeft<=N+3, "Not enough pulses in the quick pass");
|
|
|
|
#endif
|
|
|
|
if (pulsesLeft > N+3)
|
|
|
|
{
|
|
|
|
opus_val16 tmp = (opus_val16)pulsesLeft;
|
|
|
|
yy = MAC16_16(yy, tmp, tmp);
|
|
|
|
yy = MAC16_16(yy, tmp, y[0]);
|
|
|
|
iy[0] += pulsesLeft;
|
|
|
|
pulsesLeft=0;
|
|
|
|
}
|
|
|
|
|
|
|
|
s = 1;
|
|
|
|
for (i=0;i<pulsesLeft;i++)
|
|
|
|
{
|
|
|
|
int best_id;
|
|
|
|
opus_val32 best_num = -VERY_LARGE16;
|
|
|
|
opus_val16 best_den = 0;
|
|
|
|
#ifdef OPUS_FIXED_POINT
|
|
|
|
int rshift;
|
|
|
|
#endif
|
|
|
|
#ifdef OPUS_FIXED_POINT
|
|
|
|
rshift = 1+celt_ilog2(K-pulsesLeft+i+1);
|
|
|
|
#endif
|
|
|
|
best_id = 0;
|
|
|
|
/* The squared magnitude term gets added anyway, so we might as well
|
|
|
|
add it outside the loop */
|
|
|
|
yy = ADD32(yy, 1);
|
|
|
|
j=0;
|
|
|
|
do {
|
|
|
|
opus_val16 Rxy, Ryy;
|
|
|
|
/* Temporary sums of the new pulse(s) */
|
|
|
|
Rxy = EXTRACT16(SHR32(ADD32(xy, EXTEND32(X[j])),rshift));
|
|
|
|
/* We're multiplying y[j] by two so we don't have to do it here */
|
|
|
|
Ryy = ADD16(yy, y[j]);
|
|
|
|
|
|
|
|
/* Approximate score: we maximise Rxy/sqrt(Ryy) (we're guaranteed that
|
|
|
|
Rxy is positive because the sign is pre-computed) */
|
|
|
|
Rxy = MULT16_16_Q15(Rxy,Rxy);
|
|
|
|
/* The idea is to check for num/den >= best_num/best_den, but that way
|
|
|
|
we can do it without any division */
|
|
|
|
/* OPT: Make sure to use conditional moves here */
|
|
|
|
if (MULT16_16(best_den, Rxy) > MULT16_16(Ryy, best_num))
|
|
|
|
{
|
|
|
|
best_den = Ryy;
|
|
|
|
best_num = Rxy;
|
|
|
|
best_id = j;
|
|
|
|
}
|
|
|
|
} while (++j<N);
|
|
|
|
|
|
|
|
/* Updating the sums of the new pulse(s) */
|
|
|
|
xy = ADD32(xy, EXTEND32(X[best_id]));
|
|
|
|
/* We're multiplying y[j] by two so we don't have to do it here */
|
|
|
|
yy = ADD16(yy, y[best_id]);
|
|
|
|
|
|
|
|
/* Only now that we've made the final choice, update y/iy */
|
|
|
|
/* Multiplying y[j] by 2 so we don't have to do it everywhere else */
|
|
|
|
y[best_id] += 2*s;
|
|
|
|
iy[best_id]++;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Put the original sign back */
|
|
|
|
j=0;
|
|
|
|
do {
|
|
|
|
X[j] = MULT16_16(signx[j],X[j]);
|
|
|
|
if (signx[j] < 0)
|
|
|
|
iy[j] = -iy[j];
|
|
|
|
} while (++j<N);
|
|
|
|
encode_pulses(iy, N, K, enc);
|
|
|
|
|
|
|
|
#ifdef RESYNTH
|
|
|
|
normalise_residual(iy, X, N, yy, gain);
|
|
|
|
exp_rotation(X, N, -1, B, K, spread);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
collapse_mask = extract_collapse_mask(iy, N, B);
|
|
|
|
RESTORE_STACK;
|
|
|
|
return collapse_mask;
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Decode pulse vector and combine the result with the pitch vector to produce
|
|
|
|
the final normalised signal in the current band. */
|
|
|
|
unsigned alg_unquant(celt_norm *X, int N, int K, int spread, int B,
|
|
|
|
ec_dec *dec, opus_val16 gain)
|
|
|
|
{
|
|
|
|
opus_val32 Ryy;
|
|
|
|
unsigned collapse_mask;
|
|
|
|
VARDECL(int, iy);
|
|
|
|
SAVE_STACK;
|
|
|
|
|
|
|
|
celt_assert2(K>0, "alg_unquant() needs at least one pulse");
|
|
|
|
celt_assert2(N>1, "alg_unquant() needs at least two dimensions");
|
|
|
|
ALLOC(iy, N, int);
|
2016-05-01 15:48:46 +00:00
|
|
|
Ryy = decode_pulses(iy, N, K, dec);
|
2015-10-02 17:20:50 +00:00
|
|
|
normalise_residual(iy, X, N, Ryy, gain);
|
|
|
|
exp_rotation(X, N, -1, B, K, spread);
|
|
|
|
collapse_mask = extract_collapse_mask(iy, N, B);
|
|
|
|
RESTORE_STACK;
|
|
|
|
return collapse_mask;
|
|
|
|
}
|
|
|
|
|
2016-05-01 15:48:46 +00:00
|
|
|
#ifndef OVERRIDE_renormalise_vector
|
|
|
|
void renormalise_vector(celt_norm *X, int N, opus_val16 gain, int arch)
|
2015-10-02 17:20:50 +00:00
|
|
|
{
|
|
|
|
int i;
|
|
|
|
#ifdef OPUS_FIXED_POINT
|
|
|
|
int k;
|
|
|
|
#endif
|
2016-05-01 15:48:46 +00:00
|
|
|
opus_val32 E;
|
2015-10-02 17:20:50 +00:00
|
|
|
opus_val16 g;
|
|
|
|
opus_val32 t;
|
2016-05-01 15:48:46 +00:00
|
|
|
celt_norm *xptr;
|
|
|
|
E = EPSILON + celt_inner_prod(X, X, N, arch);
|
2015-10-02 17:20:50 +00:00
|
|
|
#ifdef OPUS_FIXED_POINT
|
|
|
|
k = celt_ilog2(E)>>1;
|
|
|
|
#endif
|
|
|
|
t = VSHR32(E, 2*(k-7));
|
|
|
|
g = MULT16_16_P15(celt_rsqrt_norm(t),gain);
|
|
|
|
|
|
|
|
xptr = X;
|
|
|
|
for (i=0;i<N;i++)
|
|
|
|
{
|
|
|
|
*xptr = EXTRACT16(PSHR32(MULT16_16(g, *xptr), k+1));
|
|
|
|
xptr++;
|
|
|
|
}
|
|
|
|
/*return celt_sqrt(E);*/
|
|
|
|
}
|
2016-05-01 15:48:46 +00:00
|
|
|
#endif /* OVERRIDE_renormalise_vector */
|
2015-10-02 17:20:50 +00:00
|
|
|
|
2016-05-01 15:48:46 +00:00
|
|
|
int stereo_itheta(const celt_norm *X, const celt_norm *Y, int stereo, int N, int arch)
|
2015-10-02 17:20:50 +00:00
|
|
|
{
|
|
|
|
int i;
|
|
|
|
int itheta;
|
|
|
|
opus_val16 mid, side;
|
|
|
|
opus_val32 Emid, Eside;
|
|
|
|
|
|
|
|
Emid = Eside = EPSILON;
|
|
|
|
if (stereo)
|
|
|
|
{
|
|
|
|
for (i=0;i<N;i++)
|
|
|
|
{
|
|
|
|
celt_norm m, s;
|
|
|
|
m = ADD16(SHR16(X[i],1),SHR16(Y[i],1));
|
|
|
|
s = SUB16(SHR16(X[i],1),SHR16(Y[i],1));
|
|
|
|
Emid = MAC16_16(Emid, m, m);
|
|
|
|
Eside = MAC16_16(Eside, s, s);
|
|
|
|
}
|
|
|
|
} else {
|
2016-05-01 15:48:46 +00:00
|
|
|
Emid += celt_inner_prod(X, X, N, arch);
|
|
|
|
Eside += celt_inner_prod(Y, Y, N, arch);
|
2015-10-02 17:20:50 +00:00
|
|
|
}
|
|
|
|
mid = celt_sqrt(Emid);
|
|
|
|
side = celt_sqrt(Eside);
|
|
|
|
#ifdef OPUS_FIXED_POINT
|
|
|
|
/* 0.63662 = 2/pi */
|
|
|
|
itheta = MULT16_16_Q15(QCONST16(0.63662f,15),celt_atan2p(side, mid));
|
|
|
|
#else
|
|
|
|
itheta = (int)floor(.5f+16384*0.63662f*atan2(side,mid));
|
|
|
|
#endif
|
|
|
|
|
|
|
|
return itheta;
|
|
|
|
}
|