godot/thirdparty/astcenc/astcenc_ideal_endpoints_and...

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

1664 lines
52 KiB
C++
Raw Normal View History

// SPDX-License-Identifier: Apache-2.0
// ----------------------------------------------------------------------------
// Copyright 2011-2023 Arm Limited
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not
// use this file except in compliance with the License. You may obtain a copy
// of the License at:
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
// License for the specific language governing permissions and limitations
// under the License.
// ----------------------------------------------------------------------------
#if !defined(ASTCENC_DECOMPRESS_ONLY)
/**
* @brief Functions for computing color endpoints and texel weights.
*/
#include <cassert>
#include "astcenc_internal.h"
#include "astcenc_vecmathlib.h"
/**
* @brief Compute the infilled weight for N texel indices in a decimated grid.
*
* @param di The weight grid decimation to use.
* @param weights The decimated weight values to use.
* @param index The first texel index to interpolate.
*
* @return The interpolated weight for the given set of SIMD_WIDTH texels.
*/
static vfloat bilinear_infill_vla(
const decimation_info& di,
const float* weights,
unsigned int index
) {
// Load the bilinear filter texel weight indexes in the decimated grid
vint weight_idx0 = vint(di.texel_weights_tr[0] + index);
vint weight_idx1 = vint(di.texel_weights_tr[1] + index);
vint weight_idx2 = vint(di.texel_weights_tr[2] + index);
vint weight_idx3 = vint(di.texel_weights_tr[3] + index);
// Load the bilinear filter weights from the decimated grid
vfloat weight_val0 = gatherf(weights, weight_idx0);
vfloat weight_val1 = gatherf(weights, weight_idx1);
vfloat weight_val2 = gatherf(weights, weight_idx2);
vfloat weight_val3 = gatherf(weights, weight_idx3);
// Load the weight contribution factors for each decimated weight
vfloat tex_weight_float0 = loada(di.texel_weight_contribs_float_tr[0] + index);
vfloat tex_weight_float1 = loada(di.texel_weight_contribs_float_tr[1] + index);
vfloat tex_weight_float2 = loada(di.texel_weight_contribs_float_tr[2] + index);
vfloat tex_weight_float3 = loada(di.texel_weight_contribs_float_tr[3] + index);
// Compute the bilinear interpolation to generate the per-texel weight
return (weight_val0 * tex_weight_float0 + weight_val1 * tex_weight_float1) +
(weight_val2 * tex_weight_float2 + weight_val3 * tex_weight_float3);
}
/**
* @brief Compute the infilled weight for N texel indices in a decimated grid.
*
* This is specialized version which computes only two weights per texel for
* encodings that are only decimated in a single axis.
*
* @param di The weight grid decimation to use.
* @param weights The decimated weight values to use.
* @param index The first texel index to interpolate.
*
* @return The interpolated weight for the given set of SIMD_WIDTH texels.
*/
static vfloat bilinear_infill_vla_2(
const decimation_info& di,
const float* weights,
unsigned int index
) {
// Load the bilinear filter texel weight indexes in the decimated grid
vint weight_idx0 = vint(di.texel_weights_tr[0] + index);
vint weight_idx1 = vint(di.texel_weights_tr[1] + index);
// Load the bilinear filter weights from the decimated grid
vfloat weight_val0 = gatherf(weights, weight_idx0);
vfloat weight_val1 = gatherf(weights, weight_idx1);
// Load the weight contribution factors for each decimated weight
vfloat tex_weight_float0 = loada(di.texel_weight_contribs_float_tr[0] + index);
vfloat tex_weight_float1 = loada(di.texel_weight_contribs_float_tr[1] + index);
// Compute the bilinear interpolation to generate the per-texel weight
return (weight_val0 * tex_weight_float0 + weight_val1 * tex_weight_float1);
}
/**
* @brief Compute the ideal endpoints and weights for 1 color component.
*
* @param blk The image block color data to compress.
* @param pi The partition info for the current trial.
* @param[out] ei The computed ideal endpoints and weights.
* @param component The color component to compute.
*/
static void compute_ideal_colors_and_weights_1_comp(
const image_block& blk,
const partition_info& pi,
endpoints_and_weights& ei,
unsigned int component
) {
unsigned int partition_count = pi.partition_count;
ei.ep.partition_count = partition_count;
promise(partition_count > 0);
unsigned int texel_count = blk.texel_count;
promise(texel_count > 0);
float error_weight;
const float* data_vr = nullptr;
assert(component < BLOCK_MAX_COMPONENTS);
switch (component)
{
case 0:
error_weight = blk.channel_weight.lane<0>();
data_vr = blk.data_r;
break;
case 1:
error_weight = blk.channel_weight.lane<1>();
data_vr = blk.data_g;
break;
case 2:
error_weight = blk.channel_weight.lane<2>();
data_vr = blk.data_b;
break;
default:
assert(component == 3);
error_weight = blk.channel_weight.lane<3>();
data_vr = blk.data_a;
break;
}
vmask4 sep_mask = vint4::lane_id() == vint4(component);
bool is_constant_wes { true };
float partition0_len_sq { 0.0f };
for (unsigned int i = 0; i < partition_count; i++)
{
float lowvalue { 1e10f };
float highvalue { -1e10f };
unsigned int partition_texel_count = pi.partition_texel_count[i];
for (unsigned int j = 0; j < partition_texel_count; j++)
{
unsigned int tix = pi.texels_of_partition[i][j];
float value = data_vr[tix];
lowvalue = astc::min(value, lowvalue);
highvalue = astc::max(value, highvalue);
}
if (highvalue <= lowvalue)
{
lowvalue = 0.0f;
highvalue = 1e-7f;
}
float length = highvalue - lowvalue;
float length_squared = length * length;
float scale = 1.0f / length;
if (i == 0)
{
partition0_len_sq = length_squared;
}
else
{
is_constant_wes = is_constant_wes && length_squared == partition0_len_sq;
}
for (unsigned int j = 0; j < partition_texel_count; j++)
{
unsigned int tix = pi.texels_of_partition[i][j];
float value = (data_vr[tix] - lowvalue) * scale;
value = astc::clamp1f(value);
ei.weights[tix] = value;
ei.weight_error_scale[tix] = length_squared * error_weight;
assert(!astc::isnan(ei.weight_error_scale[tix]));
}
ei.ep.endpt0[i] = select(blk.data_min, vfloat4(lowvalue), sep_mask);
ei.ep.endpt1[i] = select(blk.data_max, vfloat4(highvalue), sep_mask);
}
// Zero initialize any SIMD over-fetch
unsigned int texel_count_simd = round_up_to_simd_multiple_vla(texel_count);
for (unsigned int i = texel_count; i < texel_count_simd; i++)
{
ei.weights[i] = 0.0f;
ei.weight_error_scale[i] = 0.0f;
}
ei.is_constant_weight_error_scale = is_constant_wes;
}
/**
* @brief Compute the ideal endpoints and weights for 2 color components.
*
* @param blk The image block color data to compress.
* @param pi The partition info for the current trial.
* @param[out] ei The computed ideal endpoints and weights.
* @param component1 The first color component to compute.
* @param component2 The second color component to compute.
*/
static void compute_ideal_colors_and_weights_2_comp(
const image_block& blk,
const partition_info& pi,
endpoints_and_weights& ei,
int component1,
int component2
) {
unsigned int partition_count = pi.partition_count;
ei.ep.partition_count = partition_count;
promise(partition_count > 0);
unsigned int texel_count = blk.texel_count;
promise(texel_count > 0);
partition_metrics pms[BLOCK_MAX_PARTITIONS];
float error_weight;
const float* data_vr = nullptr;
const float* data_vg = nullptr;
if (component1 == 0 && component2 == 1)
{
error_weight = hadd_s(blk.channel_weight.swz<0, 1>()) / 2.0f;
data_vr = blk.data_r;
data_vg = blk.data_g;
}
else if (component1 == 0 && component2 == 2)
{
error_weight = hadd_s(blk.channel_weight.swz<0, 2>()) / 2.0f;
data_vr = blk.data_r;
data_vg = blk.data_b;
}
else // (component1 == 1 && component2 == 2)
{
assert(component1 == 1 && component2 == 2);
error_weight = hadd_s(blk.channel_weight.swz<1, 2>()) / 2.0f;
data_vr = blk.data_g;
data_vg = blk.data_b;
}
compute_avgs_and_dirs_2_comp(pi, blk, component1, component2, pms);
bool is_constant_wes { true };
float partition0_len_sq { 0.0f };
vmask4 comp1_mask = vint4::lane_id() == vint4(component1);
vmask4 comp2_mask = vint4::lane_id() == vint4(component2);
for (unsigned int i = 0; i < partition_count; i++)
{
vfloat4 dir = pms[i].dir;
if (hadd_s(dir) < 0.0f)
{
dir = vfloat4::zero() - dir;
}
line2 line { pms[i].avg, normalize_safe(dir, unit2()) };
float lowparam { 1e10f };
float highparam { -1e10f };
unsigned int partition_texel_count = pi.partition_texel_count[i];
for (unsigned int j = 0; j < partition_texel_count; j++)
{
unsigned int tix = pi.texels_of_partition[i][j];
vfloat4 point = vfloat2(data_vr[tix], data_vg[tix]);
float param = dot_s(point - line.a, line.b);
ei.weights[tix] = param;
lowparam = astc::min(param, lowparam);
highparam = astc::max(param, highparam);
}
// It is possible for a uniform-color partition to produce length=0;
// this causes NaN issues so set to small value to avoid this problem
if (highparam <= lowparam)
{
lowparam = 0.0f;
highparam = 1e-7f;
}
float length = highparam - lowparam;
float length_squared = length * length;
float scale = 1.0f / length;
if (i == 0)
{
partition0_len_sq = length_squared;
}
else
{
is_constant_wes = is_constant_wes && length_squared == partition0_len_sq;
}
for (unsigned int j = 0; j < partition_texel_count; j++)
{
unsigned int tix = pi.texels_of_partition[i][j];
float idx = (ei.weights[tix] - lowparam) * scale;
idx = astc::clamp1f(idx);
ei.weights[tix] = idx;
ei.weight_error_scale[tix] = length_squared * error_weight;
assert(!astc::isnan(ei.weight_error_scale[tix]));
}
vfloat4 lowvalue = line.a + line.b * lowparam;
vfloat4 highvalue = line.a + line.b * highparam;
vfloat4 ep0 = select(blk.data_min, vfloat4(lowvalue.lane<0>()), comp1_mask);
vfloat4 ep1 = select(blk.data_max, vfloat4(highvalue.lane<0>()), comp1_mask);
ei.ep.endpt0[i] = select(ep0, vfloat4(lowvalue.lane<1>()), comp2_mask);
ei.ep.endpt1[i] = select(ep1, vfloat4(highvalue.lane<1>()), comp2_mask);
}
// Zero initialize any SIMD over-fetch
unsigned int texel_count_simd = round_up_to_simd_multiple_vla(texel_count);
for (unsigned int i = texel_count; i < texel_count_simd; i++)
{
ei.weights[i] = 0.0f;
ei.weight_error_scale[i] = 0.0f;
}
ei.is_constant_weight_error_scale = is_constant_wes;
}
/**
* @brief Compute the ideal endpoints and weights for 3 color components.
*
* @param blk The image block color data to compress.
* @param pi The partition info for the current trial.
* @param[out] ei The computed ideal endpoints and weights.
* @param omitted_component The color component excluded from the calculation.
*/
static void compute_ideal_colors_and_weights_3_comp(
const image_block& blk,
const partition_info& pi,
endpoints_and_weights& ei,
unsigned int omitted_component
) {
unsigned int partition_count = pi.partition_count;
ei.ep.partition_count = partition_count;
promise(partition_count > 0);
unsigned int texel_count = blk.texel_count;
promise(texel_count > 0);
partition_metrics pms[BLOCK_MAX_PARTITIONS];
float error_weight;
const float* data_vr = nullptr;
const float* data_vg = nullptr;
const float* data_vb = nullptr;
if (omitted_component == 0)
{
error_weight = hadd_s(blk.channel_weight.swz<0, 1, 2>());
data_vr = blk.data_g;
data_vg = blk.data_b;
data_vb = blk.data_a;
}
else if (omitted_component == 1)
{
error_weight = hadd_s(blk.channel_weight.swz<0, 2, 3>());
data_vr = blk.data_r;
data_vg = blk.data_b;
data_vb = blk.data_a;
}
else if (omitted_component == 2)
{
error_weight = hadd_s(blk.channel_weight.swz<0, 1, 3>());
data_vr = blk.data_r;
data_vg = blk.data_g;
data_vb = blk.data_a;
}
else
{
assert(omitted_component == 3);
error_weight = hadd_s(blk.channel_weight.swz<0, 1, 2>());
data_vr = blk.data_r;
data_vg = blk.data_g;
data_vb = blk.data_b;
}
error_weight = error_weight * (1.0f / 3.0f);
if (omitted_component == 3)
{
compute_avgs_and_dirs_3_comp_rgb(pi, blk, pms);
}
else
{
compute_avgs_and_dirs_3_comp(pi, blk, omitted_component, pms);
}
bool is_constant_wes { true };
float partition0_len_sq { 0.0f };
for (unsigned int i = 0; i < partition_count; i++)
{
vfloat4 dir = pms[i].dir;
if (hadd_rgb_s(dir) < 0.0f)
{
dir = vfloat4::zero() - dir;
}
line3 line { pms[i].avg, normalize_safe(dir, unit3()) };
float lowparam { 1e10f };
float highparam { -1e10f };
unsigned int partition_texel_count = pi.partition_texel_count[i];
for (unsigned int j = 0; j < partition_texel_count; j++)
{
unsigned int tix = pi.texels_of_partition[i][j];
vfloat4 point = vfloat3(data_vr[tix], data_vg[tix], data_vb[tix]);
float param = dot3_s(point - line.a, line.b);
ei.weights[tix] = param;
lowparam = astc::min(param, lowparam);
highparam = astc::max(param, highparam);
}
// It is possible for a uniform-color partition to produce length=0;
// this causes NaN issues so set to small value to avoid this problem
if (highparam <= lowparam)
{
lowparam = 0.0f;
highparam = 1e-7f;
}
float length = highparam - lowparam;
float length_squared = length * length;
float scale = 1.0f / length;
if (i == 0)
{
partition0_len_sq = length_squared;
}
else
{
is_constant_wes = is_constant_wes && length_squared == partition0_len_sq;
}
for (unsigned int j = 0; j < partition_texel_count; j++)
{
unsigned int tix = pi.texels_of_partition[i][j];
float idx = (ei.weights[tix] - lowparam) * scale;
idx = astc::clamp1f(idx);
ei.weights[tix] = idx;
ei.weight_error_scale[tix] = length_squared * error_weight;
assert(!astc::isnan(ei.weight_error_scale[tix]));
}
vfloat4 ep0 = line.a + line.b * lowparam;
vfloat4 ep1 = line.a + line.b * highparam;
vfloat4 bmin = blk.data_min;
vfloat4 bmax = blk.data_max;
assert(omitted_component < BLOCK_MAX_COMPONENTS);
switch (omitted_component)
{
case 0:
ei.ep.endpt0[i] = vfloat4(bmin.lane<0>(), ep0.lane<0>(), ep0.lane<1>(), ep0.lane<2>());
ei.ep.endpt1[i] = vfloat4(bmax.lane<0>(), ep1.lane<0>(), ep1.lane<1>(), ep1.lane<2>());
break;
case 1:
ei.ep.endpt0[i] = vfloat4(ep0.lane<0>(), bmin.lane<1>(), ep0.lane<1>(), ep0.lane<2>());
ei.ep.endpt1[i] = vfloat4(ep1.lane<0>(), bmax.lane<1>(), ep1.lane<1>(), ep1.lane<2>());
break;
case 2:
ei.ep.endpt0[i] = vfloat4(ep0.lane<0>(), ep0.lane<1>(), bmin.lane<2>(), ep0.lane<2>());
ei.ep.endpt1[i] = vfloat4(ep1.lane<0>(), ep1.lane<1>(), bmax.lane<2>(), ep1.lane<2>());
break;
default:
ei.ep.endpt0[i] = vfloat4(ep0.lane<0>(), ep0.lane<1>(), ep0.lane<2>(), bmin.lane<3>());
ei.ep.endpt1[i] = vfloat4(ep1.lane<0>(), ep1.lane<1>(), ep1.lane<2>(), bmax.lane<3>());
break;
}
}
// Zero initialize any SIMD over-fetch
unsigned int texel_count_simd = round_up_to_simd_multiple_vla(texel_count);
for (unsigned int i = texel_count; i < texel_count_simd; i++)
{
ei.weights[i] = 0.0f;
ei.weight_error_scale[i] = 0.0f;
}
ei.is_constant_weight_error_scale = is_constant_wes;
}
/**
* @brief Compute the ideal endpoints and weights for 4 color components.
*
* @param blk The image block color data to compress.
* @param pi The partition info for the current trial.
* @param[out] ei The computed ideal endpoints and weights.
*/
static void compute_ideal_colors_and_weights_4_comp(
const image_block& blk,
const partition_info& pi,
endpoints_and_weights& ei
) {
const float error_weight = hadd_s(blk.channel_weight) / 4.0f;
unsigned int partition_count = pi.partition_count;
unsigned int texel_count = blk.texel_count;
promise(texel_count > 0);
promise(partition_count > 0);
partition_metrics pms[BLOCK_MAX_PARTITIONS];
compute_avgs_and_dirs_4_comp(pi, blk, pms);
bool is_constant_wes { true };
float partition0_len_sq { 0.0f };
for (unsigned int i = 0; i < partition_count; i++)
{
vfloat4 dir = pms[i].dir;
if (hadd_rgb_s(dir) < 0.0f)
{
dir = vfloat4::zero() - dir;
}
line4 line { pms[i].avg, normalize_safe(dir, unit4()) };
float lowparam { 1e10f };
float highparam { -1e10f };
unsigned int partition_texel_count = pi.partition_texel_count[i];
for (unsigned int j = 0; j < partition_texel_count; j++)
{
unsigned int tix = pi.texels_of_partition[i][j];
vfloat4 point = blk.texel(tix);
float param = dot_s(point - line.a, line.b);
ei.weights[tix] = param;
lowparam = astc::min(param, lowparam);
highparam = astc::max(param, highparam);
}
// It is possible for a uniform-color partition to produce length=0;
// this causes NaN issues so set to small value to avoid this problem
if (highparam <= lowparam)
{
lowparam = 0.0f;
highparam = 1e-7f;
}
float length = highparam - lowparam;
float length_squared = length * length;
float scale = 1.0f / length;
if (i == 0)
{
partition0_len_sq = length_squared;
}
else
{
is_constant_wes = is_constant_wes && length_squared == partition0_len_sq;
}
ei.ep.endpt0[i] = line.a + line.b * lowparam;
ei.ep.endpt1[i] = line.a + line.b * highparam;
for (unsigned int j = 0; j < partition_texel_count; j++)
{
unsigned int tix = pi.texels_of_partition[i][j];
float idx = (ei.weights[tix] - lowparam) * scale;
idx = astc::clamp1f(idx);
ei.weights[tix] = idx;
ei.weight_error_scale[tix] = length_squared * error_weight;
assert(!astc::isnan(ei.weight_error_scale[tix]));
}
}
// Zero initialize any SIMD over-fetch
unsigned int texel_count_simd = round_up_to_simd_multiple_vla(texel_count);
for (unsigned int i = texel_count; i < texel_count_simd; i++)
{
ei.weights[i] = 0.0f;
ei.weight_error_scale[i] = 0.0f;
}
ei.is_constant_weight_error_scale = is_constant_wes;
}
/* See header for documentation. */
void compute_ideal_colors_and_weights_1plane(
const image_block& blk,
const partition_info& pi,
endpoints_and_weights& ei
) {
bool uses_alpha = !blk.is_constant_channel(3);
if (uses_alpha)
{
compute_ideal_colors_and_weights_4_comp(blk, pi, ei);
}
else
{
compute_ideal_colors_and_weights_3_comp(blk, pi, ei, 3);
}
}
/* See header for documentation. */
void compute_ideal_colors_and_weights_2planes(
const block_size_descriptor& bsd,
const image_block& blk,
unsigned int plane2_component,
endpoints_and_weights& ei1,
endpoints_and_weights& ei2
) {
const auto& pi = bsd.get_partition_info(1, 0);
bool uses_alpha = !blk.is_constant_channel(3);
assert(plane2_component < BLOCK_MAX_COMPONENTS);
switch (plane2_component)
{
case 0: // Separate weights for red
if (uses_alpha)
{
compute_ideal_colors_and_weights_3_comp(blk, pi, ei1, 0);
}
else
{
compute_ideal_colors_and_weights_2_comp(blk, pi, ei1, 1, 2);
}
compute_ideal_colors_and_weights_1_comp(blk, pi, ei2, 0);
break;
case 1: // Separate weights for green
if (uses_alpha)
{
compute_ideal_colors_and_weights_3_comp(blk, pi, ei1, 1);
}
else
{
compute_ideal_colors_and_weights_2_comp(blk, pi, ei1, 0, 2);
}
compute_ideal_colors_and_weights_1_comp(blk, pi, ei2, 1);
break;
case 2: // Separate weights for blue
if (uses_alpha)
{
compute_ideal_colors_and_weights_3_comp(blk, pi, ei1, 2);
}
else
{
compute_ideal_colors_and_weights_2_comp(blk, pi, ei1, 0, 1);
}
compute_ideal_colors_and_weights_1_comp(blk, pi, ei2, 2);
break;
default: // Separate weights for alpha
assert(uses_alpha);
compute_ideal_colors_and_weights_3_comp(blk, pi, ei1, 3);
compute_ideal_colors_and_weights_1_comp(blk, pi, ei2, 3);
break;
}
}
/* See header for documentation. */
float compute_error_of_weight_set_1plane(
const endpoints_and_weights& eai,
const decimation_info& di,
const float* dec_weight_quant_uvalue
) {
vfloatacc error_summav = vfloatacc::zero();
unsigned int texel_count = di.texel_count;
promise(texel_count > 0);
// Process SIMD-width chunks, safe to over-fetch - the extra space is zero initialized
if (di.max_texel_weight_count > 2)
{
for (unsigned int i = 0; i < texel_count; i += ASTCENC_SIMD_WIDTH)
{
// Compute the bilinear interpolation of the decimated weight grid
vfloat current_values = bilinear_infill_vla(di, dec_weight_quant_uvalue, i);
// Compute the error between the computed value and the ideal weight
vfloat actual_values = loada(eai.weights + i);
vfloat diff = current_values - actual_values;
vfloat significance = loada(eai.weight_error_scale + i);
vfloat error = diff * diff * significance;
haccumulate(error_summav, error);
}
}
else if (di.max_texel_weight_count > 1)
{
for (unsigned int i = 0; i < texel_count; i += ASTCENC_SIMD_WIDTH)
{
// Compute the bilinear interpolation of the decimated weight grid
vfloat current_values = bilinear_infill_vla_2(di, dec_weight_quant_uvalue, i);
// Compute the error between the computed value and the ideal weight
vfloat actual_values = loada(eai.weights + i);
vfloat diff = current_values - actual_values;
vfloat significance = loada(eai.weight_error_scale + i);
vfloat error = diff * diff * significance;
haccumulate(error_summav, error);
}
}
else
{
for (unsigned int i = 0; i < texel_count; i += ASTCENC_SIMD_WIDTH)
{
// Load the weight set directly, without interpolation
vfloat current_values = loada(dec_weight_quant_uvalue + i);
// Compute the error between the computed value and the ideal weight
vfloat actual_values = loada(eai.weights + i);
vfloat diff = current_values - actual_values;
vfloat significance = loada(eai.weight_error_scale + i);
vfloat error = diff * diff * significance;
haccumulate(error_summav, error);
}
}
// Resolve the final scalar accumulator sum
return hadd_s(error_summav);
}
/* See header for documentation. */
float compute_error_of_weight_set_2planes(
const endpoints_and_weights& eai1,
const endpoints_and_weights& eai2,
const decimation_info& di,
const float* dec_weight_quant_uvalue_plane1,
const float* dec_weight_quant_uvalue_plane2
) {
vfloatacc error_summav = vfloatacc::zero();
unsigned int texel_count = di.texel_count;
promise(texel_count > 0);
// Process SIMD-width chunks, safe to over-fetch - the extra space is zero initialized
if (di.max_texel_weight_count > 2)
{
for (unsigned int i = 0; i < texel_count; i += ASTCENC_SIMD_WIDTH)
{
// Plane 1
// Compute the bilinear interpolation of the decimated weight grid
vfloat current_values1 = bilinear_infill_vla(di, dec_weight_quant_uvalue_plane1, i);
// Compute the error between the computed value and the ideal weight
vfloat actual_values1 = loada(eai1.weights + i);
vfloat diff = current_values1 - actual_values1;
vfloat error1 = diff * diff * loada(eai1.weight_error_scale + i);
// Plane 2
// Compute the bilinear interpolation of the decimated weight grid
vfloat current_values2 = bilinear_infill_vla(di, dec_weight_quant_uvalue_plane2, i);
// Compute the error between the computed value and the ideal weight
vfloat actual_values2 = loada(eai2.weights + i);
diff = current_values2 - actual_values2;
vfloat error2 = diff * diff * loada(eai2.weight_error_scale + i);
haccumulate(error_summav, error1 + error2);
}
}
else if (di.max_texel_weight_count > 1)
{
for (unsigned int i = 0; i < texel_count; i += ASTCENC_SIMD_WIDTH)
{
// Plane 1
// Compute the bilinear interpolation of the decimated weight grid
vfloat current_values1 = bilinear_infill_vla_2(di, dec_weight_quant_uvalue_plane1, i);
// Compute the error between the computed value and the ideal weight
vfloat actual_values1 = loada(eai1.weights + i);
vfloat diff = current_values1 - actual_values1;
vfloat error1 = diff * diff * loada(eai1.weight_error_scale + i);
// Plane 2
// Compute the bilinear interpolation of the decimated weight grid
vfloat current_values2 = bilinear_infill_vla_2(di, dec_weight_quant_uvalue_plane2, i);
// Compute the error between the computed value and the ideal weight
vfloat actual_values2 = loada(eai2.weights + i);
diff = current_values2 - actual_values2;
vfloat error2 = diff * diff * loada(eai2.weight_error_scale + i);
haccumulate(error_summav, error1 + error2);
}
}
else
{
for (unsigned int i = 0; i < texel_count; i += ASTCENC_SIMD_WIDTH)
{
// Plane 1
// Load the weight set directly, without interpolation
vfloat current_values1 = loada(dec_weight_quant_uvalue_plane1 + i);
// Compute the error between the computed value and the ideal weight
vfloat actual_values1 = loada(eai1.weights + i);
vfloat diff = current_values1 - actual_values1;
vfloat error1 = diff * diff * loada(eai1.weight_error_scale + i);
// Plane 2
// Load the weight set directly, without interpolation
vfloat current_values2 = loada(dec_weight_quant_uvalue_plane2 + i);
// Compute the error between the computed value and the ideal weight
vfloat actual_values2 = loada(eai2.weights + i);
diff = current_values2 - actual_values2;
vfloat error2 = diff * diff * loada(eai2.weight_error_scale + i);
haccumulate(error_summav, error1 + error2);
}
}
// Resolve the final scalar accumulator sum
return hadd_s(error_summav);
}
/* See header for documentation. */
void compute_ideal_weights_for_decimation(
const endpoints_and_weights& ei,
const decimation_info& di,
float* dec_weight_ideal_value
) {
unsigned int texel_count = di.texel_count;
unsigned int weight_count = di.weight_count;
bool is_direct = texel_count == weight_count;
promise(texel_count > 0);
promise(weight_count > 0);
// Ensure that the end of the output arrays that are used for SIMD paths later are filled so we
// can safely run SIMD elsewhere without a loop tail. Note that this is always safe as weight
// arrays always contain space for 64 elements
unsigned int prev_weight_count_simd = round_down_to_simd_multiple_vla(weight_count - 1);
storea(vfloat::zero(), dec_weight_ideal_value + prev_weight_count_simd);
// If we have a 1:1 mapping just shortcut the computation. Transfer enough to also copy the
// zero-initialized SIMD over-fetch region
if (is_direct)
{
for (unsigned int i = 0; i < texel_count; i += ASTCENC_SIMD_WIDTH)
{
vfloat weight(ei.weights + i);
storea(weight, dec_weight_ideal_value + i);
}
return;
}
// Otherwise compute an estimate and perform single refinement iteration
alignas(ASTCENC_VECALIGN) float infilled_weights[BLOCK_MAX_TEXELS];
// Compute an initial average for each decimated weight
bool constant_wes = ei.is_constant_weight_error_scale;
vfloat weight_error_scale(ei.weight_error_scale[0]);
// This overshoots - this is OK as we initialize the array tails in the
// decimation table structures to safe values ...
for (unsigned int i = 0; i < weight_count; i += ASTCENC_SIMD_WIDTH)
{
// Start with a small value to avoid div-by-zero later
vfloat weight_weight(1e-10f);
vfloat initial_weight = vfloat::zero();
// Accumulate error weighting of all the texels using this weight
vint weight_texel_count(di.weight_texel_count + i);
unsigned int max_texel_count = hmax(weight_texel_count).lane<0>();
promise(max_texel_count > 0);
for (unsigned int j = 0; j < max_texel_count; j++)
{
vint texel(di.weight_texels_tr[j] + i);
vfloat weight = loada(di.weights_texel_contribs_tr[j] + i);
if (!constant_wes)
{
weight_error_scale = gatherf(ei.weight_error_scale, texel);
}
vfloat contrib_weight = weight * weight_error_scale;
weight_weight += contrib_weight;
initial_weight += gatherf(ei.weights, texel) * contrib_weight;
}
storea(initial_weight / weight_weight, dec_weight_ideal_value + i);
}
// Populate the interpolated weight grid based on the initial average
// Process SIMD-width texel coordinates at at time while we can. Safe to
// over-process full SIMD vectors - the tail is zeroed.
if (di.max_texel_weight_count <= 2)
{
for (unsigned int i = 0; i < texel_count; i += ASTCENC_SIMD_WIDTH)
{
vfloat weight = bilinear_infill_vla_2(di, dec_weight_ideal_value, i);
storea(weight, infilled_weights + i);
}
}
else
{
for (unsigned int i = 0; i < texel_count; i += ASTCENC_SIMD_WIDTH)
{
vfloat weight = bilinear_infill_vla(di, dec_weight_ideal_value, i);
storea(weight, infilled_weights + i);
}
}
// Perform a single iteration of refinement
// Empirically determined step size; larger values don't help but smaller drops image quality
constexpr float stepsize = 0.25f;
constexpr float chd_scale = -WEIGHTS_TEXEL_SUM;
for (unsigned int i = 0; i < weight_count; i += ASTCENC_SIMD_WIDTH)
{
vfloat weight_val = loada(dec_weight_ideal_value + i);
// Accumulate error weighting of all the texels using this weight
// Start with a small value to avoid div-by-zero later
vfloat error_change0(1e-10f);
vfloat error_change1(0.0f);
// Accumulate error weighting of all the texels using this weight
vint weight_texel_count(di.weight_texel_count + i);
unsigned int max_texel_count = hmax(weight_texel_count).lane<0>();
promise(max_texel_count > 0);
for (unsigned int j = 0; j < max_texel_count; j++)
{
vint texel(di.weight_texels_tr[j] + i);
vfloat contrib_weight = loada(di.weights_texel_contribs_tr[j] + i);
if (!constant_wes)
{
weight_error_scale = gatherf(ei.weight_error_scale, texel);
}
vfloat scale = weight_error_scale * contrib_weight;
vfloat old_weight = gatherf(infilled_weights, texel);
vfloat ideal_weight = gatherf(ei.weights, texel);
error_change0 += contrib_weight * scale;
error_change1 += (old_weight - ideal_weight) * scale;
}
vfloat step = (error_change1 * chd_scale) / error_change0;
step = clamp(-stepsize, stepsize, step);
// Update the weight; note this can store negative values
storea(weight_val + step, dec_weight_ideal_value + i);
}
}
/* See header for documentation. */
void compute_quantized_weights_for_decimation(
const decimation_info& di,
float low_bound,
float high_bound,
const float* dec_weight_ideal_value,
float* weight_set_out,
uint8_t* quantized_weight_set,
quant_method quant_level
) {
int weight_count = di.weight_count;
promise(weight_count > 0);
const quant_and_transfer_table& qat = quant_and_xfer_tables[quant_level];
// The available quant levels, stored with a minus 1 bias
static const float quant_levels_m1[12] {
1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 7.0f, 9.0f, 11.0f, 15.0f, 19.0f, 23.0f, 31.0f
};
vint steps_m1(get_quant_level(quant_level) - 1);
float quant_level_m1 = quant_levels_m1[quant_level];
// Quantize the weight set using both the specified low/high bounds and standard 0..1 bounds
// TODO: Oddity to investigate; triggered by test in issue #265.
if (high_bound <= low_bound)
{
low_bound = 0.0f;
high_bound = 1.0f;
}
float rscale = high_bound - low_bound;
float scale = 1.0f / rscale;
float scaled_low_bound = low_bound * scale;
rscale *= 1.0f / 64.0f;
vfloat scalev(scale);
vfloat scaled_low_boundv(scaled_low_bound);
vfloat quant_level_m1v(quant_level_m1);
vfloat rscalev(rscale);
vfloat low_boundv(low_bound);
// This runs to the rounded-up SIMD size, which is safe as the loop tail is filled with known
// safe data in compute_ideal_weights_for_decimation and arrays are always 64 elements
if (get_quant_level(quant_level) <= 16)
{
vint4 tab0(reinterpret_cast<const int*>(qat.quant_to_unquant));
vint tab0p;
vtable_prepare(tab0, tab0p);
for (int i = 0; i < weight_count; i += ASTCENC_SIMD_WIDTH)
{
vfloat ix = loada(dec_weight_ideal_value + i) * scalev - scaled_low_boundv;
ix = clampzo(ix);
// Look up the two closest indexes and return the one that was closest
vfloat ix1 = ix * quant_level_m1v;
vint weightl = float_to_int(ix1);
vint weighth = min(weightl + vint(1), steps_m1);
vint ixli = vtable_8bt_32bi(tab0p, weightl);
vint ixhi = vtable_8bt_32bi(tab0p, weighth);
vfloat ixl = int_to_float(ixli);
vfloat ixh = int_to_float(ixhi);
vmask mask = (ixl + ixh) < (vfloat(128.0f) * ix);
vint weight = select(ixli, ixhi, mask);
ixl = select(ixl, ixh, mask);
// Invert the weight-scaling that was done initially
storea(ixl * rscalev + low_boundv, weight_set_out + i);
vint scn = pack_low_bytes(weight);
store_nbytes(scn, quantized_weight_set + i);
}
}
else
{
vint4 tab0(reinterpret_cast<const int*>(qat.quant_to_unquant));
vint4 tab1(reinterpret_cast<const int*>(qat.quant_to_unquant + 16));
vint tab0p, tab1p;
vtable_prepare(tab0, tab1, tab0p, tab1p);
for (int i = 0; i < weight_count; i += ASTCENC_SIMD_WIDTH)
{
vfloat ix = loada(dec_weight_ideal_value + i) * scalev - scaled_low_boundv;
ix = clampzo(ix);
// Look up the two closest indexes and return the one that was closest
vfloat ix1 = ix * quant_level_m1v;
vint weightl = float_to_int(ix1);
vint weighth = min(weightl + vint(1), steps_m1);
vint ixli = vtable_8bt_32bi(tab0p, tab1p, weightl);
vint ixhi = vtable_8bt_32bi(tab0p, tab1p, weighth);
vfloat ixl = int_to_float(ixli);
vfloat ixh = int_to_float(ixhi);
vmask mask = (ixl + ixh) < (vfloat(128.0f) * ix);
vint weight = select(ixli, ixhi, mask);
ixl = select(ixl, ixh, mask);
// Invert the weight-scaling that was done initially
storea(ixl * rscalev + low_boundv, weight_set_out + i);
vint scn = pack_low_bytes(weight);
store_nbytes(scn, quantized_weight_set + i);
}
}
}
/**
* @brief Compute the RGB + offset for a HDR endpoint mode #7.
*
* Since the matrix needed has a regular structure we can simplify the inverse calculation. This
* gives us ~24 multiplications vs. 96 for a generic inverse.
*
* mat[0] = vfloat4(rgba_ws.x, 0.0f, 0.0f, wght_ws.x);
* mat[1] = vfloat4( 0.0f, rgba_ws.y, 0.0f, wght_ws.y);
* mat[2] = vfloat4( 0.0f, 0.0f, rgba_ws.z, wght_ws.z);
* mat[3] = vfloat4(wght_ws.x, wght_ws.y, wght_ws.z, psum);
* mat = invert(mat);
*
* @param rgba_weight_sum Sum of partition component error weights.
* @param weight_weight_sum Sum of partition component error weights * texel weight.
* @param rgbq_sum Sum of partition component error weights * texel weight * color data.
* @param psum Sum of RGB color weights * texel weight^2.
*/
static inline vfloat4 compute_rgbo_vector(
vfloat4 rgba_weight_sum,
vfloat4 weight_weight_sum,
vfloat4 rgbq_sum,
float psum
) {
float X = rgba_weight_sum.lane<0>();
float Y = rgba_weight_sum.lane<1>();
float Z = rgba_weight_sum.lane<2>();
float P = weight_weight_sum.lane<0>();
float Q = weight_weight_sum.lane<1>();
float R = weight_weight_sum.lane<2>();
float S = psum;
float PP = P * P;
float QQ = Q * Q;
float RR = R * R;
float SZmRR = S * Z - RR;
float DT = SZmRR * Y - Z * QQ;
float YP = Y * P;
float QX = Q * X;
float YX = Y * X;
float mZYP = -Z * YP;
float mZQX = -Z * QX;
float mRYX = -R * YX;
float ZQP = Z * Q * P;
float RYP = R * YP;
float RQX = R * QX;
// Compute the reciprocal of matrix determinant
float rdet = 1.0f / (DT * X + mZYP * P);
// Actually compute the adjugate, and then apply 1/det separately
vfloat4 mat0(DT, ZQP, RYP, mZYP);
vfloat4 mat1(ZQP, SZmRR * X - Z * PP, RQX, mZQX);
vfloat4 mat2(RYP, RQX, (S * Y - QQ) * X - Y * PP, mRYX);
vfloat4 mat3(mZYP, mZQX, mRYX, Z * YX);
vfloat4 vect = rgbq_sum * rdet;
return vfloat4(dot_s(mat0, vect),
dot_s(mat1, vect),
dot_s(mat2, vect),
dot_s(mat3, vect));
}
/* See header for documentation. */
void recompute_ideal_colors_1plane(
const image_block& blk,
const partition_info& pi,
const decimation_info& di,
const uint8_t* dec_weights_uquant,
endpoints& ep,
vfloat4 rgbs_vectors[BLOCK_MAX_PARTITIONS],
vfloat4 rgbo_vectors[BLOCK_MAX_PARTITIONS]
) {
unsigned int weight_count = di.weight_count;
unsigned int total_texel_count = blk.texel_count;
unsigned int partition_count = pi.partition_count;
promise(weight_count > 0);
promise(total_texel_count > 0);
promise(partition_count > 0);
alignas(ASTCENC_VECALIGN) float dec_weight[BLOCK_MAX_WEIGHTS];
for (unsigned int i = 0; i < weight_count; i += ASTCENC_SIMD_WIDTH)
{
vint unquant_value(dec_weights_uquant + i);
vfloat unquant_valuef = int_to_float(unquant_value) * vfloat(1.0f / 64.0f);
storea(unquant_valuef, dec_weight + i);
}
alignas(ASTCENC_VECALIGN) float undec_weight[BLOCK_MAX_TEXELS];
float* undec_weight_ref;
if (di.max_texel_weight_count == 1)
{
undec_weight_ref = dec_weight;
}
else if (di.max_texel_weight_count <= 2)
{
for (unsigned int i = 0; i < total_texel_count; i += ASTCENC_SIMD_WIDTH)
{
vfloat weight = bilinear_infill_vla_2(di, dec_weight, i);
storea(weight, undec_weight + i);
}
undec_weight_ref = undec_weight;
}
else
{
for (unsigned int i = 0; i < total_texel_count; i += ASTCENC_SIMD_WIDTH)
{
vfloat weight = bilinear_infill_vla(di, dec_weight, i);
storea(weight, undec_weight + i);
}
undec_weight_ref = undec_weight;
}
vfloat4 rgba_sum(blk.data_mean * static_cast<float>(blk.texel_count));
for (unsigned int i = 0; i < partition_count; i++)
{
unsigned int texel_count = pi.partition_texel_count[i];
const uint8_t *texel_indexes = pi.texels_of_partition[i];
// Only compute a partition mean if more than one partition
if (partition_count > 1)
{
rgba_sum = vfloat4::zero();
promise(texel_count > 0);
for (unsigned int j = 0; j < texel_count; j++)
{
unsigned int tix = texel_indexes[j];
rgba_sum += blk.texel(tix);
}
}
rgba_sum = rgba_sum * blk.channel_weight;
vfloat4 rgba_weight_sum = max(blk.channel_weight * static_cast<float>(texel_count), 1e-17f);
vfloat4 scale_dir = normalize((rgba_sum / rgba_weight_sum).swz<0, 1, 2>());
float scale_max = 0.0f;
float scale_min = 1e10f;
float wmin1 = 1.0f;
float wmax1 = 0.0f;
float left_sum_s = 0.0f;
float middle_sum_s = 0.0f;
float right_sum_s = 0.0f;
vfloat4 color_vec_x = vfloat4::zero();
vfloat4 color_vec_y = vfloat4::zero();
vfloat4 scale_vec = vfloat4::zero();
float weight_weight_sum_s = 1e-17f;
vfloat4 color_weight = blk.channel_weight;
float ls_weight = hadd_rgb_s(color_weight);
for (unsigned int j = 0; j < texel_count; j++)
{
unsigned int tix = texel_indexes[j];
vfloat4 rgba = blk.texel(tix);
float idx0 = undec_weight_ref[tix];
float om_idx0 = 1.0f - idx0;
wmin1 = astc::min(idx0, wmin1);
wmax1 = astc::max(idx0, wmax1);
float scale = dot3_s(scale_dir, rgba);
scale_min = astc::min(scale, scale_min);
scale_max = astc::max(scale, scale_max);
left_sum_s += om_idx0 * om_idx0;
middle_sum_s += om_idx0 * idx0;
right_sum_s += idx0 * idx0;
weight_weight_sum_s += idx0;
vfloat4 color_idx(idx0);
vfloat4 cwprod = rgba;
vfloat4 cwiprod = cwprod * color_idx;
color_vec_y += cwiprod;
color_vec_x += cwprod - cwiprod;
scale_vec += vfloat2(om_idx0, idx0) * (scale * ls_weight);
}
vfloat4 left_sum = vfloat4(left_sum_s) * color_weight;
vfloat4 middle_sum = vfloat4(middle_sum_s) * color_weight;
vfloat4 right_sum = vfloat4(right_sum_s) * color_weight;
vfloat4 lmrs_sum = vfloat3(left_sum_s, middle_sum_s, right_sum_s) * ls_weight;
color_vec_x = color_vec_x * color_weight;
color_vec_y = color_vec_y * color_weight;
// Initialize the luminance and scale vectors with a reasonable default
float scalediv = scale_min / astc::max(scale_max, 1e-10f);
scalediv = astc::clamp1f(scalediv);
vfloat4 sds = scale_dir * scale_max;
rgbs_vectors[i] = vfloat4(sds.lane<0>(), sds.lane<1>(), sds.lane<2>(), scalediv);
if (wmin1 >= wmax1 * 0.999f)
{
// If all weights in the partition were equal, then just take average of all colors in
// the partition and use that as both endpoint colors
vfloat4 avg = (color_vec_x + color_vec_y) / rgba_weight_sum;
vmask4 notnan_mask = avg == avg;
ep.endpt0[i] = select(ep.endpt0[i], avg, notnan_mask);
ep.endpt1[i] = select(ep.endpt1[i], avg, notnan_mask);
rgbs_vectors[i] = vfloat4(sds.lane<0>(), sds.lane<1>(), sds.lane<2>(), 1.0f);
}
else
{
// Otherwise, complete the analytic calculation of ideal-endpoint-values for the given
// set of texel weights and pixel colors
vfloat4 color_det1 = (left_sum * right_sum) - (middle_sum * middle_sum);
vfloat4 color_rdet1 = 1.0f / color_det1;
float ls_det1 = (lmrs_sum.lane<0>() * lmrs_sum.lane<2>()) - (lmrs_sum.lane<1>() * lmrs_sum.lane<1>());
float ls_rdet1 = 1.0f / ls_det1;
vfloat4 color_mss1 = (left_sum * left_sum)
+ (2.0f * middle_sum * middle_sum)
+ (right_sum * right_sum);
float ls_mss1 = (lmrs_sum.lane<0>() * lmrs_sum.lane<0>())
+ (2.0f * lmrs_sum.lane<1>() * lmrs_sum.lane<1>())
+ (lmrs_sum.lane<2>() * lmrs_sum.lane<2>());
vfloat4 ep0 = (right_sum * color_vec_x - middle_sum * color_vec_y) * color_rdet1;
vfloat4 ep1 = (left_sum * color_vec_y - middle_sum * color_vec_x) * color_rdet1;
vmask4 det_mask = abs(color_det1) > (color_mss1 * 1e-4f);
vmask4 notnan_mask = (ep0 == ep0) & (ep1 == ep1);
vmask4 full_mask = det_mask & notnan_mask;
ep.endpt0[i] = select(ep.endpt0[i], ep0, full_mask);
ep.endpt1[i] = select(ep.endpt1[i], ep1, full_mask);
float scale_ep0 = (lmrs_sum.lane<2>() * scale_vec.lane<0>() - lmrs_sum.lane<1>() * scale_vec.lane<1>()) * ls_rdet1;
float scale_ep1 = (lmrs_sum.lane<0>() * scale_vec.lane<1>() - lmrs_sum.lane<1>() * scale_vec.lane<0>()) * ls_rdet1;
if (fabsf(ls_det1) > (ls_mss1 * 1e-4f) && scale_ep0 == scale_ep0 && scale_ep1 == scale_ep1 && scale_ep0 < scale_ep1)
{
float scalediv2 = scale_ep0 / scale_ep1;
vfloat4 sdsm = scale_dir * scale_ep1;
rgbs_vectors[i] = vfloat4(sdsm.lane<0>(), sdsm.lane<1>(), sdsm.lane<2>(), scalediv2);
}
}
// Calculations specific to mode #7, the HDR RGB-scale mode - skip if known LDR
if (blk.rgb_lns[0] || blk.alpha_lns[0])
{
vfloat4 weight_weight_sum = vfloat4(weight_weight_sum_s) * color_weight;
float psum = right_sum_s * hadd_rgb_s(color_weight);
vfloat4 rgbq_sum = color_vec_x + color_vec_y;
rgbq_sum.set_lane<3>(hadd_rgb_s(color_vec_y));
vfloat4 rgbovec = compute_rgbo_vector(rgba_weight_sum, weight_weight_sum, rgbq_sum, psum);
rgbo_vectors[i] = rgbovec;
// We can get a failure due to the use of a singular (non-invertible) matrix
// If it failed, compute rgbo_vectors[] with a different method ...
if (astc::isnan(dot_s(rgbovec, rgbovec)))
{
vfloat4 v0 = ep.endpt0[i];
vfloat4 v1 = ep.endpt1[i];
float avgdif = hadd_rgb_s(v1 - v0) * (1.0f / 3.0f);
avgdif = astc::max(avgdif, 0.0f);
vfloat4 avg = (v0 + v1) * 0.5f;
vfloat4 ep0 = avg - vfloat4(avgdif) * 0.5f;
rgbo_vectors[i] = vfloat4(ep0.lane<0>(), ep0.lane<1>(), ep0.lane<2>(), avgdif);
}
}
}
}
/* See header for documentation. */
void recompute_ideal_colors_2planes(
const image_block& blk,
const block_size_descriptor& bsd,
const decimation_info& di,
const uint8_t* dec_weights_uquant_plane1,
const uint8_t* dec_weights_uquant_plane2,
endpoints& ep,
vfloat4& rgbs_vector,
vfloat4& rgbo_vector,
int plane2_component
) {
unsigned int weight_count = di.weight_count;
unsigned int total_texel_count = blk.texel_count;
promise(total_texel_count > 0);
promise(weight_count > 0);
alignas(ASTCENC_VECALIGN) float dec_weight_plane1[BLOCK_MAX_WEIGHTS_2PLANE];
alignas(ASTCENC_VECALIGN) float dec_weight_plane2[BLOCK_MAX_WEIGHTS_2PLANE];
assert(weight_count <= BLOCK_MAX_WEIGHTS_2PLANE);
for (unsigned int i = 0; i < weight_count; i += ASTCENC_SIMD_WIDTH)
{
vint unquant_value1(dec_weights_uquant_plane1 + i);
vfloat unquant_value1f = int_to_float(unquant_value1) * vfloat(1.0f / 64.0f);
storea(unquant_value1f, dec_weight_plane1 + i);
vint unquant_value2(dec_weights_uquant_plane2 + i);
vfloat unquant_value2f = int_to_float(unquant_value2) * vfloat(1.0f / 64.0f);
storea(unquant_value2f, dec_weight_plane2 + i);
}
alignas(ASTCENC_VECALIGN) float undec_weight_plane1[BLOCK_MAX_TEXELS];
alignas(ASTCENC_VECALIGN) float undec_weight_plane2[BLOCK_MAX_TEXELS];
float* undec_weight_plane1_ref;
float* undec_weight_plane2_ref;
if (di.max_texel_weight_count == 1)
{
undec_weight_plane1_ref = dec_weight_plane1;
undec_weight_plane2_ref = dec_weight_plane2;
}
else if (di.max_texel_weight_count <= 2)
{
for (unsigned int i = 0; i < total_texel_count; i += ASTCENC_SIMD_WIDTH)
{
vfloat weight = bilinear_infill_vla_2(di, dec_weight_plane1, i);
storea(weight, undec_weight_plane1 + i);
weight = bilinear_infill_vla_2(di, dec_weight_plane2, i);
storea(weight, undec_weight_plane2 + i);
}
undec_weight_plane1_ref = undec_weight_plane1;
undec_weight_plane2_ref = undec_weight_plane2;
}
else
{
for (unsigned int i = 0; i < total_texel_count; i += ASTCENC_SIMD_WIDTH)
{
vfloat weight = bilinear_infill_vla(di, dec_weight_plane1, i);
storea(weight, undec_weight_plane1 + i);
weight = bilinear_infill_vla(di, dec_weight_plane2, i);
storea(weight, undec_weight_plane2 + i);
}
undec_weight_plane1_ref = undec_weight_plane1;
undec_weight_plane2_ref = undec_weight_plane2;
}
unsigned int texel_count = bsd.texel_count;
vfloat4 rgba_weight_sum = max(blk.channel_weight * static_cast<float>(texel_count), 1e-17f);
vfloat4 scale_dir = normalize(blk.data_mean.swz<0, 1, 2>());
float scale_max = 0.0f;
float scale_min = 1e10f;
float wmin1 = 1.0f;
float wmax1 = 0.0f;
float wmin2 = 1.0f;
float wmax2 = 0.0f;
float left1_sum_s = 0.0f;
float middle1_sum_s = 0.0f;
float right1_sum_s = 0.0f;
float left2_sum_s = 0.0f;
float middle2_sum_s = 0.0f;
float right2_sum_s = 0.0f;
vfloat4 color_vec_x = vfloat4::zero();
vfloat4 color_vec_y = vfloat4::zero();
vfloat4 scale_vec = vfloat4::zero();
vfloat4 weight_weight_sum = vfloat4(1e-17f);
vmask4 p2_mask = vint4::lane_id() == vint4(plane2_component);
vfloat4 color_weight = blk.channel_weight;
float ls_weight = hadd_rgb_s(color_weight);
for (unsigned int j = 0; j < texel_count; j++)
{
vfloat4 rgba = blk.texel(j);
float idx0 = undec_weight_plane1_ref[j];
float om_idx0 = 1.0f - idx0;
wmin1 = astc::min(idx0, wmin1);
wmax1 = astc::max(idx0, wmax1);
float scale = dot3_s(scale_dir, rgba);
scale_min = astc::min(scale, scale_min);
scale_max = astc::max(scale, scale_max);
left1_sum_s += om_idx0 * om_idx0;
middle1_sum_s += om_idx0 * idx0;
right1_sum_s += idx0 * idx0;
float idx1 = undec_weight_plane2_ref[j];
float om_idx1 = 1.0f - idx1;
wmin2 = astc::min(idx1, wmin2);
wmax2 = astc::max(idx1, wmax2);
left2_sum_s += om_idx1 * om_idx1;
middle2_sum_s += om_idx1 * idx1;
right2_sum_s += idx1 * idx1;
vfloat4 color_idx = select(vfloat4(idx0), vfloat4(idx1), p2_mask);
vfloat4 cwprod = rgba;
vfloat4 cwiprod = cwprod * color_idx;
color_vec_y += cwiprod;
color_vec_x += cwprod - cwiprod;
scale_vec += vfloat2(om_idx0, idx0) * (ls_weight * scale);
weight_weight_sum += color_idx;
}
vfloat4 left1_sum = vfloat4(left1_sum_s) * color_weight;
vfloat4 middle1_sum = vfloat4(middle1_sum_s) * color_weight;
vfloat4 right1_sum = vfloat4(right1_sum_s) * color_weight;
vfloat4 lmrs_sum = vfloat3(left1_sum_s, middle1_sum_s, right1_sum_s) * ls_weight;
vfloat4 left2_sum = vfloat4(left2_sum_s) * color_weight;
vfloat4 middle2_sum = vfloat4(middle2_sum_s) * color_weight;
vfloat4 right2_sum = vfloat4(right2_sum_s) * color_weight;
color_vec_x = color_vec_x * color_weight;
color_vec_y = color_vec_y * color_weight;
// Initialize the luminance and scale vectors with a reasonable default
float scalediv = scale_min / astc::max(scale_max, 1e-10f);
scalediv = astc::clamp1f(scalediv);
vfloat4 sds = scale_dir * scale_max;
rgbs_vector = vfloat4(sds.lane<0>(), sds.lane<1>(), sds.lane<2>(), scalediv);
if (wmin1 >= wmax1 * 0.999f)
{
// If all weights in the partition were equal, then just take average of all colors in
// the partition and use that as both endpoint colors
vfloat4 avg = (color_vec_x + color_vec_y) / rgba_weight_sum;
vmask4 p1_mask = vint4::lane_id() != vint4(plane2_component);
vmask4 notnan_mask = avg == avg;
vmask4 full_mask = p1_mask & notnan_mask;
ep.endpt0[0] = select(ep.endpt0[0], avg, full_mask);
ep.endpt1[0] = select(ep.endpt1[0], avg, full_mask);
rgbs_vector = vfloat4(sds.lane<0>(), sds.lane<1>(), sds.lane<2>(), 1.0f);
}
else
{
// Otherwise, complete the analytic calculation of ideal-endpoint-values for the given
// set of texel weights and pixel colors
vfloat4 color_det1 = (left1_sum * right1_sum) - (middle1_sum * middle1_sum);
vfloat4 color_rdet1 = 1.0f / color_det1;
float ls_det1 = (lmrs_sum.lane<0>() * lmrs_sum.lane<2>()) - (lmrs_sum.lane<1>() * lmrs_sum.lane<1>());
float ls_rdet1 = 1.0f / ls_det1;
vfloat4 color_mss1 = (left1_sum * left1_sum)
+ (2.0f * middle1_sum * middle1_sum)
+ (right1_sum * right1_sum);
float ls_mss1 = (lmrs_sum.lane<0>() * lmrs_sum.lane<0>())
+ (2.0f * lmrs_sum.lane<1>() * lmrs_sum.lane<1>())
+ (lmrs_sum.lane<2>() * lmrs_sum.lane<2>());
vfloat4 ep0 = (right1_sum * color_vec_x - middle1_sum * color_vec_y) * color_rdet1;
vfloat4 ep1 = (left1_sum * color_vec_y - middle1_sum * color_vec_x) * color_rdet1;
float scale_ep0 = (lmrs_sum.lane<2>() * scale_vec.lane<0>() - lmrs_sum.lane<1>() * scale_vec.lane<1>()) * ls_rdet1;
float scale_ep1 = (lmrs_sum.lane<0>() * scale_vec.lane<1>() - lmrs_sum.lane<1>() * scale_vec.lane<0>()) * ls_rdet1;
vmask4 p1_mask = vint4::lane_id() != vint4(plane2_component);
vmask4 det_mask = abs(color_det1) > (color_mss1 * 1e-4f);
vmask4 notnan_mask = (ep0 == ep0) & (ep1 == ep1);
vmask4 full_mask = p1_mask & det_mask & notnan_mask;
ep.endpt0[0] = select(ep.endpt0[0], ep0, full_mask);
ep.endpt1[0] = select(ep.endpt1[0], ep1, full_mask);
if (fabsf(ls_det1) > (ls_mss1 * 1e-4f) && scale_ep0 == scale_ep0 && scale_ep1 == scale_ep1 && scale_ep0 < scale_ep1)
{
float scalediv2 = scale_ep0 / scale_ep1;
vfloat4 sdsm = scale_dir * scale_ep1;
rgbs_vector = vfloat4(sdsm.lane<0>(), sdsm.lane<1>(), sdsm.lane<2>(), scalediv2);
}
}
if (wmin2 >= wmax2 * 0.999f)
{
// If all weights in the partition were equal, then just take average of all colors in
// the partition and use that as both endpoint colors
vfloat4 avg = (color_vec_x + color_vec_y) / rgba_weight_sum;
vmask4 notnan_mask = avg == avg;
vmask4 full_mask = p2_mask & notnan_mask;
ep.endpt0[0] = select(ep.endpt0[0], avg, full_mask);
ep.endpt1[0] = select(ep.endpt1[0], avg, full_mask);
}
else
{
// Otherwise, complete the analytic calculation of ideal-endpoint-values for the given
// set of texel weights and pixel colors
vfloat4 color_det2 = (left2_sum * right2_sum) - (middle2_sum * middle2_sum);
vfloat4 color_rdet2 = 1.0f / color_det2;
vfloat4 color_mss2 = (left2_sum * left2_sum)
+ (2.0f * middle2_sum * middle2_sum)
+ (right2_sum * right2_sum);
vfloat4 ep0 = (right2_sum * color_vec_x - middle2_sum * color_vec_y) * color_rdet2;
vfloat4 ep1 = (left2_sum * color_vec_y - middle2_sum * color_vec_x) * color_rdet2;
vmask4 det_mask = abs(color_det2) > (color_mss2 * 1e-4f);
vmask4 notnan_mask = (ep0 == ep0) & (ep1 == ep1);
vmask4 full_mask = p2_mask & det_mask & notnan_mask;
ep.endpt0[0] = select(ep.endpt0[0], ep0, full_mask);
ep.endpt1[0] = select(ep.endpt1[0], ep1, full_mask);
}
// Calculations specific to mode #7, the HDR RGB-scale mode - skip if known LDR
if (blk.rgb_lns[0] || blk.alpha_lns[0])
{
weight_weight_sum = weight_weight_sum * color_weight;
float psum = dot3_s(select(right1_sum, right2_sum, p2_mask), color_weight);
vfloat4 rgbq_sum = color_vec_x + color_vec_y;
rgbq_sum.set_lane<3>(hadd_rgb_s(color_vec_y));
rgbo_vector = compute_rgbo_vector(rgba_weight_sum, weight_weight_sum, rgbq_sum, psum);
// We can get a failure due to the use of a singular (non-invertible) matrix
// If it failed, compute rgbo_vectors[] with a different method ...
if (astc::isnan(dot_s(rgbo_vector, rgbo_vector)))
{
vfloat4 v0 = ep.endpt0[0];
vfloat4 v1 = ep.endpt1[0];
float avgdif = hadd_rgb_s(v1 - v0) * (1.0f / 3.0f);
avgdif = astc::max(avgdif, 0.0f);
vfloat4 avg = (v0 + v1) * 0.5f;
vfloat4 ep0 = avg - vfloat4(avgdif) * 0.5f;
rgbo_vector = vfloat4(ep0.lane<0>(), ep0.lane<1>(), ep0.lane<2>(), avgdif);
}
}
}
#endif