2017-08-01 12:30:58 +00:00
//this file is autogenerated using stringify.bat (premake --stringify) in the build folder of this project
2019-01-03 13:26:51 +00:00
static const char * parallelLinearBvhCL =
" /* \n "
" This software is provided 'as-is', without any express or implied warranty. \n "
" In no event will the authors be held liable for any damages arising from the use of this software. \n "
" Permission is granted to anyone to use this software for any purpose, \n "
" including commercial applications, and to alter it and redistribute it freely, \n "
" subject to the following restrictions: \n "
" 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. \n "
" 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. \n "
" 3. This notice may not be removed or altered from any source distribution. \n "
" */ \n "
" //Initial Author Jackson Lee, 2014 \n "
" typedef float b3Scalar; \n "
" typedef float4 b3Vector3; \n "
" #define b3Max max \n "
" #define b3Min min \n "
" #define b3Sqrt sqrt \n "
" typedef struct \n "
" { \n "
" unsigned int m_key; \n "
" unsigned int m_value; \n "
" } SortDataCL; \n "
" typedef struct \n "
" { \n "
" union \n "
" { \n "
" float4 m_min; \n "
" float m_minElems[4]; \n "
" int m_minIndices[4]; \n "
" }; \n "
" union \n "
" { \n "
" float4 m_max; \n "
" float m_maxElems[4]; \n "
" int m_maxIndices[4]; \n "
" }; \n "
" } b3AabbCL; \n "
" unsigned int interleaveBits(unsigned int x) \n "
" { \n "
" //........ ........ ......12 3456789A //x \n "
" //....1..2 ..3..4.. 5..6..7. .8..9..A //x after interleaving bits \n "
" \n "
" //......12 3456789A ......12 3456789A //x ^ (x << 16) \n "
" //11111111 ........ ........ 11111111 //0x FF 00 00 FF \n "
" //......12 ........ ........ 3456789A //x = (x ^ (x << 16)) & 0xFF0000FF; \n "
" \n "
" //......12 ........ 3456789A 3456789A //x ^ (x << 8) \n "
" //......11 ........ 1111.... ....1111 //0x 03 00 F0 0F \n "
" //......12 ........ 3456.... ....789A //x = (x ^ (x << 8)) & 0x0300F00F; \n "
" \n "
" //..12..12 ....3456 3456.... 789A789A //x ^ (x << 4) \n "
" //......11 ....11.. ..11.... 11....11 //0x 03 0C 30 C3 \n "
" //......12 ....34.. ..56.... 78....9A //x = (x ^ (x << 4)) & 0x030C30C3; \n "
" \n "
" //....1212 ..3434.. 5656..78 78..9A9A //x ^ (x << 2) \n "
" //....1..1 ..1..1.. 1..1..1. .1..1..1 //0x 09 24 92 49 \n "
" //....1..2 ..3..4.. 5..6..7. .8..9..A //x = (x ^ (x << 2)) & 0x09249249; \n "
" \n "
" //........ ........ ......11 11111111 //0x000003FF \n "
" x &= 0x000003FF; //Clear all bits above bit 10 \n "
" \n "
" x = (x ^ (x << 16)) & 0xFF0000FF; \n "
" x = (x ^ (x << 8)) & 0x0300F00F; \n "
" x = (x ^ (x << 4)) & 0x030C30C3; \n "
" x = (x ^ (x << 2)) & 0x09249249; \n "
" \n "
" return x; \n "
" } \n "
" unsigned int getMortonCode(unsigned int x, unsigned int y, unsigned int z) \n "
" { \n "
" return interleaveBits(x) << 0 | interleaveBits(y) << 1 | interleaveBits(z) << 2; \n "
" } \n "
" __kernel void separateAabbs(__global b3AabbCL* unseparatedAabbs, __global int* aabbIndices, __global b3AabbCL* out_aabbs, int numAabbsToSeparate) \n "
" { \n "
" int separatedAabbIndex = get_global_id(0); \n "
" if(separatedAabbIndex >= numAabbsToSeparate) return; \n "
" int unseparatedAabbIndex = aabbIndices[separatedAabbIndex]; \n "
" out_aabbs[separatedAabbIndex] = unseparatedAabbs[unseparatedAabbIndex]; \n "
" } \n "
" //Should replace with an optimized parallel reduction \n "
" __kernel void findAllNodesMergedAabb(__global b3AabbCL* out_mergedAabb, int numAabbsNeedingMerge) \n "
" { \n "
" //Each time this kernel is added to the command queue, \n "
" //the number of AABBs needing to be merged is halved \n "
" // \n "
" //Example with 159 AABBs: \n "
" // numRemainingAabbs == 159 / 2 + 159 % 2 == 80 \n "
" // numMergedAabbs == 159 - 80 == 79 \n "
" //So, indices [0, 78] are merged with [0 + 80, 78 + 80] \n "
" \n "
" int numRemainingAabbs = numAabbsNeedingMerge / 2 + numAabbsNeedingMerge % 2; \n "
" int numMergedAabbs = numAabbsNeedingMerge - numRemainingAabbs; \n "
" \n "
" int aabbIndex = get_global_id(0); \n "
" if(aabbIndex >= numMergedAabbs) return; \n "
" \n "
" int otherAabbIndex = aabbIndex + numRemainingAabbs; \n "
" \n "
" b3AabbCL aabb = out_mergedAabb[aabbIndex]; \n "
" b3AabbCL otherAabb = out_mergedAabb[otherAabbIndex]; \n "
" \n "
" b3AabbCL mergedAabb; \n "
" mergedAabb.m_min = b3Min(aabb.m_min, otherAabb.m_min); \n "
" mergedAabb.m_max = b3Max(aabb.m_max, otherAabb.m_max); \n "
" out_mergedAabb[aabbIndex] = mergedAabb; \n "
" } \n "
" __kernel void assignMortonCodesAndAabbIndicies(__global b3AabbCL* worldSpaceAabbs, __global b3AabbCL* mergedAabbOfAllNodes, \n "
" __global SortDataCL* out_mortonCodesAndAabbIndices, int numAabbs) \n "
" { \n "
" int leafNodeIndex = get_global_id(0); //Leaf node index == AABB index \n "
" if(leafNodeIndex >= numAabbs) return; \n "
" \n "
" b3AabbCL mergedAabb = mergedAabbOfAllNodes[0]; \n "
" b3Vector3 gridCenter = (mergedAabb.m_min + mergedAabb.m_max) * 0.5f; \n "
" b3Vector3 gridCellSize = (mergedAabb.m_max - mergedAabb.m_min) / (float)1024; \n "
" \n "
" b3AabbCL aabb = worldSpaceAabbs[leafNodeIndex]; \n "
" b3Vector3 aabbCenter = (aabb.m_min + aabb.m_max) * 0.5f; \n "
" b3Vector3 aabbCenterRelativeToGrid = aabbCenter - gridCenter; \n "
" \n "
" //Quantize into integer coordinates \n "
" //floor() is needed to prevent the center cell, at (0,0,0) from being twice the size \n "
" b3Vector3 gridPosition = aabbCenterRelativeToGrid / gridCellSize; \n "
" \n "
" int4 discretePosition; \n "
" discretePosition.x = (int)( (gridPosition.x >= 0.0f) ? gridPosition.x : floor(gridPosition.x) ); \n "
" discretePosition.y = (int)( (gridPosition.y >= 0.0f) ? gridPosition.y : floor(gridPosition.y) ); \n "
" discretePosition.z = (int)( (gridPosition.z >= 0.0f) ? gridPosition.z : floor(gridPosition.z) ); \n "
" \n "
" //Clamp coordinates into [-512, 511], then convert range from [-512, 511] to [0, 1023] \n "
" discretePosition = b3Max( -512, b3Min(discretePosition, 511) ); \n "
" discretePosition += 512; \n "
" \n "
" //Interleave bits(assign a morton code, also known as a z-curve) \n "
" unsigned int mortonCode = getMortonCode(discretePosition.x, discretePosition.y, discretePosition.z); \n "
" \n "
" // \n "
" SortDataCL mortonCodeIndexPair; \n "
" mortonCodeIndexPair.m_key = mortonCode; \n "
" mortonCodeIndexPair.m_value = leafNodeIndex; \n "
" \n "
" out_mortonCodesAndAabbIndices[leafNodeIndex] = mortonCodeIndexPair; \n "
" } \n "
" #define B3_PLVBH_TRAVERSE_MAX_STACK_SIZE 128 \n "
" //The most significant bit(0x80000000) of a int32 is used to distinguish between leaf and internal nodes. \n "
" //If it is set, then the index is for an internal node; otherwise, it is a leaf node. \n "
" //In both cases, the bit should be cleared to access the actual node index. \n "
" int isLeafNode(int index) { return (index >> 31 == 0); } \n "
" int getIndexWithInternalNodeMarkerRemoved(int index) { return index & (~0x80000000); } \n "
" int getIndexWithInternalNodeMarkerSet(int isLeaf, int index) { return (isLeaf) ? index : (index | 0x80000000); } \n "
" //From sap.cl \n "
" #define NEW_PAIR_MARKER -1 \n "
" bool TestAabbAgainstAabb2(const b3AabbCL* aabb1, const b3AabbCL* aabb2) \n "
" { \n "
" bool overlap = true; \n "
" overlap = (aabb1->m_min.x > aabb2->m_max.x || aabb1->m_max.x < aabb2->m_min.x) ? false : overlap; \n "
" overlap = (aabb1->m_min.z > aabb2->m_max.z || aabb1->m_max.z < aabb2->m_min.z) ? false : overlap; \n "
" overlap = (aabb1->m_min.y > aabb2->m_max.y || aabb1->m_max.y < aabb2->m_min.y) ? false : overlap; \n "
" return overlap; \n "
" } \n "
" //From sap.cl \n "
" __kernel void plbvhCalculateOverlappingPairs(__global b3AabbCL* rigidAabbs, \n "
" __global int* rootNodeIndex, \n "
" __global int2* internalNodeChildIndices, \n "
" __global b3AabbCL* internalNodeAabbs, \n "
" __global int2* internalNodeLeafIndexRanges, \n "
" \n "
" __global SortDataCL* mortonCodesAndAabbIndices, \n "
" __global int* out_numPairs, __global int4* out_overlappingPairs, \n "
" int maxPairs, int numQueryAabbs) \n "
" { \n "
" //Using get_group_id()/get_local_id() is Faster than get_global_id(0) since \n "
" //mortonCodesAndAabbIndices[] contains rigid body indices sorted along the z-curve (more spatially coherent) \n "
" int queryBvhNodeIndex = get_group_id(0) * get_local_size(0) + get_local_id(0); \n "
" if(queryBvhNodeIndex >= numQueryAabbs) return; \n "
" \n "
" int queryRigidIndex = mortonCodesAndAabbIndices[queryBvhNodeIndex].m_value; \n "
" b3AabbCL queryAabb = rigidAabbs[queryRigidIndex]; \n "
" \n "
" int stack[B3_PLVBH_TRAVERSE_MAX_STACK_SIZE]; \n "
" \n "
" int stackSize = 1; \n "
" stack[0] = *rootNodeIndex; \n "
" \n "
" while(stackSize) \n "
" { \n "
" int internalOrLeafNodeIndex = stack[ stackSize - 1 ]; \n "
" --stackSize; \n "
" \n "
" int isLeaf = isLeafNode(internalOrLeafNodeIndex); //Internal node if false \n "
" int bvhNodeIndex = getIndexWithInternalNodeMarkerRemoved(internalOrLeafNodeIndex); \n "
" \n "
" //Optimization - if the BVH is structured as a binary radix tree, then \n "
" //each internal node corresponds to a contiguous range of leaf nodes(internalNodeLeafIndexRanges[]). \n "
" //This can be used to avoid testing each AABB-AABB pair twice, including preventing each node from colliding with itself. \n "
" { \n "
" int highestLeafIndex = (isLeaf) ? bvhNodeIndex : internalNodeLeafIndexRanges[bvhNodeIndex].y; \n "
" if(highestLeafIndex <= queryBvhNodeIndex) continue; \n "
" } \n "
" \n "
" //bvhRigidIndex is not used if internal node \n "
" int bvhRigidIndex = (isLeaf) ? mortonCodesAndAabbIndices[bvhNodeIndex].m_value : -1; \n "
" \n "
" b3AabbCL bvhNodeAabb = (isLeaf) ? rigidAabbs[bvhRigidIndex] : internalNodeAabbs[bvhNodeIndex]; \n "
" if( TestAabbAgainstAabb2(&queryAabb, &bvhNodeAabb) ) \n "
" { \n "
" if(isLeaf) \n "
" { \n "
" int4 pair; \n "
" pair.x = rigidAabbs[queryRigidIndex].m_minIndices[3]; \n "
" pair.y = rigidAabbs[bvhRigidIndex].m_minIndices[3]; \n "
" pair.z = NEW_PAIR_MARKER; \n "
" pair.w = NEW_PAIR_MARKER; \n "
" \n "
" int pairIndex = atomic_inc(out_numPairs); \n "
" if(pairIndex < maxPairs) out_overlappingPairs[pairIndex] = pair; \n "
" } \n "
" \n "
" if(!isLeaf) //Internal node \n "
" { \n "
" if(stackSize + 2 > B3_PLVBH_TRAVERSE_MAX_STACK_SIZE) \n "
" { \n "
" //Error \n "
" } \n "
" else \n "
" { \n "
" stack[ stackSize++ ] = internalNodeChildIndices[bvhNodeIndex].x; \n "
" stack[ stackSize++ ] = internalNodeChildIndices[bvhNodeIndex].y; \n "
" } \n "
" } \n "
" } \n "
" \n "
" } \n "
" } \n "
" //From rayCastKernels.cl \n "
" typedef struct \n "
" { \n "
" float4 m_from; \n "
" float4 m_to; \n "
" } b3RayInfo; \n "
" //From rayCastKernels.cl \n "
" b3Vector3 b3Vector3_normalize(b3Vector3 v) \n "
" { \n "
" b3Vector3 normal = (b3Vector3){v.x, v.y, v.z, 0.f}; \n "
" return normalize(normal); //OpenCL normalize == vector4 normalize \n "
" } \n "
" b3Scalar b3Vector3_length2(b3Vector3 v) { return v.x*v.x + v.y*v.y + v.z*v.z; } \n "
" b3Scalar b3Vector3_dot(b3Vector3 a, b3Vector3 b) { return a.x*b.x + a.y*b.y + a.z*b.z; } \n "
" int rayIntersectsAabb(b3Vector3 rayOrigin, b3Scalar rayLength, b3Vector3 rayNormalizedDirection, b3AabbCL aabb) \n "
" { \n "
" //AABB is considered as 3 pairs of 2 planes( {x_min, x_max}, {y_min, y_max}, {z_min, z_max} ). \n "
" //t_min is the point of intersection with the closer plane, t_max is the point of intersection with the farther plane. \n "
" // \n "
" //if (rayNormalizedDirection.x < 0.0f), then max.x will be the near plane \n "
" //and min.x will be the far plane; otherwise, it is reversed. \n "
" // \n "
" //In order for there to be a collision, the t_min and t_max of each pair must overlap. \n "
" //This can be tested for by selecting the highest t_min and lowest t_max and comparing them. \n "
" \n "
" int4 isNegative = isless( rayNormalizedDirection, ((b3Vector3){0.0f, 0.0f, 0.0f, 0.0f}) ); //isless(x,y) returns (x < y) \n "
" \n "
" //When using vector types, the select() function checks the most signficant bit, \n "
" //but isless() sets the least significant bit. \n "
" isNegative <<= 31; \n "
" //select(b, a, condition) == condition ? a : b \n "
" //When using select() with vector types, (condition[i]) is true if its most significant bit is 1 \n "
" b3Vector3 t_min = ( select(aabb.m_min, aabb.m_max, isNegative) - rayOrigin ) / rayNormalizedDirection; \n "
" b3Vector3 t_max = ( select(aabb.m_max, aabb.m_min, isNegative) - rayOrigin ) / rayNormalizedDirection; \n "
" \n "
" b3Scalar t_min_final = 0.0f; \n "
" b3Scalar t_max_final = rayLength; \n "
" \n "
" //Must use fmin()/fmax(); if one of the parameters is NaN, then the parameter that is not NaN is returned. \n "
" //Behavior of min()/max() with NaNs is undefined. (See OpenCL Specification 1.2 [6.12.2] and [6.12.4]) \n "
" //Since the innermost fmin()/fmax() is always not NaN, this should never return NaN. \n "
" t_min_final = fmax( t_min.z, fmax(t_min.y, fmax(t_min.x, t_min_final)) ); \n "
" t_max_final = fmin( t_max.z, fmin(t_max.y, fmin(t_max.x, t_max_final)) ); \n "
" \n "
" return (t_min_final <= t_max_final); \n "
" } \n "
" __kernel void plbvhRayTraverse(__global b3AabbCL* rigidAabbs, \n "
" __global int* rootNodeIndex, \n "
" __global int2* internalNodeChildIndices, \n "
" __global b3AabbCL* internalNodeAabbs, \n "
" __global int2* internalNodeLeafIndexRanges, \n "
" __global SortDataCL* mortonCodesAndAabbIndices, \n "
" \n "
" __global b3RayInfo* rays, \n "
" \n "
" __global int* out_numRayRigidPairs, \n "
" __global int2* out_rayRigidPairs, \n "
" int maxRayRigidPairs, int numRays) \n "
" { \n "
" int rayIndex = get_global_id(0); \n "
" if(rayIndex >= numRays) return; \n "
" \n "
" // \n "
" b3Vector3 rayFrom = rays[rayIndex].m_from; \n "
" b3Vector3 rayTo = rays[rayIndex].m_to; \n "
" b3Vector3 rayNormalizedDirection = b3Vector3_normalize(rayTo - rayFrom); \n "
" b3Scalar rayLength = b3Sqrt( b3Vector3_length2(rayTo - rayFrom) ); \n "
" \n "
" // \n "
" int stack[B3_PLVBH_TRAVERSE_MAX_STACK_SIZE]; \n "
" \n "
" int stackSize = 1; \n "
" stack[0] = *rootNodeIndex; \n "
" \n "
" while(stackSize) \n "
" { \n "
" int internalOrLeafNodeIndex = stack[ stackSize - 1 ]; \n "
" --stackSize; \n "
" \n "
" int isLeaf = isLeafNode(internalOrLeafNodeIndex); //Internal node if false \n "
" int bvhNodeIndex = getIndexWithInternalNodeMarkerRemoved(internalOrLeafNodeIndex); \n "
" \n "
" //bvhRigidIndex is not used if internal node \n "
" int bvhRigidIndex = (isLeaf) ? mortonCodesAndAabbIndices[bvhNodeIndex].m_value : -1; \n "
" \n "
" b3AabbCL bvhNodeAabb = (isLeaf) ? rigidAabbs[bvhRigidIndex] : internalNodeAabbs[bvhNodeIndex]; \n "
" if( rayIntersectsAabb(rayFrom, rayLength, rayNormalizedDirection, bvhNodeAabb) ) \n "
" { \n "
" if(isLeaf) \n "
" { \n "
" int2 rayRigidPair; \n "
" rayRigidPair.x = rayIndex; \n "
" rayRigidPair.y = rigidAabbs[bvhRigidIndex].m_minIndices[3]; \n "
" \n "
" int pairIndex = atomic_inc(out_numRayRigidPairs); \n "
" if(pairIndex < maxRayRigidPairs) out_rayRigidPairs[pairIndex] = rayRigidPair; \n "
" } \n "
" \n "
" if(!isLeaf) //Internal node \n "
" { \n "
" if(stackSize + 2 > B3_PLVBH_TRAVERSE_MAX_STACK_SIZE) \n "
" { \n "
" //Error \n "
" } \n "
" else \n "
" { \n "
" stack[ stackSize++ ] = internalNodeChildIndices[bvhNodeIndex].x; \n "
" stack[ stackSize++ ] = internalNodeChildIndices[bvhNodeIndex].y; \n "
" } \n "
" } \n "
" } \n "
" } \n "
" } \n "
" __kernel void plbvhLargeAabbAabbTest(__global b3AabbCL* smallAabbs, __global b3AabbCL* largeAabbs, \n "
" __global int* out_numPairs, __global int4* out_overlappingPairs, \n "
" int maxPairs, int numLargeAabbRigids, int numSmallAabbRigids) \n "
" { \n "
" int smallAabbIndex = get_global_id(0); \n "
" if(smallAabbIndex >= numSmallAabbRigids) return; \n "
" \n "
" b3AabbCL smallAabb = smallAabbs[smallAabbIndex]; \n "
" for(int i = 0; i < numLargeAabbRigids; ++i) \n "
" { \n "
" b3AabbCL largeAabb = largeAabbs[i]; \n "
" if( TestAabbAgainstAabb2(&smallAabb, &largeAabb) ) \n "
" { \n "
" int4 pair; \n "
" pair.x = largeAabb.m_minIndices[3]; \n "
" pair.y = smallAabb.m_minIndices[3]; \n "
" pair.z = NEW_PAIR_MARKER; \n "
" pair.w = NEW_PAIR_MARKER; \n "
" \n "
" int pairIndex = atomic_inc(out_numPairs); \n "
" if(pairIndex < maxPairs) out_overlappingPairs[pairIndex] = pair; \n "
" } \n "
" } \n "
" } \n "
" __kernel void plbvhLargeAabbRayTest(__global b3AabbCL* largeRigidAabbs, __global b3RayInfo* rays, \n "
" __global int* out_numRayRigidPairs, __global int2* out_rayRigidPairs, \n "
" int numLargeAabbRigids, int maxRayRigidPairs, int numRays) \n "
" { \n "
" int rayIndex = get_global_id(0); \n "
" if(rayIndex >= numRays) return; \n "
" \n "
" b3Vector3 rayFrom = rays[rayIndex].m_from; \n "
" b3Vector3 rayTo = rays[rayIndex].m_to; \n "
" b3Vector3 rayNormalizedDirection = b3Vector3_normalize(rayTo - rayFrom); \n "
" b3Scalar rayLength = b3Sqrt( b3Vector3_length2(rayTo - rayFrom) ); \n "
" \n "
" for(int i = 0; i < numLargeAabbRigids; ++i) \n "
" { \n "
" b3AabbCL rigidAabb = largeRigidAabbs[i]; \n "
" if( rayIntersectsAabb(rayFrom, rayLength, rayNormalizedDirection, rigidAabb) ) \n "
" { \n "
" int2 rayRigidPair; \n "
" rayRigidPair.x = rayIndex; \n "
" rayRigidPair.y = rigidAabb.m_minIndices[3]; \n "
" \n "
" int pairIndex = atomic_inc(out_numRayRigidPairs); \n "
" if(pairIndex < maxRayRigidPairs) out_rayRigidPairs[pairIndex] = rayRigidPair; \n "
" } \n "
" } \n "
" } \n "
" //Set so that it is always greater than the actual common prefixes, and never selected as a parent node. \n "
" //If there are no duplicates, then the highest common prefix is 32 or 64, depending on the number of bits used for the z-curve. \n "
" //Duplicate common prefixes increase the highest common prefix at most by the number of bits used to index the leaf node. \n "
" //Since 32 bit ints are used to index leaf nodes, the max prefix is 64(32 + 32 bit z-curve) or 96(32 + 64 bit z-curve). \n "
" #define B3_PLBVH_INVALID_COMMON_PREFIX 128 \n "
" #define B3_PLBVH_ROOT_NODE_MARKER -1 \n "
" #define b3Int64 long \n "
" int computeCommonPrefixLength(b3Int64 i, b3Int64 j) { return (int)clz(i ^ j); } \n "
" b3Int64 computeCommonPrefix(b3Int64 i, b3Int64 j) \n "
" { \n "
" //This function only needs to return (i & j) in order for the algorithm to work, \n "
" //but it may help with debugging to mask out the lower bits. \n "
" b3Int64 commonPrefixLength = (b3Int64)computeCommonPrefixLength(i, j); \n "
" b3Int64 sharedBits = i & j; \n "
" b3Int64 bitmask = ((b3Int64)(~0)) << (64 - commonPrefixLength); //Set all bits after the common prefix to 0 \n "
" \n "
" return sharedBits & bitmask; \n "
" } \n "
" //Same as computeCommonPrefixLength(), but allows for prefixes with different lengths \n "
" int getSharedPrefixLength(b3Int64 prefixA, int prefixLengthA, b3Int64 prefixB, int prefixLengthB) \n "
" { \n "
" return b3Min( computeCommonPrefixLength(prefixA, prefixB), b3Min(prefixLengthA, prefixLengthB) ); \n "
" } \n "
" __kernel void computeAdjacentPairCommonPrefix(__global SortDataCL* mortonCodesAndAabbIndices, \n "
" __global b3Int64* out_commonPrefixes, \n "
" __global int* out_commonPrefixLengths, \n "
" int numInternalNodes) \n "
" { \n "
" int internalNodeIndex = get_global_id(0); \n "
" if (internalNodeIndex >= numInternalNodes) return; \n "
" \n "
" //Here, (internalNodeIndex + 1) is never out of bounds since it is a leaf node index, \n "
" //and the number of internal nodes is always numLeafNodes - 1 \n "
" int leftLeafIndex = internalNodeIndex; \n "
" int rightLeafIndex = internalNodeIndex + 1; \n "
" \n "
" int leftLeafMortonCode = mortonCodesAndAabbIndices[leftLeafIndex].m_key; \n "
" int rightLeafMortonCode = mortonCodesAndAabbIndices[rightLeafIndex].m_key; \n "
" \n "
" //Binary radix tree construction algorithm does not work if there are duplicate morton codes. \n "
" //Append the index of each leaf node to each morton code so that there are no duplicates. \n "
" //The algorithm also requires that the morton codes are sorted in ascending order; this requirement \n "
" //is also satisfied with this method, as (leftLeafIndex < rightLeafIndex) is always true. \n "
" // \n "
" //upsample(a, b) == ( ((b3Int64)a) << 32) | b \n "
" b3Int64 nonduplicateLeftMortonCode = upsample(leftLeafMortonCode, leftLeafIndex); \n "
" b3Int64 nonduplicateRightMortonCode = upsample(rightLeafMortonCode, rightLeafIndex); \n "
" \n "
" out_commonPrefixes[internalNodeIndex] = computeCommonPrefix(nonduplicateLeftMortonCode, nonduplicateRightMortonCode); \n "
" out_commonPrefixLengths[internalNodeIndex] = computeCommonPrefixLength(nonduplicateLeftMortonCode, nonduplicateRightMortonCode); \n "
" } \n "
" __kernel void buildBinaryRadixTreeLeafNodes(__global int* commonPrefixLengths, __global int* out_leafNodeParentNodes, \n "
" __global int2* out_childNodes, int numLeafNodes) \n "
" { \n "
" int leafNodeIndex = get_global_id(0); \n "
" if (leafNodeIndex >= numLeafNodes) return; \n "
" \n "
" int numInternalNodes = numLeafNodes - 1; \n "
" \n "
" int leftSplitIndex = leafNodeIndex - 1; \n "
" int rightSplitIndex = leafNodeIndex; \n "
" \n "
" int leftCommonPrefix = (leftSplitIndex >= 0) ? commonPrefixLengths[leftSplitIndex] : B3_PLBVH_INVALID_COMMON_PREFIX; \n "
" int rightCommonPrefix = (rightSplitIndex < numInternalNodes) ? commonPrefixLengths[rightSplitIndex] : B3_PLBVH_INVALID_COMMON_PREFIX; \n "
" \n "
" //Parent node is the highest adjacent common prefix that is lower than the node's common prefix \n "
" //Leaf nodes are considered as having the highest common prefix \n "
" int isLeftHigherCommonPrefix = (leftCommonPrefix > rightCommonPrefix); \n "
" \n "
" //Handle cases for the edge nodes; the first and last node \n "
" //For leaf nodes, leftCommonPrefix and rightCommonPrefix should never both be B3_PLBVH_INVALID_COMMON_PREFIX \n "
" if(leftCommonPrefix == B3_PLBVH_INVALID_COMMON_PREFIX) isLeftHigherCommonPrefix = false; \n "
" if(rightCommonPrefix == B3_PLBVH_INVALID_COMMON_PREFIX) isLeftHigherCommonPrefix = true; \n "
" \n "
" int parentNodeIndex = (isLeftHigherCommonPrefix) ? leftSplitIndex : rightSplitIndex; \n "
" out_leafNodeParentNodes[leafNodeIndex] = parentNodeIndex; \n "
" \n "
" int isRightChild = (isLeftHigherCommonPrefix); //If the left node is the parent, then this node is its right child and vice versa \n "
" \n "
" //out_childNodesAsInt[0] == int2.x == left child \n "
" //out_childNodesAsInt[1] == int2.y == right child \n "
" int isLeaf = 1; \n "
" __global int* out_childNodesAsInt = (__global int*)(&out_childNodes[parentNodeIndex]); \n "
" out_childNodesAsInt[isRightChild] = getIndexWithInternalNodeMarkerSet(isLeaf, leafNodeIndex); \n "
" } \n "
" __kernel void buildBinaryRadixTreeInternalNodes(__global b3Int64* commonPrefixes, __global int* commonPrefixLengths, \n "
" __global int2* out_childNodes, \n "
" __global int* out_internalNodeParentNodes, __global int* out_rootNodeIndex, \n "
" int numInternalNodes) \n "
" { \n "
" int internalNodeIndex = get_group_id(0) * get_local_size(0) + get_local_id(0); \n "
" if(internalNodeIndex >= numInternalNodes) return; \n "
" \n "
" b3Int64 nodePrefix = commonPrefixes[internalNodeIndex]; \n "
" int nodePrefixLength = commonPrefixLengths[internalNodeIndex]; \n "
" \n "
" //#define USE_LINEAR_SEARCH \n "
" #ifdef USE_LINEAR_SEARCH \n "
" int leftIndex = -1; \n "
" int rightIndex = -1; \n "
" \n "
" //Find nearest element to left with a lower common prefix \n "
" for(int i = internalNodeIndex - 1; i >= 0; --i) \n "
" { \n "
" int nodeLeftSharedPrefixLength = getSharedPrefixLength(nodePrefix, nodePrefixLength, commonPrefixes[i], commonPrefixLengths[i]); \n "
" if(nodeLeftSharedPrefixLength < nodePrefixLength) \n "
" { \n "
" leftIndex = i; \n "
" break; \n "
" } \n "
" } \n "
" \n "
" //Find nearest element to right with a lower common prefix \n "
" for(int i = internalNodeIndex + 1; i < numInternalNodes; ++i) \n "
" { \n "
" int nodeRightSharedPrefixLength = getSharedPrefixLength(nodePrefix, nodePrefixLength, commonPrefixes[i], commonPrefixLengths[i]); \n "
" if(nodeRightSharedPrefixLength < nodePrefixLength) \n "
" { \n "
" rightIndex = i; \n "
" break; \n "
" } \n "
" } \n "
" \n "
" #else //Use binary search \n "
" //Find nearest element to left with a lower common prefix \n "
" int leftIndex = -1; \n "
" { \n "
" int lower = 0; \n "
" int upper = internalNodeIndex - 1; \n "
" \n "
" while(lower <= upper) \n "
" { \n "
" int mid = (lower + upper) / 2; \n "
" b3Int64 midPrefix = commonPrefixes[mid]; \n "
" int midPrefixLength = commonPrefixLengths[mid]; \n "
" \n "
" int nodeMidSharedPrefixLength = getSharedPrefixLength(nodePrefix, nodePrefixLength, midPrefix, midPrefixLength); \n "
" if(nodeMidSharedPrefixLength < nodePrefixLength) \n "
" { \n "
" int right = mid + 1; \n "
" if(right < internalNodeIndex) \n "
" { \n "
" b3Int64 rightPrefix = commonPrefixes[right]; \n "
" int rightPrefixLength = commonPrefixLengths[right]; \n "
" \n "
" int nodeRightSharedPrefixLength = getSharedPrefixLength(nodePrefix, nodePrefixLength, rightPrefix, rightPrefixLength); \n "
" if(nodeRightSharedPrefixLength < nodePrefixLength) \n "
" { \n "
" lower = right; \n "
" leftIndex = right; \n "
" } \n "
" else \n "
" { \n "
" leftIndex = mid; \n "
" break; \n "
" } \n "
" } \n "
" else \n "
" { \n "
" leftIndex = mid; \n "
" break; \n "
" } \n "
" } \n "
" else upper = mid - 1; \n "
" } \n "
" } \n "
" \n "
" //Find nearest element to right with a lower common prefix \n "
" int rightIndex = -1; \n "
" { \n "
" int lower = internalNodeIndex + 1; \n "
" int upper = numInternalNodes - 1; \n "
" \n "
" while(lower <= upper) \n "
" { \n "
" int mid = (lower + upper) / 2; \n "
" b3Int64 midPrefix = commonPrefixes[mid]; \n "
" int midPrefixLength = commonPrefixLengths[mid]; \n "
" \n "
" int nodeMidSharedPrefixLength = getSharedPrefixLength(nodePrefix, nodePrefixLength, midPrefix, midPrefixLength); \n "
" if(nodeMidSharedPrefixLength < nodePrefixLength) \n "
" { \n "
" int left = mid - 1; \n "
" if(left > internalNodeIndex) \n "
" { \n "
" b3Int64 leftPrefix = commonPrefixes[left]; \n "
" int leftPrefixLength = commonPrefixLengths[left]; \n "
" \n "
" int nodeLeftSharedPrefixLength = getSharedPrefixLength(nodePrefix, nodePrefixLength, leftPrefix, leftPrefixLength); \n "
" if(nodeLeftSharedPrefixLength < nodePrefixLength) \n "
" { \n "
" upper = left; \n "
" rightIndex = left; \n "
" } \n "
" else \n "
" { \n "
" rightIndex = mid; \n "
" break; \n "
" } \n "
" } \n "
" else \n "
" { \n "
" rightIndex = mid; \n "
" break; \n "
" } \n "
" } \n "
" else lower = mid + 1; \n "
" } \n "
" } \n "
" #endif \n "
" \n "
" //Select parent \n "
" { \n "
" int leftPrefixLength = (leftIndex != -1) ? commonPrefixLengths[leftIndex] : B3_PLBVH_INVALID_COMMON_PREFIX; \n "
" int rightPrefixLength = (rightIndex != -1) ? commonPrefixLengths[rightIndex] : B3_PLBVH_INVALID_COMMON_PREFIX; \n "
" \n "
" int isLeftHigherPrefixLength = (leftPrefixLength > rightPrefixLength); \n "
" \n "
" if(leftPrefixLength == B3_PLBVH_INVALID_COMMON_PREFIX) isLeftHigherPrefixLength = false; \n "
" else if(rightPrefixLength == B3_PLBVH_INVALID_COMMON_PREFIX) isLeftHigherPrefixLength = true; \n "
" \n "
" int parentNodeIndex = (isLeftHigherPrefixLength) ? leftIndex : rightIndex; \n "
" \n "
" int isRootNode = (leftIndex == -1 && rightIndex == -1); \n "
" out_internalNodeParentNodes[internalNodeIndex] = (!isRootNode) ? parentNodeIndex : B3_PLBVH_ROOT_NODE_MARKER; \n "
" \n "
" int isLeaf = 0; \n "
" if(!isRootNode) \n "
" { \n "
" int isRightChild = (isLeftHigherPrefixLength); //If the left node is the parent, then this node is its right child and vice versa \n "
" \n "
" //out_childNodesAsInt[0] == int2.x == left child \n "
" //out_childNodesAsInt[1] == int2.y == right child \n "
" __global int* out_childNodesAsInt = (__global int*)(&out_childNodes[parentNodeIndex]); \n "
" out_childNodesAsInt[isRightChild] = getIndexWithInternalNodeMarkerSet(isLeaf, internalNodeIndex); \n "
" } \n "
" else *out_rootNodeIndex = getIndexWithInternalNodeMarkerSet(isLeaf, internalNodeIndex); \n "
" } \n "
" } \n "
" __kernel void findDistanceFromRoot(__global int* rootNodeIndex, __global int* internalNodeParentNodes, \n "
" __global int* out_maxDistanceFromRoot, __global int* out_distanceFromRoot, int numInternalNodes) \n "
" { \n "
" if( get_global_id(0) == 0 ) atomic_xchg(out_maxDistanceFromRoot, 0); \n "
" int internalNodeIndex = get_global_id(0); \n "
" if(internalNodeIndex >= numInternalNodes) return; \n "
" \n "
" // \n "
" int distanceFromRoot = 0; \n "
" { \n "
" int parentIndex = internalNodeParentNodes[internalNodeIndex]; \n "
" while(parentIndex != B3_PLBVH_ROOT_NODE_MARKER) \n "
" { \n "
" parentIndex = internalNodeParentNodes[parentIndex]; \n "
" ++distanceFromRoot; \n "
" } \n "
" } \n "
" out_distanceFromRoot[internalNodeIndex] = distanceFromRoot; \n "
" \n "
" // \n "
" __local int localMaxDistanceFromRoot; \n "
" if( get_local_id(0) == 0 ) localMaxDistanceFromRoot = 0; \n "
" barrier(CLK_LOCAL_MEM_FENCE); \n "
" \n "
" atomic_max(&localMaxDistanceFromRoot, distanceFromRoot); \n "
" barrier(CLK_LOCAL_MEM_FENCE); \n "
" \n "
" if( get_local_id(0) == 0 ) atomic_max(out_maxDistanceFromRoot, localMaxDistanceFromRoot); \n "
" } \n "
" __kernel void buildBinaryRadixTreeAabbsRecursive(__global int* distanceFromRoot, __global SortDataCL* mortonCodesAndAabbIndices, \n "
" __global int2* childNodes, \n "
" __global b3AabbCL* leafNodeAabbs, __global b3AabbCL* internalNodeAabbs, \n "
" int maxDistanceFromRoot, int processedDistance, int numInternalNodes) \n "
" { \n "
" int internalNodeIndex = get_global_id(0); \n "
" if(internalNodeIndex >= numInternalNodes) return; \n "
" \n "
" int distance = distanceFromRoot[internalNodeIndex]; \n "
" \n "
" if(distance == processedDistance) \n "
" { \n "
" int leftChildIndex = childNodes[internalNodeIndex].x; \n "
" int rightChildIndex = childNodes[internalNodeIndex].y; \n "
" \n "
" int isLeftChildLeaf = isLeafNode(leftChildIndex); \n "
" int isRightChildLeaf = isLeafNode(rightChildIndex); \n "
" \n "
" leftChildIndex = getIndexWithInternalNodeMarkerRemoved(leftChildIndex); \n "
" rightChildIndex = getIndexWithInternalNodeMarkerRemoved(rightChildIndex); \n "
" \n "
" //leftRigidIndex/rightRigidIndex is not used if internal node \n "
" int leftRigidIndex = (isLeftChildLeaf) ? mortonCodesAndAabbIndices[leftChildIndex].m_value : -1; \n "
" int rightRigidIndex = (isRightChildLeaf) ? mortonCodesAndAabbIndices[rightChildIndex].m_value : -1; \n "
" \n "
" b3AabbCL leftChildAabb = (isLeftChildLeaf) ? leafNodeAabbs[leftRigidIndex] : internalNodeAabbs[leftChildIndex]; \n "
" b3AabbCL rightChildAabb = (isRightChildLeaf) ? leafNodeAabbs[rightRigidIndex] : internalNodeAabbs[rightChildIndex]; \n "
" \n "
" b3AabbCL mergedAabb; \n "
" mergedAabb.m_min = b3Min(leftChildAabb.m_min, rightChildAabb.m_min); \n "
" mergedAabb.m_max = b3Max(leftChildAabb.m_max, rightChildAabb.m_max); \n "
" internalNodeAabbs[internalNodeIndex] = mergedAabb; \n "
" } \n "
" } \n "
" __kernel void findLeafIndexRanges(__global int2* internalNodeChildNodes, __global int2* out_leafIndexRanges, int numInternalNodes) \n "
" { \n "
" int internalNodeIndex = get_global_id(0); \n "
" if(internalNodeIndex >= numInternalNodes) return; \n "
" \n "
" int numLeafNodes = numInternalNodes + 1; \n "
" \n "
" int2 childNodes = internalNodeChildNodes[internalNodeIndex]; \n "
" \n "
" int2 leafIndexRange; //x == min leaf index, y == max leaf index \n "
" \n "
" //Find lowest leaf index covered by this internal node \n "
" { \n "
" int lowestIndex = childNodes.x; //childNodes.x == Left child \n "
" while( !isLeafNode(lowestIndex) ) lowestIndex = internalNodeChildNodes[ getIndexWithInternalNodeMarkerRemoved(lowestIndex) ].x; \n "
" leafIndexRange.x = lowestIndex; \n "
" } \n "
" \n "
" //Find highest leaf index covered by this internal node \n "
" { \n "
" int highestIndex = childNodes.y; //childNodes.y == Right child \n "
" while( !isLeafNode(highestIndex) ) highestIndex = internalNodeChildNodes[ getIndexWithInternalNodeMarkerRemoved(highestIndex) ].y; \n "
" leafIndexRange.y = highestIndex; \n "
" } \n "
" \n "
" // \n "
" out_leafIndexRanges[internalNodeIndex] = leafIndexRange; \n "
" } \n " ;