2017-09-12 20:42:36 +00:00
<?xml version="1.0" encoding="UTF-8" ?>
2020-02-01 01:03:48 +00:00
<class name= "Vector2" version= "4.0" >
2017-09-12 20:42:36 +00:00
<brief_description >
2020-02-24 16:00:40 +00:00
Vector used for 2D math using floating point coordinates.
2017-09-12 20:42:36 +00:00
</brief_description>
<description >
2019-08-01 20:13:59 +00:00
2-element structure that can be used to represent positions in 2D space or any other pair of numeric values.
2020-06-21 15:16:10 +00:00
It uses floating-point coordinates. See [Vector2i] for its integer counterpart.
[b]Note:[/b] In a boolean context, a Vector2 will evaluate to [code]false[/code] if it's equal to [code]Vector2(0, 0)[/code]. Otherwise, a Vector2 will always evaluate to [code]true[/code].
2017-09-12 20:42:36 +00:00
</description>
<tutorials >
2021-11-15 09:43:07 +00:00
<link title= "Math documentation index" > $DOCS_URL/tutorials/math/index.html</link>
<link title= "Vector math" > $DOCS_URL/tutorials/math/vector_math.html</link>
<link title= "Advanced vector math" > $DOCS_URL/tutorials/math/vectors_advanced.html</link>
2020-10-01 08:34:47 +00:00
<link title= "3Blue1Brown Essence of Linear Algebra" > https://www.youtube.com/playlist?list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab</link>
<link title= "Matrix Transform Demo" > https://godotengine.org/asset-library/asset/584</link>
<link title= "All 2D Demos" > https://github.com/godotengine/godot-demo-projects/tree/master/2d</link>
2017-09-12 20:42:36 +00:00
</tutorials>
2021-09-21 02:49:02 +00:00
<constructors >
<constructor name= "Vector2" >
2021-07-30 13:28:05 +00:00
<return type= "Vector2" />
2020-11-09 16:46:03 +00:00
<description >
Constructs a default-initialized [Vector2] with all components set to [code]0[/code].
</description>
2021-09-21 02:49:02 +00:00
</constructor>
<constructor name= "Vector2" >
2021-07-30 13:28:05 +00:00
<return type= "Vector2" />
<argument index= "0" name= "from" type= "Vector2" />
2020-11-09 16:46:03 +00:00
<description >
Constructs a [Vector2] as a copy of the given [Vector2].
</description>
2021-09-21 02:49:02 +00:00
</constructor>
<constructor name= "Vector2" >
2021-07-30 13:28:05 +00:00
<return type= "Vector2" />
<argument index= "0" name= "from" type= "Vector2i" />
2020-02-24 16:00:40 +00:00
<description >
Constructs a new [Vector2] from [Vector2i].
</description>
2021-09-21 02:49:02 +00:00
</constructor>
<constructor name= "Vector2" >
2021-07-30 13:28:05 +00:00
<return type= "Vector2" />
<argument index= "0" name= "x" type= "float" />
<argument index= "1" name= "y" type= "float" />
2017-09-12 20:42:36 +00:00
<description >
2020-02-24 16:00:40 +00:00
Constructs a new [Vector2] from the given [code]x[/code] and [code]y[/code].
2017-09-12 20:42:36 +00:00
</description>
2021-09-21 02:49:02 +00:00
</constructor>
</constructors>
<methods >
2021-03-18 13:44:42 +00:00
<method name= "abs" qualifiers= "const" >
2021-07-30 13:28:05 +00:00
<return type= "Vector2" />
2017-09-12 20:42:36 +00:00
<description >
Returns a new vector with all components in absolute values (i.e. positive).
</description>
</method>
2021-03-18 13:44:42 +00:00
<method name= "angle" qualifiers= "const" >
2021-07-30 13:28:05 +00:00
<return type= "float" />
2017-09-12 20:42:36 +00:00
<description >
2020-08-03 20:55:25 +00:00
Returns this vector's angle with respect to the positive X axis, or [code](1, 0)[/code] vector, in radians.
For example, [code]Vector2.RIGHT.angle()[/code] will return zero, [code]Vector2.DOWN.angle()[/code] will return [code]PI / 2[/code] (a quarter turn, or 90 degrees), and [code]Vector2(1, -1).angle()[/code] will return [code]-PI / 4[/code] (a negative eighth turn, or -45 degrees).
2021-08-23 11:21:32 +00:00
[url=https://raw.githubusercontent.com/godotengine/godot-docs/master/img/vector2_angle.png]Illustration of the returned angle.[/url]
2021-01-04 13:33:44 +00:00
Equivalent to the result of [method @GlobalScope.atan2] when called with the vector's [member y] and [member x] as parameters: [code]atan2(y, x)[/code].
2017-09-12 20:42:36 +00:00
</description>
</method>
2021-03-18 13:44:42 +00:00
<method name= "angle_to" qualifiers= "const" >
2021-07-30 13:28:05 +00:00
<return type= "float" />
<argument index= "0" name= "to" type= "Vector2" />
2017-09-12 20:42:36 +00:00
<description >
2020-07-21 18:07:00 +00:00
Returns the angle to the given vector, in radians.
2021-08-23 11:21:32 +00:00
[url=https://raw.githubusercontent.com/godotengine/godot-docs/master/img/vector2_angle_to.png]Illustration of the returned angle.[/url]
2017-09-12 20:42:36 +00:00
</description>
</method>
2021-03-18 13:44:42 +00:00
<method name= "angle_to_point" qualifiers= "const" >
2021-07-30 13:28:05 +00:00
<return type= "float" />
<argument index= "0" name= "to" type= "Vector2" />
2017-09-12 20:42:36 +00:00
<description >
2020-07-21 18:07:00 +00:00
Returns the angle between the line connecting the two points and the X axis, in radians.
2020-10-25 12:24:08 +00:00
[code]a.angle_to_point(b)[/code] is equivalent of doing [code](b - a).angle()[/code].
2021-08-23 11:21:32 +00:00
[url=https://raw.githubusercontent.com/godotengine/godot-docs/master/img/vector2_angle_to_point.png]Illustration of the returned angle.[/url]
2017-09-12 20:42:36 +00:00
</description>
</method>
2021-03-18 13:44:42 +00:00
<method name= "aspect" qualifiers= "const" >
2021-07-30 13:28:05 +00:00
<return type= "float" />
2017-09-12 20:42:36 +00:00
<description >
2020-07-21 18:07:00 +00:00
Returns the aspect ratio of this vector, the ratio of [member x] to [member y].
2017-09-12 20:42:36 +00:00
</description>
</method>
2021-03-18 13:44:42 +00:00
<method name= "bounce" qualifiers= "const" >
2021-07-30 13:28:05 +00:00
<return type= "Vector2" />
<argument index= "0" name= "n" type= "Vector2" />
2017-09-12 20:42:36 +00:00
<description >
2018-05-13 00:58:45 +00:00
Returns the vector "bounced off" from a plane defined by the given normal.
2017-09-12 20:42:36 +00:00
</description>
</method>
2021-03-18 13:44:42 +00:00
<method name= "ceil" qualifiers= "const" >
2021-07-30 13:28:05 +00:00
<return type= "Vector2" />
2018-05-12 07:38:00 +00:00
<description >
2020-07-21 18:07:00 +00:00
Returns the vector with all components rounded up (towards positive infinity).
2018-05-12 07:38:00 +00:00
</description>
</method>
2021-02-01 05:10:52 +00:00
<method name= "clamp" qualifiers= "const" >
2021-07-30 13:28:05 +00:00
<return type= "Vector2" />
<argument index= "0" name= "min" type= "Vector2" />
<argument index= "1" name= "max" type= "Vector2" />
2021-02-01 05:10:52 +00:00
<description >
Returns a new vector with all components clamped between the components of [code]min[/code] and [code]max[/code], by running [method @GlobalScope.clamp] on each component.
</description>
</method>
2021-03-18 13:44:42 +00:00
<method name= "cross" qualifiers= "const" >
2021-07-30 13:28:05 +00:00
<return type= "float" />
<argument index= "0" name= "with" type= "Vector2" />
2018-02-08 07:48:14 +00:00
<description >
2020-07-21 18:07:00 +00:00
Returns the cross product of this vector and [code]with[/code].
2018-02-08 07:48:14 +00:00
</description>
</method>
2021-03-18 13:44:42 +00:00
<method name= "cubic_interpolate" qualifiers= "const" >
2021-07-30 13:28:05 +00:00
<return type= "Vector2" />
<argument index= "0" name= "b" type= "Vector2" />
<argument index= "1" name= "pre_a" type= "Vector2" />
<argument index= "2" name= "post_b" type= "Vector2" />
<argument index= "3" name= "weight" type= "float" />
2017-09-12 20:42:36 +00:00
<description >
2020-12-07 08:16:31 +00:00
Cubically interpolates between this vector and [code]b[/code] using [code]pre_a[/code] and [code]post_b[/code] as handles, and returns the result at position [code]weight[/code]. [code]weight[/code] is on the range of 0.0 to 1.0, representing the amount of interpolation.
2017-09-12 20:42:36 +00:00
</description>
</method>
2021-03-18 13:44:42 +00:00
<method name= "direction_to" qualifiers= "const" >
2021-07-30 13:28:05 +00:00
<return type= "Vector2" />
2021-11-29 17:02:42 +00:00
<argument index= "0" name= "to" type= "Vector2" />
2019-03-27 10:51:05 +00:00
<description >
2021-11-29 17:02:42 +00:00
Returns the normalized vector pointing from this vector to [code]to[/code]. This is equivalent to using [code](b - a).normalized()[/code].
2019-03-27 10:51:05 +00:00
</description>
</method>
2021-03-18 13:44:42 +00:00
<method name= "distance_squared_to" qualifiers= "const" >
2021-07-30 13:28:05 +00:00
<return type= "float" />
<argument index= "0" name= "to" type= "Vector2" />
2017-09-12 20:42:36 +00:00
<description >
2021-11-29 17:02:42 +00:00
Returns the squared distance between this vector and [code]to[/code].
2020-07-21 18:07:00 +00:00
This method runs faster than [method distance_to], so prefer it if you need to compare vectors or need the squared distance for some formula.
2017-09-12 20:42:36 +00:00
</description>
</method>
2021-03-18 13:44:42 +00:00
<method name= "distance_to" qualifiers= "const" >
2021-07-30 13:28:05 +00:00
<return type= "float" />
<argument index= "0" name= "to" type= "Vector2" />
2017-09-12 20:42:36 +00:00
<description >
2020-07-21 18:07:00 +00:00
Returns the distance between this vector and [code]to[/code].
2017-09-12 20:42:36 +00:00
</description>
</method>
2021-03-18 13:44:42 +00:00
<method name= "dot" qualifiers= "const" >
2021-07-30 13:28:05 +00:00
<return type= "float" />
<argument index= "0" name= "with" type= "Vector2" />
2017-09-12 20:42:36 +00:00
<description >
2020-07-21 18:07:00 +00:00
Returns the dot product of this vector and [code]with[/code]. This can be used to compare the angle between two vectors. For example, this can be used to determine whether an enemy is facing the player.
2020-07-17 22:46:23 +00:00
The dot product will be [code]0[/code] for a straight angle (90 degrees), greater than 0 for angles narrower than 90 degrees and lower than 0 for angles wider than 90 degrees.
When using unit (normalized) vectors, the result will always be between [code]-1.0[/code] (180 degree angle) when the vectors are facing opposite directions, and [code]1.0[/code] (0 degree angle) when the vectors are aligned.
[b]Note:[/b] [code]a.dot(b)[/code] is equivalent to [code]b.dot(a)[/code].
2017-09-12 20:42:36 +00:00
</description>
</method>
2021-03-18 13:44:42 +00:00
<method name= "floor" qualifiers= "const" >
2021-07-30 13:28:05 +00:00
<return type= "Vector2" />
2017-09-12 20:42:36 +00:00
<description >
2020-07-21 18:07:00 +00:00
Returns the vector with all components rounded down (towards negative infinity).
2017-09-12 20:42:36 +00:00
</description>
</method>
2021-04-27 13:53:04 +00:00
<method name= "from_angle" qualifiers= "static" >
<return type= "Vector2" />
<argument index= "0" name= "angle" type= "float" />
<description >
Creates a unit [Vector2] rotated to the given [code]angle[/code] in radians. This is equivalent to doing [code]Vector2(cos(angle), sin(angle))[/code] or [code]Vector2.RIGHT.rotated(angle)[/code].
[codeblock]
print(Vector2.from_angle(0)) # Prints (1, 0).
print(Vector2(1, 0).angle()) # Prints 0, which is the angle used above.
print(Vector2.from_angle(PI / 2)) # Prints (0, 1).
[/codeblock]
</description>
</method>
2021-03-18 13:44:42 +00:00
<method name= "is_equal_approx" qualifiers= "const" >
2021-07-30 13:28:05 +00:00
<return type= "bool" />
<argument index= "0" name= "to" type= "Vector2" />
2019-11-08 07:33:48 +00:00
<description >
2021-01-04 13:33:44 +00:00
Returns [code]true[/code] if this vector and [code]v[/code] are approximately equal, by running [method @GlobalScope.is_equal_approx] on each component.
2019-11-08 07:33:48 +00:00
</description>
</method>
2021-03-18 13:44:42 +00:00
<method name= "is_normalized" qualifiers= "const" >
2021-07-30 13:28:05 +00:00
<return type= "bool" />
2017-09-12 20:42:36 +00:00
<description >
2020-09-24 16:00:22 +00:00
Returns [code]true[/code] if the vector is normalized, [code]false[/code] otherwise.
2017-09-12 20:42:36 +00:00
</description>
</method>
2021-03-18 13:44:42 +00:00
<method name= "length" qualifiers= "const" >
2021-07-30 13:28:05 +00:00
<return type= "float" />
2017-09-12 20:42:36 +00:00
<description >
2020-07-21 18:07:00 +00:00
Returns the length (magnitude) of this vector.
2017-09-12 20:42:36 +00:00
</description>
</method>
2021-03-18 13:44:42 +00:00
<method name= "length_squared" qualifiers= "const" >
2021-07-30 13:28:05 +00:00
<return type= "float" />
2017-09-12 20:42:36 +00:00
<description >
2020-07-21 18:07:00 +00:00
Returns the squared length (squared magnitude) of this vector.
This method runs faster than [method length], so prefer it if you need to compare vectors or need the squared distance for some formula.
2017-09-12 20:42:36 +00:00
</description>
</method>
2021-03-18 13:44:42 +00:00
<method name= "lerp" qualifiers= "const" >
2021-07-30 13:28:05 +00:00
<return type= "Vector2" />
<argument index= "0" name= "to" type= "Vector2" />
<argument index= "1" name= "weight" type= "float" />
2017-09-12 20:42:36 +00:00
<description >
2021-04-23 13:46:51 +00:00
Returns the result of the linear interpolation between this vector and [code]to[/code] by amount [code]weight[/code]. [code]weight[/code] is on the range of 0.0 to 1.0, representing the amount of interpolation.
2017-09-12 20:42:36 +00:00
</description>
</method>
2021-02-01 05:42:00 +00:00
<method name= "limit_length" qualifiers= "const" >
2021-07-30 13:28:05 +00:00
<return type= "Vector2" />
<argument index= "0" name= "length" type= "float" default= "1.0" />
2021-02-01 05:42:00 +00:00
<description >
Returns the vector with a maximum length by limiting its length to [code]length[/code].
</description>
</method>
2019-11-28 08:48:51 +00:00
<method name= "max_axis_index" qualifiers= "const" >
<return type= "int" />
<description >
Returns the axis of the vector's highest value. See [code]AXIS_*[/code] constants. If all components are equal, this method returns [constant AXIS_X].
</description>
</method>
<method name= "min_axis_index" qualifiers= "const" >
<return type= "int" />
<description >
Returns the axis of the vector's lowest value. See [code]AXIS_*[/code] constants. If all components are equal, this method returns [constant AXIS_Y].
</description>
</method>
2021-03-18 13:44:42 +00:00
<method name= "move_toward" qualifiers= "const" >
2021-07-30 13:28:05 +00:00
<return type= "Vector2" />
<argument index= "0" name= "to" type= "Vector2" />
<argument index= "1" name= "delta" type= "float" />
2019-04-07 21:40:56 +00:00
<description >
2021-11-30 21:32:23 +00:00
Moves the vector toward [code]to[/code] by the fixed [code]delta[/code] amount. Will not go past the final value.
2019-04-07 21:40:56 +00:00
</description>
</method>
2021-03-18 13:44:42 +00:00
<method name= "normalized" qualifiers= "const" >
2021-07-30 13:28:05 +00:00
<return type= "Vector2" />
2017-09-12 20:42:36 +00:00
<description >
2018-05-13 00:58:45 +00:00
Returns the vector scaled to unit length. Equivalent to [code]v / v.length()[/code].
2017-09-12 20:42:36 +00:00
</description>
</method>
2021-03-18 13:44:42 +00:00
<method name= "orthogonal" qualifiers= "const" >
2021-07-30 13:28:05 +00:00
<return type= "Vector2" />
2021-01-04 13:33:44 +00:00
<description >
Returns a perpendicular vector rotated 90 degrees counter-clockwise compared to the original, with the same length.
</description>
</method>
2021-03-18 13:44:42 +00:00
<method name= "posmod" qualifiers= "const" >
2021-07-30 13:28:05 +00:00
<return type= "Vector2" />
<argument index= "0" name= "mod" type= "float" />
2019-08-05 01:50:28 +00:00
<description >
2021-01-04 13:33:44 +00:00
Returns a vector composed of the [method @GlobalScope.fposmod] of this vector's components and [code]mod[/code].
2019-08-05 01:50:28 +00:00
</description>
</method>
2021-03-18 13:44:42 +00:00
<method name= "posmodv" qualifiers= "const" >
2021-07-30 13:28:05 +00:00
<return type= "Vector2" />
<argument index= "0" name= "modv" type= "Vector2" />
2019-08-05 01:50:28 +00:00
<description >
2021-01-04 13:33:44 +00:00
Returns a vector composed of the [method @GlobalScope.fposmod] of this vector's components and [code]modv[/code]'s components.
2019-08-05 01:50:28 +00:00
</description>
</method>
2021-03-18 13:44:42 +00:00
<method name= "project" qualifiers= "const" >
2021-07-30 13:28:05 +00:00
<return type= "Vector2" />
<argument index= "0" name= "b" type= "Vector2" />
2018-08-20 22:35:30 +00:00
<description >
Returns the vector projected onto the vector [code]b[/code].
</description>
</method>
2021-03-18 13:44:42 +00:00
<method name= "reflect" qualifiers= "const" >
2021-07-30 13:28:05 +00:00
<return type= "Vector2" />
<argument index= "0" name= "n" type= "Vector2" />
2017-09-12 20:42:36 +00:00
<description >
2018-05-28 12:53:15 +00:00
Returns the vector reflected from a plane defined by the given normal.
2017-09-12 20:42:36 +00:00
</description>
</method>
2021-03-18 13:44:42 +00:00
<method name= "rotated" qualifiers= "const" >
2021-07-30 13:28:05 +00:00
<return type= "Vector2" />
<argument index= "0" name= "phi" type= "float" />
2017-09-12 20:42:36 +00:00
<description >
2021-01-04 13:33:44 +00:00
Returns the vector rotated by [code]phi[/code] radians. See also [method @GlobalScope.deg2rad].
2017-09-12 20:42:36 +00:00
</description>
</method>
2021-03-18 13:44:42 +00:00
<method name= "round" qualifiers= "const" >
2021-07-30 13:28:05 +00:00
<return type= "Vector2" />
2018-05-12 07:38:00 +00:00
<description >
2018-06-26 22:02:24 +00:00
Returns the vector with all components rounded to the nearest integer, with halfway cases rounded away from zero.
2018-05-12 07:38:00 +00:00
</description>
</method>
2021-03-18 13:44:42 +00:00
<method name= "sign" qualifiers= "const" >
2021-07-30 13:28:05 +00:00
<return type= "Vector2" />
2019-08-05 01:50:28 +00:00
<description >
2021-01-04 13:33:44 +00:00
Returns the vector with each component set to one or negative one, depending on the signs of the components, or zero if the component is zero, by calling [method @GlobalScope.sign] on each component.
2019-08-05 01:50:28 +00:00
</description>
</method>
2021-03-18 13:44:42 +00:00
<method name= "slerp" qualifiers= "const" >
2021-07-30 13:28:05 +00:00
<return type= "Vector2" />
<argument index= "0" name= "to" type= "Vector2" />
<argument index= "1" name= "weight" type= "float" />
2018-05-12 00:14:39 +00:00
<description >
2021-04-23 13:46:51 +00:00
Returns the result of spherical linear interpolation between this vector and [code]to[/code], by amount [code]weight[/code]. [code]weight[/code] is on the range of 0.0 to 1.0, representing the amount of interpolation.
2019-06-21 23:04:47 +00:00
[b]Note:[/b] Both vectors must be normalized.
2018-05-12 00:14:39 +00:00
</description>
</method>
2021-03-18 13:44:42 +00:00
<method name= "slide" qualifiers= "const" >
2021-07-30 13:28:05 +00:00
<return type= "Vector2" />
<argument index= "0" name= "n" type= "Vector2" />
2017-09-12 20:42:36 +00:00
<description >
2020-07-21 18:07:00 +00:00
Returns this vector slid along a plane defined by the given normal.
2017-09-12 20:42:36 +00:00
</description>
</method>
2021-03-18 13:44:42 +00:00
<method name= "snapped" qualifiers= "const" >
2021-07-30 13:28:05 +00:00
<return type= "Vector2" />
<argument index= "0" name= "step" type= "Vector2" />
2017-09-12 20:42:36 +00:00
<description >
2020-07-21 18:07:00 +00:00
Returns this vector with each component snapped to the nearest multiple of [code]step[/code]. This can also be used to round to an arbitrary number of decimals.
2017-09-12 20:42:36 +00:00
</description>
</method>
</methods>
<members >
2019-06-29 10:38:01 +00:00
<member name= "x" type= "float" setter= "" getter= "" default= "0.0" >
2019-06-21 23:04:47 +00:00
The vector's X component. Also accessible by using the index position [code][0][/code].
2017-09-12 20:42:36 +00:00
</member>
2019-06-29 10:38:01 +00:00
<member name= "y" type= "float" setter= "" getter= "" default= "0.0" >
2019-06-21 23:04:47 +00:00
The vector's Y component. Also accessible by using the index position [code][1][/code].
2017-09-12 20:42:36 +00:00
</member>
</members>
<constants >
2019-08-05 01:50:28 +00:00
<constant name= "AXIS_X" value= "0" >
2019-11-28 08:48:51 +00:00
Enumerated value for the X axis. Returned by [method max_axis_index] and [method min_axis_index].
2019-08-05 01:50:28 +00:00
</constant>
<constant name= "AXIS_Y" value= "1" >
2019-11-28 08:48:51 +00:00
Enumerated value for the Y axis. Returned by [method max_axis_index] and [method min_axis_index].
2019-08-05 01:50:28 +00:00
</constant>
2019-09-24 17:45:03 +00:00
<constant name= "ZERO" value= "Vector2(0, 0)" >
2020-07-21 18:07:00 +00:00
Zero vector, a vector with all components set to [code]0[/code].
2018-10-06 18:13:41 +00:00
</constant>
2019-09-24 17:45:03 +00:00
<constant name= "ONE" value= "Vector2(1, 1)" >
2020-07-21 18:07:00 +00:00
One vector, a vector with all components set to [code]1[/code].
2018-08-20 22:35:30 +00:00
</constant>
2019-09-24 17:45:03 +00:00
<constant name= "INF" value= "Vector2(inf, inf)" >
2020-07-21 18:07:00 +00:00
Infinity vector, a vector with all components set to [constant @GDScript.INF].
2018-08-20 22:35:30 +00:00
</constant>
2019-09-24 17:45:03 +00:00
<constant name= "LEFT" value= "Vector2(-1, 0)" >
2020-07-21 18:07:00 +00:00
Left unit vector. Represents the direction of left.
2018-08-20 22:35:30 +00:00
</constant>
2019-09-24 17:45:03 +00:00
<constant name= "RIGHT" value= "Vector2(1, 0)" >
2020-07-21 18:07:00 +00:00
Right unit vector. Represents the direction of right.
2018-08-20 22:35:30 +00:00
</constant>
2019-09-24 17:45:03 +00:00
<constant name= "UP" value= "Vector2(0, -1)" >
2020-07-21 18:07:00 +00:00
Up unit vector. Y is down in 2D, so this vector points -Y.
2018-08-20 22:35:30 +00:00
</constant>
2019-09-24 17:45:03 +00:00
<constant name= "DOWN" value= "Vector2(0, 1)" >
2020-07-21 18:07:00 +00:00
Down unit vector. Y is down in 2D, so this vector points +Y.
2018-08-20 22:35:30 +00:00
</constant>
2017-09-12 20:42:36 +00:00
</constants>
2021-09-21 02:49:02 +00:00
<operators >
<operator name= "operator !=" >
<return type= "bool" />
<description >
</description>
</operator>
<operator name= "operator !=" >
<return type= "bool" />
<argument index= "0" name= "right" type= "Vector2" />
<description >
2021-11-04 15:58:20 +00:00
Returns [code]true[/code] if the vectors are not equal.
[b]Note:[/b] Due to floating-point precision errors, consider using [method is_equal_approx] instead, which is more reliable.
2021-09-21 02:49:02 +00:00
</description>
</operator>
<operator name= "operator *" >
<return type= "Vector2" />
2021-11-28 08:48:57 +00:00
<argument index= "0" name= "right" type= "Transform2D" />
2021-09-21 02:49:02 +00:00
<description >
2021-11-28 08:48:57 +00:00
Inversely transforms (multiplies) the [Vector2] by the given [Transform2D] transformation matrix.
2021-09-21 02:49:02 +00:00
</description>
</operator>
<operator name= "operator *" >
<return type= "Vector2" />
2021-11-28 08:48:57 +00:00
<argument index= "0" name= "right" type= "Vector2" />
2021-09-21 02:49:02 +00:00
<description >
2021-11-28 08:48:57 +00:00
Multiplies each component of the [Vector2] by the components of the given [Vector2].
[codeblock]
print(Vector2(10, 20) * Vector2(3, 4)) # Prints "(30, 80)"
[/codeblock]
2021-09-21 02:49:02 +00:00
</description>
</operator>
<operator name= "operator *" >
<return type= "Vector2" />
<argument index= "0" name= "right" type= "float" />
<description >
2021-11-04 15:58:20 +00:00
Multiplies each component of the [Vector2] by the given [float].
2021-09-21 02:49:02 +00:00
</description>
</operator>
<operator name= "operator *" >
<return type= "Vector2" />
<argument index= "0" name= "right" type= "int" />
<description >
2021-11-04 15:58:20 +00:00
Multiplies each component of the [Vector2] by the given [int].
2021-09-21 02:49:02 +00:00
</description>
</operator>
<operator name= "operator +" >
<return type= "Vector2" />
<argument index= "0" name= "right" type= "Vector2" />
<description >
2021-11-04 15:58:20 +00:00
Adds each component of the [Vector2] by the components of the given [Vector2].
[codeblock]
print(Vector2(10, 20) + Vector2(3, 4)) # Prints "(13, 24)"
[/codeblock]
2021-09-21 02:49:02 +00:00
</description>
</operator>
<operator name= "operator -" >
<return type= "Vector2" />
<argument index= "0" name= "right" type= "Vector2" />
<description >
2021-11-04 15:58:20 +00:00
Subtracts each component of the [Vector2] by the components of the given [Vector2].
[codeblock]
print(Vector2(10, 20) - Vector2(3, 4)) # Prints "(7, 16)"
[/codeblock]
2021-09-21 02:49:02 +00:00
</description>
</operator>
<operator name= "operator /" >
<return type= "Vector2" />
<argument index= "0" name= "right" type= "Vector2" />
<description >
2021-11-04 15:58:20 +00:00
Divides each component of the [Vector2] by the components of the given [Vector2].
[codeblock]
print(Vector2(10, 20) / Vector2(2, 5)) # Prints "(5, 4)"
[/codeblock]
2021-09-21 02:49:02 +00:00
</description>
</operator>
<operator name= "operator /" >
<return type= "Vector2" />
<argument index= "0" name= "right" type= "float" />
<description >
2021-11-04 15:58:20 +00:00
Divides each component of the [Vector2] by the given [float].
2021-09-21 02:49:02 +00:00
</description>
</operator>
<operator name= "operator /" >
<return type= "Vector2" />
<argument index= "0" name= "right" type= "int" />
<description >
2021-11-04 15:58:20 +00:00
Divides each component of the [Vector2] by the given [int].
2021-09-21 02:49:02 +00:00
</description>
</operator>
<operator name= "operator <" >
<return type= "bool" />
<argument index= "0" name= "right" type= "Vector2" />
<description >
2021-11-04 15:58:20 +00:00
Compares two [Vector2] vectors by first checking if the X value of the left vector is less than the X value of the [code]right[/code] vector. If the X values are exactly equal, then it repeats this check with the Y values of the two vectors. This operator is useful for sorting vectors.
2021-09-21 02:49:02 +00:00
</description>
</operator>
<operator name= "operator <=" >
<return type= "bool" />
<argument index= "0" name= "right" type= "Vector2" />
<description >
2021-11-04 15:58:20 +00:00
Compares two [Vector2] vectors by first checking if the X value of the left vector is less than or equal to the X value of the [code]right[/code] vector. If the X values are exactly equal, then it repeats this check with the Y values of the two vectors. This operator is useful for sorting vectors.
2021-09-21 02:49:02 +00:00
</description>
</operator>
<operator name= "operator ==" >
<return type= "bool" />
<description >
</description>
</operator>
<operator name= "operator ==" >
<return type= "bool" />
<argument index= "0" name= "right" type= "Vector2" />
<description >
2021-11-04 15:58:20 +00:00
Returns [code]true[/code] if the vectors are exactly equal.
[b]Note:[/b] Due to floating-point precision errors, consider using [method is_equal_approx] instead, which is more reliable.
2021-09-21 02:49:02 +00:00
</description>
</operator>
<operator name= "operator >" >
<return type= "bool" />
<argument index= "0" name= "right" type= "Vector2" />
<description >
2021-11-04 15:58:20 +00:00
Compares two [Vector2] vectors by first checking if the X value of the left vector is greater than the X value of the [code]right[/code] vector. If the X values are exactly equal, then it repeats this check with the Y values of the two vectors. This operator is useful for sorting vectors.
2021-09-21 02:49:02 +00:00
</description>
</operator>
<operator name= "operator >=" >
<return type= "bool" />
<argument index= "0" name= "right" type= "Vector2" />
<description >
2021-11-04 15:58:20 +00:00
Compares two [Vector2] vectors by first checking if the X value of the left vector is greater than or equal to the X value of the [code]right[/code] vector. If the X values are exactly equal, then it repeats this check with the Y values of the two vectors. This operator is useful for sorting vectors.
2021-09-21 02:49:02 +00:00
</description>
</operator>
<operator name= "operator []" >
<return type= "float" />
<argument index= "0" name= "index" type= "int" />
<description >
2021-11-04 15:58:20 +00:00
Access vector components using their index. [code]v[0][/code] is equivalent to [code]v.x[/code], and [code]v[1][/code] is equivalent to [code]v.y[/code].
2021-09-21 02:49:02 +00:00
</description>
</operator>
<operator name= "operator unary+" >
<return type= "Vector2" />
<description >
2021-11-04 15:58:20 +00:00
Returns the same value as if the [code]+[/code] was not there. Unary [code]+[/code] does nothing, but sometimes it can make your code more readable.
2021-09-21 02:49:02 +00:00
</description>
</operator>
<operator name= "operator unary-" >
<return type= "Vector2" />
<description >
2021-11-04 15:58:20 +00:00
Returns the negative value of the [Vector2]. This is the same as writing [code]Vector2(-v.x, -v.y)[/code]. This operation flips the direction of the vector while keeping the same magnitude. With floats, the number zero can be either positive or negative.
2021-09-21 02:49:02 +00:00
</description>
</operator>
</operators>
2017-09-12 20:42:36 +00:00
</class>