2015-10-02 17:20:50 +00:00
|
|
|
/***********************************************************************
|
|
|
|
Copyright (c) 2006-2011, Skype Limited. All rights reserved.
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
|
|
modification, are permitted provided that the following conditions
|
|
|
|
are met:
|
|
|
|
- Redistributions of source code must retain the above copyright notice,
|
|
|
|
this list of conditions and the following disclaimer.
|
|
|
|
- Redistributions in binary form must reproduce the above copyright
|
|
|
|
notice, this list of conditions and the following disclaimer in the
|
|
|
|
documentation and/or other materials provided with the distribution.
|
|
|
|
- Neither the name of Internet Society, IETF or IETF Trust, nor the
|
|
|
|
names of specific contributors, may be used to endorse or promote
|
|
|
|
products derived from this software without specific prior written
|
|
|
|
permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
|
|
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
|
|
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
|
|
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
|
|
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
|
|
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
|
|
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
|
|
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
|
|
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
|
|
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
|
|
POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
***********************************************************************/
|
|
|
|
|
2015-11-27 21:37:36 +00:00
|
|
|
#ifdef OPUS_ENABLED
|
2015-11-27 21:29:48 +00:00
|
|
|
#include "opus/opus_config.h"
|
2015-10-02 17:20:50 +00:00
|
|
|
#endif
|
|
|
|
|
2015-11-27 21:29:48 +00:00
|
|
|
#include "opus/silk/silk_main.h"
|
|
|
|
#include "opus/celt/stack_alloc.h"
|
2015-10-02 17:20:50 +00:00
|
|
|
|
|
|
|
typedef struct {
|
|
|
|
opus_int32 sLPC_Q14[ MAX_SUB_FRAME_LENGTH + NSQ_LPC_BUF_LENGTH ];
|
|
|
|
opus_int32 RandState[ DECISION_DELAY ];
|
|
|
|
opus_int32 Q_Q10[ DECISION_DELAY ];
|
|
|
|
opus_int32 Xq_Q14[ DECISION_DELAY ];
|
|
|
|
opus_int32 Pred_Q15[ DECISION_DELAY ];
|
|
|
|
opus_int32 Shape_Q14[ DECISION_DELAY ];
|
|
|
|
opus_int32 sAR2_Q14[ MAX_SHAPE_LPC_ORDER ];
|
|
|
|
opus_int32 LF_AR_Q14;
|
|
|
|
opus_int32 Seed;
|
|
|
|
opus_int32 SeedInit;
|
|
|
|
opus_int32 RD_Q10;
|
|
|
|
} NSQ_del_dec_struct;
|
|
|
|
|
|
|
|
typedef struct {
|
|
|
|
opus_int32 Q_Q10;
|
|
|
|
opus_int32 RD_Q10;
|
|
|
|
opus_int32 xq_Q14;
|
|
|
|
opus_int32 LF_AR_Q14;
|
|
|
|
opus_int32 sLTP_shp_Q14;
|
|
|
|
opus_int32 LPC_exc_Q14;
|
|
|
|
} NSQ_sample_struct;
|
|
|
|
|
|
|
|
typedef NSQ_sample_struct NSQ_sample_pair[ 2 ];
|
|
|
|
|
|
|
|
static OPUS_INLINE void silk_nsq_del_dec_scale_states(
|
|
|
|
const silk_encoder_state *psEncC, /* I Encoder State */
|
|
|
|
silk_nsq_state *NSQ, /* I/O NSQ state */
|
|
|
|
NSQ_del_dec_struct psDelDec[], /* I/O Delayed decision states */
|
|
|
|
const opus_int32 x_Q3[], /* I Input in Q3 */
|
|
|
|
opus_int32 x_sc_Q10[], /* O Input scaled with 1/Gain in Q10 */
|
|
|
|
const opus_int16 sLTP[], /* I Re-whitened LTP state in Q0 */
|
|
|
|
opus_int32 sLTP_Q15[], /* O LTP state matching scaled input */
|
|
|
|
opus_int subfr, /* I Subframe number */
|
|
|
|
opus_int nStatesDelayedDecision, /* I Number of del dec states */
|
|
|
|
const opus_int LTP_scale_Q14, /* I LTP state scaling */
|
|
|
|
const opus_int32 Gains_Q16[ MAX_NB_SUBFR ], /* I */
|
|
|
|
const opus_int pitchL[ MAX_NB_SUBFR ], /* I Pitch lag */
|
|
|
|
const opus_int signal_type, /* I Signal type */
|
|
|
|
const opus_int decisionDelay /* I Decision delay */
|
|
|
|
);
|
|
|
|
|
|
|
|
/******************************************/
|
|
|
|
/* Noise shape quantizer for one subframe */
|
|
|
|
/******************************************/
|
|
|
|
static OPUS_INLINE void silk_noise_shape_quantizer_del_dec(
|
|
|
|
silk_nsq_state *NSQ, /* I/O NSQ state */
|
|
|
|
NSQ_del_dec_struct psDelDec[], /* I/O Delayed decision states */
|
|
|
|
opus_int signalType, /* I Signal type */
|
|
|
|
const opus_int32 x_Q10[], /* I */
|
|
|
|
opus_int8 pulses[], /* O */
|
|
|
|
opus_int16 xq[], /* O */
|
|
|
|
opus_int32 sLTP_Q15[], /* I/O LTP filter state */
|
|
|
|
opus_int32 delayedGain_Q10[], /* I/O Gain delay buffer */
|
|
|
|
const opus_int16 a_Q12[], /* I Short term prediction coefs */
|
|
|
|
const opus_int16 b_Q14[], /* I Long term prediction coefs */
|
|
|
|
const opus_int16 AR_shp_Q13[], /* I Noise shaping coefs */
|
|
|
|
opus_int lag, /* I Pitch lag */
|
|
|
|
opus_int32 HarmShapeFIRPacked_Q14, /* I */
|
|
|
|
opus_int Tilt_Q14, /* I Spectral tilt */
|
|
|
|
opus_int32 LF_shp_Q14, /* I */
|
|
|
|
opus_int32 Gain_Q16, /* I */
|
|
|
|
opus_int Lambda_Q10, /* I */
|
|
|
|
opus_int offset_Q10, /* I */
|
|
|
|
opus_int length, /* I Input length */
|
|
|
|
opus_int subfr, /* I Subframe number */
|
|
|
|
opus_int shapingLPCOrder, /* I Shaping LPC filter order */
|
|
|
|
opus_int predictLPCOrder, /* I Prediction filter order */
|
|
|
|
opus_int warping_Q16, /* I */
|
|
|
|
opus_int nStatesDelayedDecision, /* I Number of states in decision tree */
|
|
|
|
opus_int *smpl_buf_idx, /* I Index to newest samples in buffers */
|
|
|
|
opus_int decisionDelay /* I */
|
|
|
|
);
|
|
|
|
|
|
|
|
void silk_NSQ_del_dec(
|
|
|
|
const silk_encoder_state *psEncC, /* I/O Encoder State */
|
|
|
|
silk_nsq_state *NSQ, /* I/O NSQ state */
|
|
|
|
SideInfoIndices *psIndices, /* I/O Quantization Indices */
|
|
|
|
const opus_int32 x_Q3[], /* I Prefiltered input signal */
|
|
|
|
opus_int8 pulses[], /* O Quantized pulse signal */
|
|
|
|
const opus_int16 PredCoef_Q12[ 2 * MAX_LPC_ORDER ], /* I Short term prediction coefs */
|
|
|
|
const opus_int16 LTPCoef_Q14[ LTP_ORDER * MAX_NB_SUBFR ], /* I Long term prediction coefs */
|
|
|
|
const opus_int16 AR2_Q13[ MAX_NB_SUBFR * MAX_SHAPE_LPC_ORDER ], /* I Noise shaping coefs */
|
|
|
|
const opus_int HarmShapeGain_Q14[ MAX_NB_SUBFR ], /* I Long term shaping coefs */
|
|
|
|
const opus_int Tilt_Q14[ MAX_NB_SUBFR ], /* I Spectral tilt */
|
|
|
|
const opus_int32 LF_shp_Q14[ MAX_NB_SUBFR ], /* I Low frequency shaping coefs */
|
|
|
|
const opus_int32 Gains_Q16[ MAX_NB_SUBFR ], /* I Quantization step sizes */
|
|
|
|
const opus_int pitchL[ MAX_NB_SUBFR ], /* I Pitch lags */
|
|
|
|
const opus_int Lambda_Q10, /* I Rate/distortion tradeoff */
|
|
|
|
const opus_int LTP_scale_Q14 /* I LTP state scaling */
|
|
|
|
)
|
|
|
|
{
|
|
|
|
opus_int i, k, lag, start_idx, LSF_interpolation_flag, Winner_ind, subfr;
|
|
|
|
opus_int last_smple_idx, smpl_buf_idx, decisionDelay;
|
|
|
|
const opus_int16 *A_Q12, *B_Q14, *AR_shp_Q13;
|
|
|
|
opus_int16 *pxq;
|
|
|
|
VARDECL( opus_int32, sLTP_Q15 );
|
|
|
|
VARDECL( opus_int16, sLTP );
|
|
|
|
opus_int32 HarmShapeFIRPacked_Q14;
|
|
|
|
opus_int offset_Q10;
|
|
|
|
opus_int32 RDmin_Q10, Gain_Q10;
|
|
|
|
VARDECL( opus_int32, x_sc_Q10 );
|
|
|
|
VARDECL( opus_int32, delayedGain_Q10 );
|
|
|
|
VARDECL( NSQ_del_dec_struct, psDelDec );
|
|
|
|
NSQ_del_dec_struct *psDD;
|
|
|
|
SAVE_STACK;
|
|
|
|
|
|
|
|
/* Set unvoiced lag to the previous one, overwrite later for voiced */
|
|
|
|
lag = NSQ->lagPrev;
|
|
|
|
|
|
|
|
silk_assert( NSQ->prev_gain_Q16 != 0 );
|
|
|
|
|
|
|
|
/* Initialize delayed decision states */
|
|
|
|
ALLOC( psDelDec, psEncC->nStatesDelayedDecision, NSQ_del_dec_struct );
|
|
|
|
silk_memset( psDelDec, 0, psEncC->nStatesDelayedDecision * sizeof( NSQ_del_dec_struct ) );
|
|
|
|
for( k = 0; k < psEncC->nStatesDelayedDecision; k++ ) {
|
|
|
|
psDD = &psDelDec[ k ];
|
|
|
|
psDD->Seed = ( k + psIndices->Seed ) & 3;
|
|
|
|
psDD->SeedInit = psDD->Seed;
|
|
|
|
psDD->RD_Q10 = 0;
|
|
|
|
psDD->LF_AR_Q14 = NSQ->sLF_AR_shp_Q14;
|
|
|
|
psDD->Shape_Q14[ 0 ] = NSQ->sLTP_shp_Q14[ psEncC->ltp_mem_length - 1 ];
|
|
|
|
silk_memcpy( psDD->sLPC_Q14, NSQ->sLPC_Q14, NSQ_LPC_BUF_LENGTH * sizeof( opus_int32 ) );
|
|
|
|
silk_memcpy( psDD->sAR2_Q14, NSQ->sAR2_Q14, sizeof( NSQ->sAR2_Q14 ) );
|
|
|
|
}
|
|
|
|
|
|
|
|
offset_Q10 = silk_Quantization_Offsets_Q10[ psIndices->signalType >> 1 ][ psIndices->quantOffsetType ];
|
|
|
|
smpl_buf_idx = 0; /* index of oldest samples */
|
|
|
|
|
|
|
|
decisionDelay = silk_min_int( DECISION_DELAY, psEncC->subfr_length );
|
|
|
|
|
|
|
|
/* For voiced frames limit the decision delay to lower than the pitch lag */
|
|
|
|
if( psIndices->signalType == TYPE_VOICED ) {
|
|
|
|
for( k = 0; k < psEncC->nb_subfr; k++ ) {
|
|
|
|
decisionDelay = silk_min_int( decisionDelay, pitchL[ k ] - LTP_ORDER / 2 - 1 );
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
if( lag > 0 ) {
|
|
|
|
decisionDelay = silk_min_int( decisionDelay, lag - LTP_ORDER / 2 - 1 );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if( psIndices->NLSFInterpCoef_Q2 == 4 ) {
|
|
|
|
LSF_interpolation_flag = 0;
|
|
|
|
} else {
|
|
|
|
LSF_interpolation_flag = 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
ALLOC( sLTP_Q15,
|
|
|
|
psEncC->ltp_mem_length + psEncC->frame_length, opus_int32 );
|
|
|
|
ALLOC( sLTP, psEncC->ltp_mem_length + psEncC->frame_length, opus_int16 );
|
|
|
|
ALLOC( x_sc_Q10, psEncC->subfr_length, opus_int32 );
|
|
|
|
ALLOC( delayedGain_Q10, DECISION_DELAY, opus_int32 );
|
|
|
|
/* Set up pointers to start of sub frame */
|
|
|
|
pxq = &NSQ->xq[ psEncC->ltp_mem_length ];
|
|
|
|
NSQ->sLTP_shp_buf_idx = psEncC->ltp_mem_length;
|
|
|
|
NSQ->sLTP_buf_idx = psEncC->ltp_mem_length;
|
|
|
|
subfr = 0;
|
|
|
|
for( k = 0; k < psEncC->nb_subfr; k++ ) {
|
|
|
|
A_Q12 = &PredCoef_Q12[ ( ( k >> 1 ) | ( 1 - LSF_interpolation_flag ) ) * MAX_LPC_ORDER ];
|
|
|
|
B_Q14 = <PCoef_Q14[ k * LTP_ORDER ];
|
|
|
|
AR_shp_Q13 = &AR2_Q13[ k * MAX_SHAPE_LPC_ORDER ];
|
|
|
|
|
|
|
|
/* Noise shape parameters */
|
|
|
|
silk_assert( HarmShapeGain_Q14[ k ] >= 0 );
|
|
|
|
HarmShapeFIRPacked_Q14 = silk_RSHIFT( HarmShapeGain_Q14[ k ], 2 );
|
|
|
|
HarmShapeFIRPacked_Q14 |= silk_LSHIFT( (opus_int32)silk_RSHIFT( HarmShapeGain_Q14[ k ], 1 ), 16 );
|
|
|
|
|
|
|
|
NSQ->rewhite_flag = 0;
|
|
|
|
if( psIndices->signalType == TYPE_VOICED ) {
|
|
|
|
/* Voiced */
|
|
|
|
lag = pitchL[ k ];
|
|
|
|
|
|
|
|
/* Re-whitening */
|
|
|
|
if( ( k & ( 3 - silk_LSHIFT( LSF_interpolation_flag, 1 ) ) ) == 0 ) {
|
|
|
|
if( k == 2 ) {
|
|
|
|
/* RESET DELAYED DECISIONS */
|
|
|
|
/* Find winner */
|
|
|
|
RDmin_Q10 = psDelDec[ 0 ].RD_Q10;
|
|
|
|
Winner_ind = 0;
|
|
|
|
for( i = 1; i < psEncC->nStatesDelayedDecision; i++ ) {
|
|
|
|
if( psDelDec[ i ].RD_Q10 < RDmin_Q10 ) {
|
|
|
|
RDmin_Q10 = psDelDec[ i ].RD_Q10;
|
|
|
|
Winner_ind = i;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
for( i = 0; i < psEncC->nStatesDelayedDecision; i++ ) {
|
|
|
|
if( i != Winner_ind ) {
|
|
|
|
psDelDec[ i ].RD_Q10 += ( silk_int32_MAX >> 4 );
|
|
|
|
silk_assert( psDelDec[ i ].RD_Q10 >= 0 );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Copy final part of signals from winner state to output and long-term filter states */
|
|
|
|
psDD = &psDelDec[ Winner_ind ];
|
|
|
|
last_smple_idx = smpl_buf_idx + decisionDelay;
|
|
|
|
for( i = 0; i < decisionDelay; i++ ) {
|
|
|
|
last_smple_idx = ( last_smple_idx - 1 ) & DECISION_DELAY_MASK;
|
|
|
|
pulses[ i - decisionDelay ] = (opus_int8)silk_RSHIFT_ROUND( psDD->Q_Q10[ last_smple_idx ], 10 );
|
|
|
|
pxq[ i - decisionDelay ] = (opus_int16)silk_SAT16( silk_RSHIFT_ROUND(
|
|
|
|
silk_SMULWW( psDD->Xq_Q14[ last_smple_idx ], Gains_Q16[ 1 ] ), 14 ) );
|
|
|
|
NSQ->sLTP_shp_Q14[ NSQ->sLTP_shp_buf_idx - decisionDelay + i ] = psDD->Shape_Q14[ last_smple_idx ];
|
|
|
|
}
|
|
|
|
|
|
|
|
subfr = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Rewhiten with new A coefs */
|
|
|
|
start_idx = psEncC->ltp_mem_length - lag - psEncC->predictLPCOrder - LTP_ORDER / 2;
|
|
|
|
silk_assert( start_idx > 0 );
|
|
|
|
|
|
|
|
silk_LPC_analysis_filter( &sLTP[ start_idx ], &NSQ->xq[ start_idx + k * psEncC->subfr_length ],
|
|
|
|
A_Q12, psEncC->ltp_mem_length - start_idx, psEncC->predictLPCOrder );
|
|
|
|
|
|
|
|
NSQ->sLTP_buf_idx = psEncC->ltp_mem_length;
|
|
|
|
NSQ->rewhite_flag = 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
silk_nsq_del_dec_scale_states( psEncC, NSQ, psDelDec, x_Q3, x_sc_Q10, sLTP, sLTP_Q15, k,
|
|
|
|
psEncC->nStatesDelayedDecision, LTP_scale_Q14, Gains_Q16, pitchL, psIndices->signalType, decisionDelay );
|
|
|
|
|
|
|
|
silk_noise_shape_quantizer_del_dec( NSQ, psDelDec, psIndices->signalType, x_sc_Q10, pulses, pxq, sLTP_Q15,
|
|
|
|
delayedGain_Q10, A_Q12, B_Q14, AR_shp_Q13, lag, HarmShapeFIRPacked_Q14, Tilt_Q14[ k ], LF_shp_Q14[ k ],
|
|
|
|
Gains_Q16[ k ], Lambda_Q10, offset_Q10, psEncC->subfr_length, subfr++, psEncC->shapingLPCOrder,
|
|
|
|
psEncC->predictLPCOrder, psEncC->warping_Q16, psEncC->nStatesDelayedDecision, &smpl_buf_idx, decisionDelay );
|
|
|
|
|
|
|
|
x_Q3 += psEncC->subfr_length;
|
|
|
|
pulses += psEncC->subfr_length;
|
|
|
|
pxq += psEncC->subfr_length;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Find winner */
|
|
|
|
RDmin_Q10 = psDelDec[ 0 ].RD_Q10;
|
|
|
|
Winner_ind = 0;
|
|
|
|
for( k = 1; k < psEncC->nStatesDelayedDecision; k++ ) {
|
|
|
|
if( psDelDec[ k ].RD_Q10 < RDmin_Q10 ) {
|
|
|
|
RDmin_Q10 = psDelDec[ k ].RD_Q10;
|
|
|
|
Winner_ind = k;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Copy final part of signals from winner state to output and long-term filter states */
|
|
|
|
psDD = &psDelDec[ Winner_ind ];
|
|
|
|
psIndices->Seed = psDD->SeedInit;
|
|
|
|
last_smple_idx = smpl_buf_idx + decisionDelay;
|
|
|
|
Gain_Q10 = silk_RSHIFT32( Gains_Q16[ psEncC->nb_subfr - 1 ], 6 );
|
|
|
|
for( i = 0; i < decisionDelay; i++ ) {
|
|
|
|
last_smple_idx = ( last_smple_idx - 1 ) & DECISION_DELAY_MASK;
|
|
|
|
pulses[ i - decisionDelay ] = (opus_int8)silk_RSHIFT_ROUND( psDD->Q_Q10[ last_smple_idx ], 10 );
|
|
|
|
pxq[ i - decisionDelay ] = (opus_int16)silk_SAT16( silk_RSHIFT_ROUND(
|
|
|
|
silk_SMULWW( psDD->Xq_Q14[ last_smple_idx ], Gain_Q10 ), 8 ) );
|
|
|
|
NSQ->sLTP_shp_Q14[ NSQ->sLTP_shp_buf_idx - decisionDelay + i ] = psDD->Shape_Q14[ last_smple_idx ];
|
|
|
|
}
|
|
|
|
silk_memcpy( NSQ->sLPC_Q14, &psDD->sLPC_Q14[ psEncC->subfr_length ], NSQ_LPC_BUF_LENGTH * sizeof( opus_int32 ) );
|
|
|
|
silk_memcpy( NSQ->sAR2_Q14, psDD->sAR2_Q14, sizeof( psDD->sAR2_Q14 ) );
|
|
|
|
|
|
|
|
/* Update states */
|
|
|
|
NSQ->sLF_AR_shp_Q14 = psDD->LF_AR_Q14;
|
|
|
|
NSQ->lagPrev = pitchL[ psEncC->nb_subfr - 1 ];
|
|
|
|
|
|
|
|
/* Save quantized speech signal */
|
|
|
|
/* DEBUG_STORE_DATA( enc.pcm, &NSQ->xq[psEncC->ltp_mem_length], psEncC->frame_length * sizeof( opus_int16 ) ) */
|
|
|
|
silk_memmove( NSQ->xq, &NSQ->xq[ psEncC->frame_length ], psEncC->ltp_mem_length * sizeof( opus_int16 ) );
|
|
|
|
silk_memmove( NSQ->sLTP_shp_Q14, &NSQ->sLTP_shp_Q14[ psEncC->frame_length ], psEncC->ltp_mem_length * sizeof( opus_int32 ) );
|
|
|
|
RESTORE_STACK;
|
|
|
|
}
|
|
|
|
|
|
|
|
/******************************************/
|
|
|
|
/* Noise shape quantizer for one subframe */
|
|
|
|
/******************************************/
|
|
|
|
static OPUS_INLINE void silk_noise_shape_quantizer_del_dec(
|
|
|
|
silk_nsq_state *NSQ, /* I/O NSQ state */
|
|
|
|
NSQ_del_dec_struct psDelDec[], /* I/O Delayed decision states */
|
|
|
|
opus_int signalType, /* I Signal type */
|
|
|
|
const opus_int32 x_Q10[], /* I */
|
|
|
|
opus_int8 pulses[], /* O */
|
|
|
|
opus_int16 xq[], /* O */
|
|
|
|
opus_int32 sLTP_Q15[], /* I/O LTP filter state */
|
|
|
|
opus_int32 delayedGain_Q10[], /* I/O Gain delay buffer */
|
|
|
|
const opus_int16 a_Q12[], /* I Short term prediction coefs */
|
|
|
|
const opus_int16 b_Q14[], /* I Long term prediction coefs */
|
|
|
|
const opus_int16 AR_shp_Q13[], /* I Noise shaping coefs */
|
|
|
|
opus_int lag, /* I Pitch lag */
|
|
|
|
opus_int32 HarmShapeFIRPacked_Q14, /* I */
|
|
|
|
opus_int Tilt_Q14, /* I Spectral tilt */
|
|
|
|
opus_int32 LF_shp_Q14, /* I */
|
|
|
|
opus_int32 Gain_Q16, /* I */
|
|
|
|
opus_int Lambda_Q10, /* I */
|
|
|
|
opus_int offset_Q10, /* I */
|
|
|
|
opus_int length, /* I Input length */
|
|
|
|
opus_int subfr, /* I Subframe number */
|
|
|
|
opus_int shapingLPCOrder, /* I Shaping LPC filter order */
|
|
|
|
opus_int predictLPCOrder, /* I Prediction filter order */
|
|
|
|
opus_int warping_Q16, /* I */
|
|
|
|
opus_int nStatesDelayedDecision, /* I Number of states in decision tree */
|
|
|
|
opus_int *smpl_buf_idx, /* I Index to newest samples in buffers */
|
|
|
|
opus_int decisionDelay /* I */
|
|
|
|
)
|
|
|
|
{
|
|
|
|
opus_int i, j, k, Winner_ind, RDmin_ind, RDmax_ind, last_smple_idx;
|
|
|
|
opus_int32 Winner_rand_state;
|
|
|
|
opus_int32 LTP_pred_Q14, LPC_pred_Q14, n_AR_Q14, n_LTP_Q14;
|
|
|
|
opus_int32 n_LF_Q14, r_Q10, rr_Q10, rd1_Q10, rd2_Q10, RDmin_Q10, RDmax_Q10;
|
|
|
|
opus_int32 q1_Q0, q1_Q10, q2_Q10, exc_Q14, LPC_exc_Q14, xq_Q14, Gain_Q10;
|
|
|
|
opus_int32 tmp1, tmp2, sLF_AR_shp_Q14;
|
|
|
|
opus_int32 *pred_lag_ptr, *shp_lag_ptr, *psLPC_Q14;
|
|
|
|
VARDECL( NSQ_sample_pair, psSampleState );
|
|
|
|
NSQ_del_dec_struct *psDD;
|
|
|
|
NSQ_sample_struct *psSS;
|
|
|
|
SAVE_STACK;
|
|
|
|
|
|
|
|
silk_assert( nStatesDelayedDecision > 0 );
|
|
|
|
ALLOC( psSampleState, nStatesDelayedDecision, NSQ_sample_pair );
|
|
|
|
|
|
|
|
shp_lag_ptr = &NSQ->sLTP_shp_Q14[ NSQ->sLTP_shp_buf_idx - lag + HARM_SHAPE_FIR_TAPS / 2 ];
|
|
|
|
pred_lag_ptr = &sLTP_Q15[ NSQ->sLTP_buf_idx - lag + LTP_ORDER / 2 ];
|
|
|
|
Gain_Q10 = silk_RSHIFT( Gain_Q16, 6 );
|
|
|
|
|
|
|
|
for( i = 0; i < length; i++ ) {
|
|
|
|
/* Perform common calculations used in all states */
|
|
|
|
|
|
|
|
/* Long-term prediction */
|
|
|
|
if( signalType == TYPE_VOICED ) {
|
|
|
|
/* Unrolled loop */
|
|
|
|
/* Avoids introducing a bias because silk_SMLAWB() always rounds to -inf */
|
|
|
|
LTP_pred_Q14 = 2;
|
|
|
|
LTP_pred_Q14 = silk_SMLAWB( LTP_pred_Q14, pred_lag_ptr[ 0 ], b_Q14[ 0 ] );
|
|
|
|
LTP_pred_Q14 = silk_SMLAWB( LTP_pred_Q14, pred_lag_ptr[ -1 ], b_Q14[ 1 ] );
|
|
|
|
LTP_pred_Q14 = silk_SMLAWB( LTP_pred_Q14, pred_lag_ptr[ -2 ], b_Q14[ 2 ] );
|
|
|
|
LTP_pred_Q14 = silk_SMLAWB( LTP_pred_Q14, pred_lag_ptr[ -3 ], b_Q14[ 3 ] );
|
|
|
|
LTP_pred_Q14 = silk_SMLAWB( LTP_pred_Q14, pred_lag_ptr[ -4 ], b_Q14[ 4 ] );
|
|
|
|
LTP_pred_Q14 = silk_LSHIFT( LTP_pred_Q14, 1 ); /* Q13 -> Q14 */
|
|
|
|
pred_lag_ptr++;
|
|
|
|
} else {
|
|
|
|
LTP_pred_Q14 = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Long-term shaping */
|
|
|
|
if( lag > 0 ) {
|
|
|
|
/* Symmetric, packed FIR coefficients */
|
|
|
|
n_LTP_Q14 = silk_SMULWB( silk_ADD32( shp_lag_ptr[ 0 ], shp_lag_ptr[ -2 ] ), HarmShapeFIRPacked_Q14 );
|
|
|
|
n_LTP_Q14 = silk_SMLAWT( n_LTP_Q14, shp_lag_ptr[ -1 ], HarmShapeFIRPacked_Q14 );
|
|
|
|
n_LTP_Q14 = silk_SUB_LSHIFT32( LTP_pred_Q14, n_LTP_Q14, 2 ); /* Q12 -> Q14 */
|
|
|
|
shp_lag_ptr++;
|
|
|
|
} else {
|
|
|
|
n_LTP_Q14 = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
for( k = 0; k < nStatesDelayedDecision; k++ ) {
|
|
|
|
/* Delayed decision state */
|
|
|
|
psDD = &psDelDec[ k ];
|
|
|
|
|
|
|
|
/* Sample state */
|
|
|
|
psSS = psSampleState[ k ];
|
|
|
|
|
|
|
|
/* Generate dither */
|
|
|
|
psDD->Seed = silk_RAND( psDD->Seed );
|
|
|
|
|
|
|
|
/* Pointer used in short term prediction and shaping */
|
|
|
|
psLPC_Q14 = &psDD->sLPC_Q14[ NSQ_LPC_BUF_LENGTH - 1 + i ];
|
|
|
|
/* Short-term prediction */
|
|
|
|
silk_assert( predictLPCOrder == 10 || predictLPCOrder == 16 );
|
|
|
|
/* Avoids introducing a bias because silk_SMLAWB() always rounds to -inf */
|
|
|
|
LPC_pred_Q14 = silk_RSHIFT( predictLPCOrder, 1 );
|
|
|
|
LPC_pred_Q14 = silk_SMLAWB( LPC_pred_Q14, psLPC_Q14[ 0 ], a_Q12[ 0 ] );
|
|
|
|
LPC_pred_Q14 = silk_SMLAWB( LPC_pred_Q14, psLPC_Q14[ -1 ], a_Q12[ 1 ] );
|
|
|
|
LPC_pred_Q14 = silk_SMLAWB( LPC_pred_Q14, psLPC_Q14[ -2 ], a_Q12[ 2 ] );
|
|
|
|
LPC_pred_Q14 = silk_SMLAWB( LPC_pred_Q14, psLPC_Q14[ -3 ], a_Q12[ 3 ] );
|
|
|
|
LPC_pred_Q14 = silk_SMLAWB( LPC_pred_Q14, psLPC_Q14[ -4 ], a_Q12[ 4 ] );
|
|
|
|
LPC_pred_Q14 = silk_SMLAWB( LPC_pred_Q14, psLPC_Q14[ -5 ], a_Q12[ 5 ] );
|
|
|
|
LPC_pred_Q14 = silk_SMLAWB( LPC_pred_Q14, psLPC_Q14[ -6 ], a_Q12[ 6 ] );
|
|
|
|
LPC_pred_Q14 = silk_SMLAWB( LPC_pred_Q14, psLPC_Q14[ -7 ], a_Q12[ 7 ] );
|
|
|
|
LPC_pred_Q14 = silk_SMLAWB( LPC_pred_Q14, psLPC_Q14[ -8 ], a_Q12[ 8 ] );
|
|
|
|
LPC_pred_Q14 = silk_SMLAWB( LPC_pred_Q14, psLPC_Q14[ -9 ], a_Q12[ 9 ] );
|
|
|
|
if( predictLPCOrder == 16 ) {
|
|
|
|
LPC_pred_Q14 = silk_SMLAWB( LPC_pred_Q14, psLPC_Q14[ -10 ], a_Q12[ 10 ] );
|
|
|
|
LPC_pred_Q14 = silk_SMLAWB( LPC_pred_Q14, psLPC_Q14[ -11 ], a_Q12[ 11 ] );
|
|
|
|
LPC_pred_Q14 = silk_SMLAWB( LPC_pred_Q14, psLPC_Q14[ -12 ], a_Q12[ 12 ] );
|
|
|
|
LPC_pred_Q14 = silk_SMLAWB( LPC_pred_Q14, psLPC_Q14[ -13 ], a_Q12[ 13 ] );
|
|
|
|
LPC_pred_Q14 = silk_SMLAWB( LPC_pred_Q14, psLPC_Q14[ -14 ], a_Q12[ 14 ] );
|
|
|
|
LPC_pred_Q14 = silk_SMLAWB( LPC_pred_Q14, psLPC_Q14[ -15 ], a_Q12[ 15 ] );
|
|
|
|
}
|
|
|
|
LPC_pred_Q14 = silk_LSHIFT( LPC_pred_Q14, 4 ); /* Q10 -> Q14 */
|
|
|
|
|
|
|
|
/* Noise shape feedback */
|
|
|
|
silk_assert( ( shapingLPCOrder & 1 ) == 0 ); /* check that order is even */
|
|
|
|
/* Output of lowpass section */
|
|
|
|
tmp2 = silk_SMLAWB( psLPC_Q14[ 0 ], psDD->sAR2_Q14[ 0 ], warping_Q16 );
|
|
|
|
/* Output of allpass section */
|
|
|
|
tmp1 = silk_SMLAWB( psDD->sAR2_Q14[ 0 ], psDD->sAR2_Q14[ 1 ] - tmp2, warping_Q16 );
|
|
|
|
psDD->sAR2_Q14[ 0 ] = tmp2;
|
|
|
|
n_AR_Q14 = silk_RSHIFT( shapingLPCOrder, 1 );
|
|
|
|
n_AR_Q14 = silk_SMLAWB( n_AR_Q14, tmp2, AR_shp_Q13[ 0 ] );
|
|
|
|
/* Loop over allpass sections */
|
|
|
|
for( j = 2; j < shapingLPCOrder; j += 2 ) {
|
|
|
|
/* Output of allpass section */
|
|
|
|
tmp2 = silk_SMLAWB( psDD->sAR2_Q14[ j - 1 ], psDD->sAR2_Q14[ j + 0 ] - tmp1, warping_Q16 );
|
|
|
|
psDD->sAR2_Q14[ j - 1 ] = tmp1;
|
|
|
|
n_AR_Q14 = silk_SMLAWB( n_AR_Q14, tmp1, AR_shp_Q13[ j - 1 ] );
|
|
|
|
/* Output of allpass section */
|
|
|
|
tmp1 = silk_SMLAWB( psDD->sAR2_Q14[ j + 0 ], psDD->sAR2_Q14[ j + 1 ] - tmp2, warping_Q16 );
|
|
|
|
psDD->sAR2_Q14[ j + 0 ] = tmp2;
|
|
|
|
n_AR_Q14 = silk_SMLAWB( n_AR_Q14, tmp2, AR_shp_Q13[ j ] );
|
|
|
|
}
|
|
|
|
psDD->sAR2_Q14[ shapingLPCOrder - 1 ] = tmp1;
|
|
|
|
n_AR_Q14 = silk_SMLAWB( n_AR_Q14, tmp1, AR_shp_Q13[ shapingLPCOrder - 1 ] );
|
|
|
|
|
|
|
|
n_AR_Q14 = silk_LSHIFT( n_AR_Q14, 1 ); /* Q11 -> Q12 */
|
|
|
|
n_AR_Q14 = silk_SMLAWB( n_AR_Q14, psDD->LF_AR_Q14, Tilt_Q14 ); /* Q12 */
|
|
|
|
n_AR_Q14 = silk_LSHIFT( n_AR_Q14, 2 ); /* Q12 -> Q14 */
|
|
|
|
|
|
|
|
n_LF_Q14 = silk_SMULWB( psDD->Shape_Q14[ *smpl_buf_idx ], LF_shp_Q14 ); /* Q12 */
|
|
|
|
n_LF_Q14 = silk_SMLAWT( n_LF_Q14, psDD->LF_AR_Q14, LF_shp_Q14 ); /* Q12 */
|
|
|
|
n_LF_Q14 = silk_LSHIFT( n_LF_Q14, 2 ); /* Q12 -> Q14 */
|
|
|
|
|
|
|
|
/* Input minus prediction plus noise feedback */
|
|
|
|
/* r = x[ i ] - LTP_pred - LPC_pred + n_AR + n_Tilt + n_LF + n_LTP */
|
|
|
|
tmp1 = silk_ADD32( n_AR_Q14, n_LF_Q14 ); /* Q14 */
|
|
|
|
tmp2 = silk_ADD32( n_LTP_Q14, LPC_pred_Q14 ); /* Q13 */
|
|
|
|
tmp1 = silk_SUB32( tmp2, tmp1 ); /* Q13 */
|
|
|
|
tmp1 = silk_RSHIFT_ROUND( tmp1, 4 ); /* Q10 */
|
|
|
|
|
|
|
|
r_Q10 = silk_SUB32( x_Q10[ i ], tmp1 ); /* residual error Q10 */
|
|
|
|
|
|
|
|
/* Flip sign depending on dither */
|
|
|
|
if ( psDD->Seed < 0 ) {
|
|
|
|
r_Q10 = -r_Q10;
|
|
|
|
}
|
|
|
|
r_Q10 = silk_LIMIT_32( r_Q10, -(31 << 10), 30 << 10 );
|
|
|
|
|
|
|
|
/* Find two quantization level candidates and measure their rate-distortion */
|
|
|
|
q1_Q10 = silk_SUB32( r_Q10, offset_Q10 );
|
|
|
|
q1_Q0 = silk_RSHIFT( q1_Q10, 10 );
|
|
|
|
if( q1_Q0 > 0 ) {
|
|
|
|
q1_Q10 = silk_SUB32( silk_LSHIFT( q1_Q0, 10 ), QUANT_LEVEL_ADJUST_Q10 );
|
|
|
|
q1_Q10 = silk_ADD32( q1_Q10, offset_Q10 );
|
|
|
|
q2_Q10 = silk_ADD32( q1_Q10, 1024 );
|
|
|
|
rd1_Q10 = silk_SMULBB( q1_Q10, Lambda_Q10 );
|
|
|
|
rd2_Q10 = silk_SMULBB( q2_Q10, Lambda_Q10 );
|
|
|
|
} else if( q1_Q0 == 0 ) {
|
|
|
|
q1_Q10 = offset_Q10;
|
|
|
|
q2_Q10 = silk_ADD32( q1_Q10, 1024 - QUANT_LEVEL_ADJUST_Q10 );
|
|
|
|
rd1_Q10 = silk_SMULBB( q1_Q10, Lambda_Q10 );
|
|
|
|
rd2_Q10 = silk_SMULBB( q2_Q10, Lambda_Q10 );
|
|
|
|
} else if( q1_Q0 == -1 ) {
|
|
|
|
q2_Q10 = offset_Q10;
|
|
|
|
q1_Q10 = silk_SUB32( q2_Q10, 1024 - QUANT_LEVEL_ADJUST_Q10 );
|
|
|
|
rd1_Q10 = silk_SMULBB( -q1_Q10, Lambda_Q10 );
|
|
|
|
rd2_Q10 = silk_SMULBB( q2_Q10, Lambda_Q10 );
|
|
|
|
} else { /* q1_Q0 < -1 */
|
|
|
|
q1_Q10 = silk_ADD32( silk_LSHIFT( q1_Q0, 10 ), QUANT_LEVEL_ADJUST_Q10 );
|
|
|
|
q1_Q10 = silk_ADD32( q1_Q10, offset_Q10 );
|
|
|
|
q2_Q10 = silk_ADD32( q1_Q10, 1024 );
|
|
|
|
rd1_Q10 = silk_SMULBB( -q1_Q10, Lambda_Q10 );
|
|
|
|
rd2_Q10 = silk_SMULBB( -q2_Q10, Lambda_Q10 );
|
|
|
|
}
|
|
|
|
rr_Q10 = silk_SUB32( r_Q10, q1_Q10 );
|
|
|
|
rd1_Q10 = silk_RSHIFT( silk_SMLABB( rd1_Q10, rr_Q10, rr_Q10 ), 10 );
|
|
|
|
rr_Q10 = silk_SUB32( r_Q10, q2_Q10 );
|
|
|
|
rd2_Q10 = silk_RSHIFT( silk_SMLABB( rd2_Q10, rr_Q10, rr_Q10 ), 10 );
|
|
|
|
|
|
|
|
if( rd1_Q10 < rd2_Q10 ) {
|
|
|
|
psSS[ 0 ].RD_Q10 = silk_ADD32( psDD->RD_Q10, rd1_Q10 );
|
|
|
|
psSS[ 1 ].RD_Q10 = silk_ADD32( psDD->RD_Q10, rd2_Q10 );
|
|
|
|
psSS[ 0 ].Q_Q10 = q1_Q10;
|
|
|
|
psSS[ 1 ].Q_Q10 = q2_Q10;
|
|
|
|
} else {
|
|
|
|
psSS[ 0 ].RD_Q10 = silk_ADD32( psDD->RD_Q10, rd2_Q10 );
|
|
|
|
psSS[ 1 ].RD_Q10 = silk_ADD32( psDD->RD_Q10, rd1_Q10 );
|
|
|
|
psSS[ 0 ].Q_Q10 = q2_Q10;
|
|
|
|
psSS[ 1 ].Q_Q10 = q1_Q10;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Update states for best quantization */
|
|
|
|
|
|
|
|
/* Quantized excitation */
|
|
|
|
exc_Q14 = silk_LSHIFT32( psSS[ 0 ].Q_Q10, 4 );
|
|
|
|
if ( psDD->Seed < 0 ) {
|
|
|
|
exc_Q14 = -exc_Q14;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Add predictions */
|
|
|
|
LPC_exc_Q14 = silk_ADD32( exc_Q14, LTP_pred_Q14 );
|
|
|
|
xq_Q14 = silk_ADD32( LPC_exc_Q14, LPC_pred_Q14 );
|
|
|
|
|
|
|
|
/* Update states */
|
|
|
|
sLF_AR_shp_Q14 = silk_SUB32( xq_Q14, n_AR_Q14 );
|
|
|
|
psSS[ 0 ].sLTP_shp_Q14 = silk_SUB32( sLF_AR_shp_Q14, n_LF_Q14 );
|
|
|
|
psSS[ 0 ].LF_AR_Q14 = sLF_AR_shp_Q14;
|
|
|
|
psSS[ 0 ].LPC_exc_Q14 = LPC_exc_Q14;
|
|
|
|
psSS[ 0 ].xq_Q14 = xq_Q14;
|
|
|
|
|
|
|
|
/* Update states for second best quantization */
|
|
|
|
|
|
|
|
/* Quantized excitation */
|
|
|
|
exc_Q14 = silk_LSHIFT32( psSS[ 1 ].Q_Q10, 4 );
|
|
|
|
if ( psDD->Seed < 0 ) {
|
|
|
|
exc_Q14 = -exc_Q14;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* Add predictions */
|
|
|
|
LPC_exc_Q14 = silk_ADD32( exc_Q14, LTP_pred_Q14 );
|
|
|
|
xq_Q14 = silk_ADD32( LPC_exc_Q14, LPC_pred_Q14 );
|
|
|
|
|
|
|
|
/* Update states */
|
|
|
|
sLF_AR_shp_Q14 = silk_SUB32( xq_Q14, n_AR_Q14 );
|
|
|
|
psSS[ 1 ].sLTP_shp_Q14 = silk_SUB32( sLF_AR_shp_Q14, n_LF_Q14 );
|
|
|
|
psSS[ 1 ].LF_AR_Q14 = sLF_AR_shp_Q14;
|
|
|
|
psSS[ 1 ].LPC_exc_Q14 = LPC_exc_Q14;
|
|
|
|
psSS[ 1 ].xq_Q14 = xq_Q14;
|
|
|
|
}
|
|
|
|
|
|
|
|
*smpl_buf_idx = ( *smpl_buf_idx - 1 ) & DECISION_DELAY_MASK; /* Index to newest samples */
|
|
|
|
last_smple_idx = ( *smpl_buf_idx + decisionDelay ) & DECISION_DELAY_MASK; /* Index to decisionDelay old samples */
|
|
|
|
|
|
|
|
/* Find winner */
|
|
|
|
RDmin_Q10 = psSampleState[ 0 ][ 0 ].RD_Q10;
|
|
|
|
Winner_ind = 0;
|
|
|
|
for( k = 1; k < nStatesDelayedDecision; k++ ) {
|
|
|
|
if( psSampleState[ k ][ 0 ].RD_Q10 < RDmin_Q10 ) {
|
|
|
|
RDmin_Q10 = psSampleState[ k ][ 0 ].RD_Q10;
|
|
|
|
Winner_ind = k;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Increase RD values of expired states */
|
|
|
|
Winner_rand_state = psDelDec[ Winner_ind ].RandState[ last_smple_idx ];
|
|
|
|
for( k = 0; k < nStatesDelayedDecision; k++ ) {
|
|
|
|
if( psDelDec[ k ].RandState[ last_smple_idx ] != Winner_rand_state ) {
|
|
|
|
psSampleState[ k ][ 0 ].RD_Q10 = silk_ADD32( psSampleState[ k ][ 0 ].RD_Q10, silk_int32_MAX >> 4 );
|
|
|
|
psSampleState[ k ][ 1 ].RD_Q10 = silk_ADD32( psSampleState[ k ][ 1 ].RD_Q10, silk_int32_MAX >> 4 );
|
|
|
|
silk_assert( psSampleState[ k ][ 0 ].RD_Q10 >= 0 );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Find worst in first set and best in second set */
|
|
|
|
RDmax_Q10 = psSampleState[ 0 ][ 0 ].RD_Q10;
|
|
|
|
RDmin_Q10 = psSampleState[ 0 ][ 1 ].RD_Q10;
|
|
|
|
RDmax_ind = 0;
|
|
|
|
RDmin_ind = 0;
|
|
|
|
for( k = 1; k < nStatesDelayedDecision; k++ ) {
|
|
|
|
/* find worst in first set */
|
|
|
|
if( psSampleState[ k ][ 0 ].RD_Q10 > RDmax_Q10 ) {
|
|
|
|
RDmax_Q10 = psSampleState[ k ][ 0 ].RD_Q10;
|
|
|
|
RDmax_ind = k;
|
|
|
|
}
|
|
|
|
/* find best in second set */
|
|
|
|
if( psSampleState[ k ][ 1 ].RD_Q10 < RDmin_Q10 ) {
|
|
|
|
RDmin_Q10 = psSampleState[ k ][ 1 ].RD_Q10;
|
|
|
|
RDmin_ind = k;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Replace a state if best from second set outperforms worst in first set */
|
|
|
|
if( RDmin_Q10 < RDmax_Q10 ) {
|
|
|
|
silk_memcpy( ( (opus_int32 *)&psDelDec[ RDmax_ind ] ) + i,
|
|
|
|
( (opus_int32 *)&psDelDec[ RDmin_ind ] ) + i, sizeof( NSQ_del_dec_struct ) - i * sizeof( opus_int32) );
|
|
|
|
silk_memcpy( &psSampleState[ RDmax_ind ][ 0 ], &psSampleState[ RDmin_ind ][ 1 ], sizeof( NSQ_sample_struct ) );
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Write samples from winner to output and long-term filter states */
|
|
|
|
psDD = &psDelDec[ Winner_ind ];
|
|
|
|
if( subfr > 0 || i >= decisionDelay ) {
|
|
|
|
pulses[ i - decisionDelay ] = (opus_int8)silk_RSHIFT_ROUND( psDD->Q_Q10[ last_smple_idx ], 10 );
|
|
|
|
xq[ i - decisionDelay ] = (opus_int16)silk_SAT16( silk_RSHIFT_ROUND(
|
|
|
|
silk_SMULWW( psDD->Xq_Q14[ last_smple_idx ], delayedGain_Q10[ last_smple_idx ] ), 8 ) );
|
|
|
|
NSQ->sLTP_shp_Q14[ NSQ->sLTP_shp_buf_idx - decisionDelay ] = psDD->Shape_Q14[ last_smple_idx ];
|
|
|
|
sLTP_Q15[ NSQ->sLTP_buf_idx - decisionDelay ] = psDD->Pred_Q15[ last_smple_idx ];
|
|
|
|
}
|
|
|
|
NSQ->sLTP_shp_buf_idx++;
|
|
|
|
NSQ->sLTP_buf_idx++;
|
|
|
|
|
|
|
|
/* Update states */
|
|
|
|
for( k = 0; k < nStatesDelayedDecision; k++ ) {
|
|
|
|
psDD = &psDelDec[ k ];
|
|
|
|
psSS = &psSampleState[ k ][ 0 ];
|
|
|
|
psDD->LF_AR_Q14 = psSS->LF_AR_Q14;
|
|
|
|
psDD->sLPC_Q14[ NSQ_LPC_BUF_LENGTH + i ] = psSS->xq_Q14;
|
|
|
|
psDD->Xq_Q14[ *smpl_buf_idx ] = psSS->xq_Q14;
|
|
|
|
psDD->Q_Q10[ *smpl_buf_idx ] = psSS->Q_Q10;
|
|
|
|
psDD->Pred_Q15[ *smpl_buf_idx ] = silk_LSHIFT32( psSS->LPC_exc_Q14, 1 );
|
|
|
|
psDD->Shape_Q14[ *smpl_buf_idx ] = psSS->sLTP_shp_Q14;
|
|
|
|
psDD->Seed = silk_ADD32_ovflw( psDD->Seed, silk_RSHIFT_ROUND( psSS->Q_Q10, 10 ) );
|
|
|
|
psDD->RandState[ *smpl_buf_idx ] = psDD->Seed;
|
|
|
|
psDD->RD_Q10 = psSS->RD_Q10;
|
|
|
|
}
|
|
|
|
delayedGain_Q10[ *smpl_buf_idx ] = Gain_Q10;
|
|
|
|
}
|
|
|
|
/* Update LPC states */
|
|
|
|
for( k = 0; k < nStatesDelayedDecision; k++ ) {
|
|
|
|
psDD = &psDelDec[ k ];
|
|
|
|
silk_memcpy( psDD->sLPC_Q14, &psDD->sLPC_Q14[ length ], NSQ_LPC_BUF_LENGTH * sizeof( opus_int32 ) );
|
|
|
|
}
|
|
|
|
RESTORE_STACK;
|
|
|
|
}
|
|
|
|
|
|
|
|
static OPUS_INLINE void silk_nsq_del_dec_scale_states(
|
|
|
|
const silk_encoder_state *psEncC, /* I Encoder State */
|
|
|
|
silk_nsq_state *NSQ, /* I/O NSQ state */
|
|
|
|
NSQ_del_dec_struct psDelDec[], /* I/O Delayed decision states */
|
|
|
|
const opus_int32 x_Q3[], /* I Input in Q3 */
|
|
|
|
opus_int32 x_sc_Q10[], /* O Input scaled with 1/Gain in Q10 */
|
|
|
|
const opus_int16 sLTP[], /* I Re-whitened LTP state in Q0 */
|
|
|
|
opus_int32 sLTP_Q15[], /* O LTP state matching scaled input */
|
|
|
|
opus_int subfr, /* I Subframe number */
|
|
|
|
opus_int nStatesDelayedDecision, /* I Number of del dec states */
|
|
|
|
const opus_int LTP_scale_Q14, /* I LTP state scaling */
|
|
|
|
const opus_int32 Gains_Q16[ MAX_NB_SUBFR ], /* I */
|
|
|
|
const opus_int pitchL[ MAX_NB_SUBFR ], /* I Pitch lag */
|
|
|
|
const opus_int signal_type, /* I Signal type */
|
|
|
|
const opus_int decisionDelay /* I Decision delay */
|
|
|
|
)
|
|
|
|
{
|
|
|
|
opus_int i, k, lag;
|
|
|
|
opus_int32 gain_adj_Q16, inv_gain_Q31, inv_gain_Q23;
|
|
|
|
NSQ_del_dec_struct *psDD;
|
|
|
|
|
|
|
|
lag = pitchL[ subfr ];
|
|
|
|
inv_gain_Q31 = silk_INVERSE32_varQ( silk_max( Gains_Q16[ subfr ], 1 ), 47 );
|
|
|
|
silk_assert( inv_gain_Q31 != 0 );
|
|
|
|
|
|
|
|
/* Calculate gain adjustment factor */
|
|
|
|
if( Gains_Q16[ subfr ] != NSQ->prev_gain_Q16 ) {
|
|
|
|
gain_adj_Q16 = silk_DIV32_varQ( NSQ->prev_gain_Q16, Gains_Q16[ subfr ], 16 );
|
|
|
|
} else {
|
|
|
|
gain_adj_Q16 = (opus_int32)1 << 16;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Scale input */
|
|
|
|
inv_gain_Q23 = silk_RSHIFT_ROUND( inv_gain_Q31, 8 );
|
|
|
|
for( i = 0; i < psEncC->subfr_length; i++ ) {
|
|
|
|
x_sc_Q10[ i ] = silk_SMULWW( x_Q3[ i ], inv_gain_Q23 );
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Save inverse gain */
|
|
|
|
NSQ->prev_gain_Q16 = Gains_Q16[ subfr ];
|
|
|
|
|
|
|
|
/* After rewhitening the LTP state is un-scaled, so scale with inv_gain_Q16 */
|
|
|
|
if( NSQ->rewhite_flag ) {
|
|
|
|
if( subfr == 0 ) {
|
|
|
|
/* Do LTP downscaling */
|
|
|
|
inv_gain_Q31 = silk_LSHIFT( silk_SMULWB( inv_gain_Q31, LTP_scale_Q14 ), 2 );
|
|
|
|
}
|
|
|
|
for( i = NSQ->sLTP_buf_idx - lag - LTP_ORDER / 2; i < NSQ->sLTP_buf_idx; i++ ) {
|
|
|
|
silk_assert( i < MAX_FRAME_LENGTH );
|
|
|
|
sLTP_Q15[ i ] = silk_SMULWB( inv_gain_Q31, sLTP[ i ] );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Adjust for changing gain */
|
|
|
|
if( gain_adj_Q16 != (opus_int32)1 << 16 ) {
|
|
|
|
/* Scale long-term shaping state */
|
|
|
|
for( i = NSQ->sLTP_shp_buf_idx - psEncC->ltp_mem_length; i < NSQ->sLTP_shp_buf_idx; i++ ) {
|
|
|
|
NSQ->sLTP_shp_Q14[ i ] = silk_SMULWW( gain_adj_Q16, NSQ->sLTP_shp_Q14[ i ] );
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Scale long-term prediction state */
|
|
|
|
if( signal_type == TYPE_VOICED && NSQ->rewhite_flag == 0 ) {
|
|
|
|
for( i = NSQ->sLTP_buf_idx - lag - LTP_ORDER / 2; i < NSQ->sLTP_buf_idx - decisionDelay; i++ ) {
|
|
|
|
sLTP_Q15[ i ] = silk_SMULWW( gain_adj_Q16, sLTP_Q15[ i ] );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
for( k = 0; k < nStatesDelayedDecision; k++ ) {
|
|
|
|
psDD = &psDelDec[ k ];
|
|
|
|
|
|
|
|
/* Scale scalar states */
|
|
|
|
psDD->LF_AR_Q14 = silk_SMULWW( gain_adj_Q16, psDD->LF_AR_Q14 );
|
|
|
|
|
|
|
|
/* Scale short-term prediction and shaping states */
|
|
|
|
for( i = 0; i < NSQ_LPC_BUF_LENGTH; i++ ) {
|
|
|
|
psDD->sLPC_Q14[ i ] = silk_SMULWW( gain_adj_Q16, psDD->sLPC_Q14[ i ] );
|
|
|
|
}
|
|
|
|
for( i = 0; i < MAX_SHAPE_LPC_ORDER; i++ ) {
|
|
|
|
psDD->sAR2_Q14[ i ] = silk_SMULWW( gain_adj_Q16, psDD->sAR2_Q14[ i ] );
|
|
|
|
}
|
|
|
|
for( i = 0; i < DECISION_DELAY; i++ ) {
|
|
|
|
psDD->Pred_Q15[ i ] = silk_SMULWW( gain_adj_Q16, psDD->Pred_Q15[ i ] );
|
|
|
|
psDD->Shape_Q14[ i ] = silk_SMULWW( gain_adj_Q16, psDD->Shape_Q14[ i ] );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|