godot/thirdparty/icu4c/common/rbbi.cpp

1302 lines
43 KiB
C++
Raw Normal View History

// © 2016 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html
/*
***************************************************************************
* Copyright (C) 1999-2016 International Business Machines Corporation
* and others. All rights reserved.
***************************************************************************
*/
//
// file: rbbi.cpp Contains the implementation of the rule based break iterator
// runtime engine and the API implementation for
// class RuleBasedBreakIterator
//
#include "utypeinfo.h" // for 'typeid' to work
#include "unicode/utypes.h"
#if !UCONFIG_NO_BREAK_ITERATION
#include <cinttypes>
#include "unicode/rbbi.h"
#include "unicode/schriter.h"
#include "unicode/uchriter.h"
#include "unicode/uclean.h"
#include "unicode/udata.h"
#include "brkeng.h"
#include "ucln_cmn.h"
#include "cmemory.h"
#include "cstring.h"
#include "localsvc.h"
#include "rbbidata.h"
#include "rbbi_cache.h"
#include "rbbirb.h"
#include "uassert.h"
#include "umutex.h"
#include "uvectr32.h"
#ifdef RBBI_DEBUG
static UBool gTrace = FALSE;
#endif
U_NAMESPACE_BEGIN
// The state number of the starting state
constexpr int32_t START_STATE = 1;
// The state-transition value indicating "stop"
constexpr int32_t STOP_STATE = 0;
UOBJECT_DEFINE_RTTI_IMPLEMENTATION(RuleBasedBreakIterator)
//=======================================================================
// constructors
//=======================================================================
/**
* Constructs a RuleBasedBreakIterator that uses the already-created
* tables object that is passed in as a parameter.
*/
RuleBasedBreakIterator::RuleBasedBreakIterator(RBBIDataHeader* data, UErrorCode &status)
: fSCharIter(UnicodeString())
{
init(status);
fData = new RBBIDataWrapper(data, status); // status checked in constructor
if (U_FAILURE(status)) {return;}
if(fData == nullptr) {
status = U_MEMORY_ALLOCATION_ERROR;
return;
}
if (fData->fForwardTable->fLookAheadResultsSize > 0) {
fLookAheadMatches = static_cast<int32_t *>(
uprv_malloc(fData->fForwardTable->fLookAheadResultsSize * sizeof(int32_t)));
if (fLookAheadMatches == nullptr) {
status = U_MEMORY_ALLOCATION_ERROR;
return;
}
}
}
//
// Construct from precompiled binary rules (tables). This constructor is public API,
// taking the rules as a (const uint8_t *) to match the type produced by getBinaryRules().
//
RuleBasedBreakIterator::RuleBasedBreakIterator(const uint8_t *compiledRules,
uint32_t ruleLength,
UErrorCode &status)
: fSCharIter(UnicodeString())
{
init(status);
if (U_FAILURE(status)) {
return;
}
if (compiledRules == NULL || ruleLength < sizeof(RBBIDataHeader)) {
status = U_ILLEGAL_ARGUMENT_ERROR;
return;
}
const RBBIDataHeader *data = (const RBBIDataHeader *)compiledRules;
if (data->fLength > ruleLength) {
status = U_ILLEGAL_ARGUMENT_ERROR;
return;
}
fData = new RBBIDataWrapper(data, RBBIDataWrapper::kDontAdopt, status);
if (U_FAILURE(status)) {return;}
if(fData == nullptr) {
status = U_MEMORY_ALLOCATION_ERROR;
return;
}
if (fData->fForwardTable->fLookAheadResultsSize > 0) {
fLookAheadMatches = static_cast<int32_t *>(
uprv_malloc(fData->fForwardTable->fLookAheadResultsSize * sizeof(int32_t)));
if (fLookAheadMatches == nullptr) {
status = U_MEMORY_ALLOCATION_ERROR;
return;
}
}
}
//-------------------------------------------------------------------------------
//
// Constructor from a UDataMemory handle to precompiled break rules
// stored in an ICU data file.
//
//-------------------------------------------------------------------------------
RuleBasedBreakIterator::RuleBasedBreakIterator(UDataMemory* udm, UErrorCode &status)
: fSCharIter(UnicodeString())
{
init(status);
fData = new RBBIDataWrapper(udm, status); // status checked in constructor
if (U_FAILURE(status)) {return;}
if(fData == nullptr) {
status = U_MEMORY_ALLOCATION_ERROR;
return;
}
if (fData->fForwardTable->fLookAheadResultsSize > 0) {
fLookAheadMatches = static_cast<int32_t *>(
uprv_malloc(fData->fForwardTable->fLookAheadResultsSize * sizeof(int32_t)));
if (fLookAheadMatches == nullptr) {
status = U_MEMORY_ALLOCATION_ERROR;
return;
}
}
}
//-------------------------------------------------------------------------------
//
// Constructor from a set of rules supplied as a string.
//
//-------------------------------------------------------------------------------
RuleBasedBreakIterator::RuleBasedBreakIterator( const UnicodeString &rules,
UParseError &parseError,
UErrorCode &status)
: fSCharIter(UnicodeString())
{
init(status);
if (U_FAILURE(status)) {return;}
RuleBasedBreakIterator *bi = (RuleBasedBreakIterator *)
RBBIRuleBuilder::createRuleBasedBreakIterator(rules, &parseError, status);
// Note: This is a bit awkward. The RBBI ruleBuilder has a factory method that
// creates and returns a complete RBBI. From here, in a constructor, we
// can't just return the object created by the builder factory, hence
// the assignment of the factory created object to "this".
if (U_SUCCESS(status)) {
*this = *bi;
delete bi;
}
}
//-------------------------------------------------------------------------------
//
// Default Constructor. Create an empty shell that can be set up later.
// Used when creating a RuleBasedBreakIterator from a set
// of rules.
//-------------------------------------------------------------------------------
RuleBasedBreakIterator::RuleBasedBreakIterator()
: fSCharIter(UnicodeString())
{
UErrorCode status = U_ZERO_ERROR;
init(status);
}
//-------------------------------------------------------------------------------
//
// Copy constructor. Will produce a break iterator with the same behavior,
// and which iterates over the same text, as the one passed in.
//
//-------------------------------------------------------------------------------
RuleBasedBreakIterator::RuleBasedBreakIterator(const RuleBasedBreakIterator& other)
: BreakIterator(other),
fSCharIter(UnicodeString())
{
UErrorCode status = U_ZERO_ERROR;
this->init(status);
*this = other;
}
/**
* Destructor
*/
RuleBasedBreakIterator::~RuleBasedBreakIterator() {
if (fCharIter != &fSCharIter) {
// fCharIter was adopted from the outside.
delete fCharIter;
}
fCharIter = nullptr;
utext_close(&fText);
if (fData != nullptr) {
fData->removeReference();
fData = nullptr;
}
delete fBreakCache;
fBreakCache = nullptr;
delete fDictionaryCache;
fDictionaryCache = nullptr;
delete fLanguageBreakEngines;
fLanguageBreakEngines = nullptr;
delete fUnhandledBreakEngine;
fUnhandledBreakEngine = nullptr;
uprv_free(fLookAheadMatches);
fLookAheadMatches = nullptr;
}
/**
* Assignment operator. Sets this iterator to have the same behavior,
* and iterate over the same text, as the one passed in.
* TODO: needs better handling of memory allocation errors.
*/
RuleBasedBreakIterator&
RuleBasedBreakIterator::operator=(const RuleBasedBreakIterator& that) {
if (this == &that) {
return *this;
}
BreakIterator::operator=(that);
if (fLanguageBreakEngines != NULL) {
delete fLanguageBreakEngines;
fLanguageBreakEngines = NULL; // Just rebuild for now
}
// TODO: clone fLanguageBreakEngines from "that"
UErrorCode status = U_ZERO_ERROR;
utext_clone(&fText, &that.fText, FALSE, TRUE, &status);
if (fCharIter != &fSCharIter) {
delete fCharIter;
}
fCharIter = &fSCharIter;
if (that.fCharIter != NULL && that.fCharIter != &that.fSCharIter) {
// This is a little bit tricky - it will intially appear that
// this->fCharIter is adopted, even if that->fCharIter was
// not adopted. That's ok.
fCharIter = that.fCharIter->clone();
}
fSCharIter = that.fSCharIter;
if (fCharIter == NULL) {
fCharIter = &fSCharIter;
}
if (fData != NULL) {
fData->removeReference();
fData = NULL;
}
if (that.fData != NULL) {
fData = that.fData->addReference();
}
uprv_free(fLookAheadMatches);
fLookAheadMatches = nullptr;
if (fData && fData->fForwardTable->fLookAheadResultsSize > 0) {
fLookAheadMatches = static_cast<int32_t *>(
uprv_malloc(fData->fForwardTable->fLookAheadResultsSize * sizeof(int32_t)));
}
fPosition = that.fPosition;
fRuleStatusIndex = that.fRuleStatusIndex;
fDone = that.fDone;
// TODO: both the dictionary and the main cache need to be copied.
// Current position could be within a dictionary range. Trying to continue
// the iteration without the caches present would go to the rules, with
// the assumption that the current position is on a rule boundary.
fBreakCache->reset(fPosition, fRuleStatusIndex);
fDictionaryCache->reset();
return *this;
}
//-----------------------------------------------------------------------------
//
// init() Shared initialization routine. Used by all the constructors.
// Initializes all fields, leaving the object in a consistent state.
//
//-----------------------------------------------------------------------------
void RuleBasedBreakIterator::init(UErrorCode &status) {
fCharIter = nullptr;
fData = nullptr;
fPosition = 0;
fRuleStatusIndex = 0;
fDone = false;
fDictionaryCharCount = 0;
fLanguageBreakEngines = nullptr;
fUnhandledBreakEngine = nullptr;
fBreakCache = nullptr;
fDictionaryCache = nullptr;
fLookAheadMatches = nullptr;
// Note: IBM xlC is unable to assign or initialize member fText from UTEXT_INITIALIZER.
// fText = UTEXT_INITIALIZER;
static const UText initializedUText = UTEXT_INITIALIZER;
uprv_memcpy(&fText, &initializedUText, sizeof(UText));
if (U_FAILURE(status)) {
return;
}
utext_openUChars(&fText, NULL, 0, &status);
fDictionaryCache = new DictionaryCache(this, status);
fBreakCache = new BreakCache(this, status);
if (U_SUCCESS(status) && (fDictionaryCache == NULL || fBreakCache == NULL)) {
status = U_MEMORY_ALLOCATION_ERROR;
}
#ifdef RBBI_DEBUG
static UBool debugInitDone = FALSE;
if (debugInitDone == FALSE) {
char *debugEnv = getenv("U_RBBIDEBUG");
if (debugEnv && uprv_strstr(debugEnv, "trace")) {
gTrace = TRUE;
}
debugInitDone = TRUE;
}
#endif
}
//-----------------------------------------------------------------------------
//
// clone - Returns a newly-constructed RuleBasedBreakIterator with the same
// behavior, and iterating over the same text, as this one.
// Virtual function: does the right thing with subclasses.
//
//-----------------------------------------------------------------------------
RuleBasedBreakIterator*
RuleBasedBreakIterator::clone() const {
return new RuleBasedBreakIterator(*this);
}
/**
* Equality operator. Returns TRUE if both BreakIterators are of the
* same class, have the same behavior, and iterate over the same text.
*/
UBool
RuleBasedBreakIterator::operator==(const BreakIterator& that) const {
if (typeid(*this) != typeid(that)) {
return FALSE;
}
if (this == &that) {
return TRUE;
}
// The base class BreakIterator carries no state that participates in equality,
// and does not implement an equality function that would otherwise be
// checked at this point.
const RuleBasedBreakIterator& that2 = (const RuleBasedBreakIterator&) that;
if (!utext_equals(&fText, &that2.fText)) {
// The two break iterators are operating on different text,
// or have a different iteration position.
// Note that fText's position is always the same as the break iterator's position.
return FALSE;
}
if (!(fPosition == that2.fPosition &&
fRuleStatusIndex == that2.fRuleStatusIndex &&
fDone == that2.fDone)) {
return FALSE;
}
if (that2.fData == fData ||
(fData != NULL && that2.fData != NULL && *that2.fData == *fData)) {
// The two break iterators are using the same rules.
return TRUE;
}
return FALSE;
}
/**
* Compute a hash code for this BreakIterator
* @return A hash code
*/
int32_t
RuleBasedBreakIterator::hashCode(void) const {
int32_t hash = 0;
if (fData != NULL) {
hash = fData->hashCode();
}
return hash;
}
void RuleBasedBreakIterator::setText(UText *ut, UErrorCode &status) {
if (U_FAILURE(status)) {
return;
}
fBreakCache->reset();
fDictionaryCache->reset();
utext_clone(&fText, ut, FALSE, TRUE, &status);
// Set up a dummy CharacterIterator to be returned if anyone
// calls getText(). With input from UText, there is no reasonable
// way to return a characterIterator over the actual input text.
// Return one over an empty string instead - this is the closest
// we can come to signaling a failure.
// (GetText() is obsolete, this failure is sort of OK)
fSCharIter.setText(UnicodeString());
if (fCharIter != &fSCharIter) {
// existing fCharIter was adopted from the outside. Delete it now.
delete fCharIter;
}
fCharIter = &fSCharIter;
this->first();
}
UText *RuleBasedBreakIterator::getUText(UText *fillIn, UErrorCode &status) const {
UText *result = utext_clone(fillIn, &fText, FALSE, TRUE, &status);
return result;
}
//=======================================================================
// BreakIterator overrides
//=======================================================================
/**
* Return a CharacterIterator over the text being analyzed.
*/
CharacterIterator&
RuleBasedBreakIterator::getText() const {
return *fCharIter;
}
/**
* Set the iterator to analyze a new piece of text. This function resets
* the current iteration position to the beginning of the text.
* @param newText An iterator over the text to analyze.
*/
void
RuleBasedBreakIterator::adoptText(CharacterIterator* newText) {
// If we are holding a CharacterIterator adopted from a
// previous call to this function, delete it now.
if (fCharIter != &fSCharIter) {
delete fCharIter;
}
fCharIter = newText;
UErrorCode status = U_ZERO_ERROR;
fBreakCache->reset();
fDictionaryCache->reset();
if (newText==NULL || newText->startIndex() != 0) {
// startIndex !=0 wants to be an error, but there's no way to report it.
// Make the iterator text be an empty string.
utext_openUChars(&fText, NULL, 0, &status);
} else {
utext_openCharacterIterator(&fText, newText, &status);
}
this->first();
}
/**
* Set the iterator to analyze a new piece of text. This function resets
* the current iteration position to the beginning of the text.
* @param newText An iterator over the text to analyze.
*/
void
RuleBasedBreakIterator::setText(const UnicodeString& newText) {
UErrorCode status = U_ZERO_ERROR;
fBreakCache->reset();
fDictionaryCache->reset();
utext_openConstUnicodeString(&fText, &newText, &status);
// Set up a character iterator on the string.
// Needed in case someone calls getText().
// Can not, unfortunately, do this lazily on the (probably never)
// call to getText(), because getText is const.
fSCharIter.setText(newText);
if (fCharIter != &fSCharIter) {
// old fCharIter was adopted from the outside. Delete it.
delete fCharIter;
}
fCharIter = &fSCharIter;
this->first();
}
/**
* Provide a new UText for the input text. Must reference text with contents identical
* to the original.
* Intended for use with text data originating in Java (garbage collected) environments
* where the data may be moved in memory at arbitrary times.
*/
RuleBasedBreakIterator &RuleBasedBreakIterator::refreshInputText(UText *input, UErrorCode &status) {
if (U_FAILURE(status)) {
return *this;
}
if (input == NULL) {
status = U_ILLEGAL_ARGUMENT_ERROR;
return *this;
}
int64_t pos = utext_getNativeIndex(&fText);
// Shallow read-only clone of the new UText into the existing input UText
utext_clone(&fText, input, FALSE, TRUE, &status);
if (U_FAILURE(status)) {
return *this;
}
utext_setNativeIndex(&fText, pos);
if (utext_getNativeIndex(&fText) != pos) {
// Sanity check. The new input utext is supposed to have the exact same
// contents as the old. If we can't set to the same position, it doesn't.
// The contents underlying the old utext might be invalid at this point,
// so it's not safe to check directly.
status = U_ILLEGAL_ARGUMENT_ERROR;
}
return *this;
}
/**
* Sets the current iteration position to the beginning of the text, position zero.
* @return The new iterator position, which is zero.
*/
int32_t RuleBasedBreakIterator::first(void) {
UErrorCode status = U_ZERO_ERROR;
if (!fBreakCache->seek(0)) {
fBreakCache->populateNear(0, status);
}
fBreakCache->current();
U_ASSERT(fPosition == 0);
return 0;
}
/**
* Sets the current iteration position to the end of the text.
* @return The text's past-the-end offset.
*/
int32_t RuleBasedBreakIterator::last(void) {
int32_t endPos = (int32_t)utext_nativeLength(&fText);
UBool endShouldBeBoundary = isBoundary(endPos); // Has side effect of setting iterator position.
(void)endShouldBeBoundary;
U_ASSERT(endShouldBeBoundary);
U_ASSERT(fPosition == endPos);
return endPos;
}
/**
* Advances the iterator either forward or backward the specified number of steps.
* Negative values move backward, and positive values move forward. This is
* equivalent to repeatedly calling next() or previous().
* @param n The number of steps to move. The sign indicates the direction
* (negative is backwards, and positive is forwards).
* @return The character offset of the boundary position n boundaries away from
* the current one.
*/
int32_t RuleBasedBreakIterator::next(int32_t n) {
int32_t result = 0;
if (n > 0) {
for (; n > 0 && result != UBRK_DONE; --n) {
result = next();
}
} else if (n < 0) {
for (; n < 0 && result != UBRK_DONE; ++n) {
result = previous();
}
} else {
result = current();
}
return result;
}
/**
* Advances the iterator to the next boundary position.
* @return The position of the first boundary after this one.
*/
int32_t RuleBasedBreakIterator::next(void) {
fBreakCache->next();
return fDone ? UBRK_DONE : fPosition;
}
/**
* Move the iterator backwards, to the boundary preceding the current one.
*
* Starts from the current position within fText.
* Starting position need not be on a boundary.
*
* @return The position of the boundary position immediately preceding the starting position.
*/
int32_t RuleBasedBreakIterator::previous(void) {
UErrorCode status = U_ZERO_ERROR;
fBreakCache->previous(status);
return fDone ? UBRK_DONE : fPosition;
}
/**
* Sets the iterator to refer to the first boundary position following
* the specified position.
* @param startPos The position from which to begin searching for a break position.
* @return The position of the first break after the current position.
*/
int32_t RuleBasedBreakIterator::following(int32_t startPos) {
// if the supplied position is before the beginning, return the
// text's starting offset
if (startPos < 0) {
return first();
}
// Move requested offset to a code point start. It might be on a trail surrogate,
// or on a trail byte if the input is UTF-8. Or it may be beyond the end of the text.
utext_setNativeIndex(&fText, startPos);
startPos = (int32_t)utext_getNativeIndex(&fText);
UErrorCode status = U_ZERO_ERROR;
fBreakCache->following(startPos, status);
return fDone ? UBRK_DONE : fPosition;
}
/**
* Sets the iterator to refer to the last boundary position before the
* specified position.
* @param offset The position to begin searching for a break from.
* @return The position of the last boundary before the starting position.
*/
int32_t RuleBasedBreakIterator::preceding(int32_t offset) {
if (offset > utext_nativeLength(&fText)) {
return last();
}
// Move requested offset to a code point start. It might be on a trail surrogate,
// or on a trail byte if the input is UTF-8.
utext_setNativeIndex(&fText, offset);
int32_t adjustedOffset = static_cast<int32_t>(utext_getNativeIndex(&fText));
UErrorCode status = U_ZERO_ERROR;
fBreakCache->preceding(adjustedOffset, status);
return fDone ? UBRK_DONE : fPosition;
}
/**
* Returns true if the specfied position is a boundary position. As a side
* effect, leaves the iterator pointing to the first boundary position at
* or after "offset".
*
* @param offset the offset to check.
* @return True if "offset" is a boundary position.
*/
UBool RuleBasedBreakIterator::isBoundary(int32_t offset) {
// out-of-range indexes are never boundary positions
if (offset < 0) {
first(); // For side effects on current position, tag values.
return FALSE;
}
// Adjust offset to be on a code point boundary and not beyond the end of the text.
// Note that isBoundary() is always false for offsets that are not on code point boundaries.
// But we still need the side effect of leaving iteration at the following boundary.
utext_setNativeIndex(&fText, offset);
int32_t adjustedOffset = static_cast<int32_t>(utext_getNativeIndex(&fText));
bool result = false;
UErrorCode status = U_ZERO_ERROR;
if (fBreakCache->seek(adjustedOffset) || fBreakCache->populateNear(adjustedOffset, status)) {
result = (fBreakCache->current() == offset);
}
if (result && adjustedOffset < offset && utext_char32At(&fText, offset) == U_SENTINEL) {
// Original offset is beyond the end of the text. Return FALSE, it's not a boundary,
// but the iteration position remains set to the end of the text, which is a boundary.
return FALSE;
}
if (!result) {
// Not on a boundary. isBoundary() must leave iterator on the following boundary.
// Cache->seek(), above, left us on the preceding boundary, so advance one.
next();
}
return result;
}
/**
* Returns the current iteration position.
* @return The current iteration position.
*/
int32_t RuleBasedBreakIterator::current(void) const {
return fPosition;
}
//=======================================================================
// implementation
//=======================================================================
//
// RBBIRunMode - the state machine runs an extra iteration at the beginning and end
// of user text. A variable with this enum type keeps track of where we
// are. The state machine only fetches user input while in the RUN mode.
//
enum RBBIRunMode {
RBBI_START, // state machine processing is before first char of input
RBBI_RUN, // state machine processing is in the user text
RBBI_END // state machine processing is after end of user text.
};
// Wrapper functions to select the appropriate handleNext() or handleSafePrevious()
// instantiation, based on whether an 8 or 16 bit table is required.
//
// These Trie access functions will be inlined within the handleNext()/Previous() instantions.
static inline uint16_t TrieFunc8(const UCPTrie *trie, UChar32 c) {
return UCPTRIE_FAST_GET(trie, UCPTRIE_8, c);
}
static inline uint16_t TrieFunc16(const UCPTrie *trie, UChar32 c) {
return UCPTRIE_FAST_GET(trie, UCPTRIE_16, c);
}
int32_t RuleBasedBreakIterator::handleNext() {
const RBBIStateTable *statetable = fData->fForwardTable;
bool use8BitsTrie = ucptrie_getValueWidth(fData->fTrie) == UCPTRIE_VALUE_BITS_8;
if (statetable->fFlags & RBBI_8BITS_ROWS) {
if (use8BitsTrie) {
return handleNext<RBBIStateTableRow8, TrieFunc8>();
} else {
return handleNext<RBBIStateTableRow8, TrieFunc16>();
}
} else {
if (use8BitsTrie) {
return handleNext<RBBIStateTableRow16, TrieFunc8>();
} else {
return handleNext<RBBIStateTableRow16, TrieFunc16>();
}
}
}
int32_t RuleBasedBreakIterator::handleSafePrevious(int32_t fromPosition) {
const RBBIStateTable *statetable = fData->fReverseTable;
bool use8BitsTrie = ucptrie_getValueWidth(fData->fTrie) == UCPTRIE_VALUE_BITS_8;
if (statetable->fFlags & RBBI_8BITS_ROWS) {
if (use8BitsTrie) {
return handleSafePrevious<RBBIStateTableRow8, TrieFunc8>(fromPosition);
} else {
return handleSafePrevious<RBBIStateTableRow8, TrieFunc16>(fromPosition);
}
} else {
if (use8BitsTrie) {
return handleSafePrevious<RBBIStateTableRow16, TrieFunc8>(fromPosition);
} else {
return handleSafePrevious<RBBIStateTableRow16, TrieFunc16>(fromPosition);
}
}
}
//-----------------------------------------------------------------------------------
//
// handleNext()
// Run the state machine to find a boundary
//
//-----------------------------------------------------------------------------------
template <typename RowType, RuleBasedBreakIterator::PTrieFunc trieFunc>
int32_t RuleBasedBreakIterator::handleNext() {
int32_t state;
uint16_t category = 0;
RBBIRunMode mode;
RowType *row;
UChar32 c;
int32_t result = 0;
int32_t initialPosition = 0;
const RBBIStateTable *statetable = fData->fForwardTable;
const char *tableData = statetable->fTableData;
uint32_t tableRowLen = statetable->fRowLen;
uint32_t dictStart = statetable->fDictCategoriesStart;
#ifdef RBBI_DEBUG
if (gTrace) {
RBBIDebugPuts("Handle Next pos char state category");
}
#endif
// handleNext always sets the break tag value.
// Set the default for it.
fRuleStatusIndex = 0;
fDictionaryCharCount = 0;
// if we're already at the end of the text, return DONE.
initialPosition = fPosition;
UTEXT_SETNATIVEINDEX(&fText, initialPosition);
result = initialPosition;
c = UTEXT_NEXT32(&fText);
if (c==U_SENTINEL) {
fDone = TRUE;
return UBRK_DONE;
}
// Set the initial state for the state machine
state = START_STATE;
row = (RowType *)
//(statetable->fTableData + (statetable->fRowLen * state));
(tableData + tableRowLen * state);
mode = RBBI_RUN;
if (statetable->fFlags & RBBI_BOF_REQUIRED) {
category = 2;
mode = RBBI_START;
}
// loop until we reach the end of the text or transition to state 0
//
for (;;) {
if (c == U_SENTINEL) {
// Reached end of input string.
if (mode == RBBI_END) {
// We have already run the loop one last time with the
// character set to the psueudo {eof} value. Now it is time
// to unconditionally bail out.
break;
}
// Run the loop one last time with the fake end-of-input character category.
mode = RBBI_END;
category = 1;
}
//
// Get the char category. An incoming category of 1 or 2 means that
// we are preset for doing the beginning or end of input, and
// that we shouldn't get a category from an actual text input character.
//
if (mode == RBBI_RUN) {
// look up the current character's character category, which tells us
// which column in the state table to look at.
category = trieFunc(fData->fTrie, c);
fDictionaryCharCount += (category >= dictStart);
}
#ifdef RBBI_DEBUG
if (gTrace) {
RBBIDebugPrintf(" %4" PRId64 " ", utext_getNativeIndex(&fText));
if (0x20<=c && c<0x7f) {
RBBIDebugPrintf("\"%c\" ", c);
} else {
RBBIDebugPrintf("%5x ", c);
}
RBBIDebugPrintf("%3d %3d\n", state, category);
}
#endif
// State Transition - move machine to its next state
//
// fNextState is a variable-length array.
U_ASSERT(category<fData->fHeader->fCatCount);
state = row->fNextState[category]; /*Not accessing beyond memory*/
row = (RowType *)
// (statetable->fTableData + (statetable->fRowLen * state));
(tableData + tableRowLen * state);
uint16_t accepting = row->fAccepting;
if (accepting == ACCEPTING_UNCONDITIONAL) {
// Match found, common case.
if (mode != RBBI_START) {
result = (int32_t)UTEXT_GETNATIVEINDEX(&fText);
}
fRuleStatusIndex = row->fTagsIdx; // Remember the break status (tag) values.
} else if (accepting > ACCEPTING_UNCONDITIONAL) {
// Lookahead match is completed.
U_ASSERT(accepting < fData->fForwardTable->fLookAheadResultsSize);
int32_t lookaheadResult = fLookAheadMatches[accepting];
if (lookaheadResult >= 0) {
fRuleStatusIndex = row->fTagsIdx;
fPosition = lookaheadResult;
return lookaheadResult;
}
}
// If we are at the position of the '/' in a look-ahead (hard break) rule;
// record the current position, to be returned later, if the full rule matches.
// TODO: Move this check before the previous check of fAccepting.
// This would enable hard-break rules with no following context.
// But there are line break test failures when trying this. Investigate.
// Issue ICU-20837
uint16_t rule = row->fLookAhead;
U_ASSERT(rule == 0 || rule > ACCEPTING_UNCONDITIONAL);
U_ASSERT(rule == 0 || rule < fData->fForwardTable->fLookAheadResultsSize);
if (rule > ACCEPTING_UNCONDITIONAL) {
int32_t pos = (int32_t)UTEXT_GETNATIVEINDEX(&fText);
fLookAheadMatches[rule] = pos;
}
if (state == STOP_STATE) {
// This is the normal exit from the lookup state machine.
// We have advanced through the string until it is certain that no
// longer match is possible, no matter what characters follow.
break;
}
// Advance to the next character.
// If this is a beginning-of-input loop iteration, don't advance
// the input position. The next iteration will be processing the
// first real input character.
if (mode == RBBI_RUN) {
c = UTEXT_NEXT32(&fText);
} else {
if (mode == RBBI_START) {
mode = RBBI_RUN;
}
}
}
// The state machine is done. Check whether it found a match...
// If the iterator failed to advance in the match engine, force it ahead by one.
// (This really indicates a defect in the break rules. They should always match
// at least one character.)
if (result == initialPosition) {
utext_setNativeIndex(&fText, initialPosition);
utext_next32(&fText);
result = (int32_t)utext_getNativeIndex(&fText);
fRuleStatusIndex = 0;
}
// Leave the iterator at our result position.
fPosition = result;
#ifdef RBBI_DEBUG
if (gTrace) {
RBBIDebugPrintf("result = %d\n\n", result);
}
#endif
return result;
}
//-----------------------------------------------------------------------------------
//
// handleSafePrevious()
//
// Iterate backwards using the safe reverse rules.
// The logic of this function is similar to handleNext(), but simpler
// because the safe table does not require as many options.
//
//-----------------------------------------------------------------------------------
template <typename RowType, RuleBasedBreakIterator::PTrieFunc trieFunc>
int32_t RuleBasedBreakIterator::handleSafePrevious(int32_t fromPosition) {
int32_t state;
uint16_t category = 0;
RowType *row;
UChar32 c;
int32_t result = 0;
const RBBIStateTable *stateTable = fData->fReverseTable;
UTEXT_SETNATIVEINDEX(&fText, fromPosition);
#ifdef RBBI_DEBUG
if (gTrace) {
RBBIDebugPuts("Handle Previous pos char state category");
}
#endif
// if we're already at the start of the text, return DONE.
if (fData == NULL || UTEXT_GETNATIVEINDEX(&fText)==0) {
return BreakIterator::DONE;
}
// Set the initial state for the state machine
c = UTEXT_PREVIOUS32(&fText);
state = START_STATE;
row = (RowType *)
(stateTable->fTableData + (stateTable->fRowLen * state));
// loop until we reach the start of the text or transition to state 0
//
for (; c != U_SENTINEL; c = UTEXT_PREVIOUS32(&fText)) {
// look up the current character's character category, which tells us
// which column in the state table to look at.
//
// Off the dictionary flag bit. For reverse iteration it is not used.
category = trieFunc(fData->fTrie, c);
#ifdef RBBI_DEBUG
if (gTrace) {
RBBIDebugPrintf(" %4d ", (int32_t)utext_getNativeIndex(&fText));
if (0x20<=c && c<0x7f) {
RBBIDebugPrintf("\"%c\" ", c);
} else {
RBBIDebugPrintf("%5x ", c);
}
RBBIDebugPrintf("%3d %3d\n", state, category);
}
#endif
// State Transition - move machine to its next state
//
// fNextState is a variable-length array.
U_ASSERT(category<fData->fHeader->fCatCount);
state = row->fNextState[category]; /*Not accessing beyond memory*/
row = (RowType *)
(stateTable->fTableData + (stateTable->fRowLen * state));
if (state == STOP_STATE) {
// This is the normal exit from the lookup state machine.
// Transistion to state zero means we have found a safe point.
break;
}
}
// The state machine is done. Check whether it found a match...
result = (int32_t)UTEXT_GETNATIVEINDEX(&fText);
#ifdef RBBI_DEBUG
if (gTrace) {
RBBIDebugPrintf("result = %d\n\n", result);
}
#endif
return result;
}
//-------------------------------------------------------------------------------
//
// getRuleStatus() Return the break rule tag associated with the current
// iterator position. If the iterator arrived at its current
// position by iterating forwards, the value will have been
// cached by the handleNext() function.
//
//-------------------------------------------------------------------------------
int32_t RuleBasedBreakIterator::getRuleStatus() const {
// fLastRuleStatusIndex indexes to the start of the appropriate status record
// (the number of status values.)
// This function returns the last (largest) of the array of status values.
int32_t idx = fRuleStatusIndex + fData->fRuleStatusTable[fRuleStatusIndex];
int32_t tagVal = fData->fRuleStatusTable[idx];
return tagVal;
}
int32_t RuleBasedBreakIterator::getRuleStatusVec(
int32_t *fillInVec, int32_t capacity, UErrorCode &status) {
if (U_FAILURE(status)) {
return 0;
}
int32_t numVals = fData->fRuleStatusTable[fRuleStatusIndex];
int32_t numValsToCopy = numVals;
if (numVals > capacity) {
status = U_BUFFER_OVERFLOW_ERROR;
numValsToCopy = capacity;
}
int i;
for (i=0; i<numValsToCopy; i++) {
fillInVec[i] = fData->fRuleStatusTable[fRuleStatusIndex + i + 1];
}
return numVals;
}
//-------------------------------------------------------------------------------
//
// getBinaryRules Access to the compiled form of the rules,
// for use by build system tools that save the data
// for standard iterator types.
//
//-------------------------------------------------------------------------------
const uint8_t *RuleBasedBreakIterator::getBinaryRules(uint32_t &length) {
const uint8_t *retPtr = NULL;
length = 0;
if (fData != NULL) {
retPtr = (const uint8_t *)fData->fHeader;
length = fData->fHeader->fLength;
}
return retPtr;
}
RuleBasedBreakIterator *RuleBasedBreakIterator::createBufferClone(
void * /*stackBuffer*/, int32_t &bufferSize, UErrorCode &status) {
if (U_FAILURE(status)){
return NULL;
}
if (bufferSize == 0) {
bufferSize = 1; // preflighting for deprecated functionality
return NULL;
}
BreakIterator *clonedBI = clone();
if (clonedBI == NULL) {
status = U_MEMORY_ALLOCATION_ERROR;
} else {
status = U_SAFECLONE_ALLOCATED_WARNING;
}
return (RuleBasedBreakIterator *)clonedBI;
}
U_NAMESPACE_END
static icu::UStack *gLanguageBreakFactories = nullptr;
static const icu::UnicodeString *gEmptyString = nullptr;
static icu::UInitOnce gLanguageBreakFactoriesInitOnce = U_INITONCE_INITIALIZER;
static icu::UInitOnce gRBBIInitOnce = U_INITONCE_INITIALIZER;
/**
* Release all static memory held by breakiterator.
*/
U_CDECL_BEGIN
UBool U_CALLCONV rbbi_cleanup(void) {
delete gLanguageBreakFactories;
gLanguageBreakFactories = nullptr;
delete gEmptyString;
gEmptyString = nullptr;
gLanguageBreakFactoriesInitOnce.reset();
gRBBIInitOnce.reset();
return TRUE;
}
U_CDECL_END
U_CDECL_BEGIN
static void U_CALLCONV _deleteFactory(void *obj) {
delete (icu::LanguageBreakFactory *) obj;
}
U_CDECL_END
U_NAMESPACE_BEGIN
static void U_CALLCONV rbbiInit() {
gEmptyString = new UnicodeString();
ucln_common_registerCleanup(UCLN_COMMON_RBBI, rbbi_cleanup);
}
static void U_CALLCONV initLanguageFactories() {
UErrorCode status = U_ZERO_ERROR;
U_ASSERT(gLanguageBreakFactories == NULL);
gLanguageBreakFactories = new UStack(_deleteFactory, NULL, status);
if (gLanguageBreakFactories != NULL && U_SUCCESS(status)) {
ICULanguageBreakFactory *builtIn = new ICULanguageBreakFactory(status);
gLanguageBreakFactories->push(builtIn, status);
#ifdef U_LOCAL_SERVICE_HOOK
LanguageBreakFactory *extra = (LanguageBreakFactory *)uprv_svc_hook("languageBreakFactory", &status);
if (extra != NULL) {
gLanguageBreakFactories->push(extra, status);
}
#endif
}
ucln_common_registerCleanup(UCLN_COMMON_RBBI, rbbi_cleanup);
}
static const LanguageBreakEngine*
getLanguageBreakEngineFromFactory(UChar32 c)
{
umtx_initOnce(gLanguageBreakFactoriesInitOnce, &initLanguageFactories);
if (gLanguageBreakFactories == NULL) {
return NULL;
}
int32_t i = gLanguageBreakFactories->size();
const LanguageBreakEngine *lbe = NULL;
while (--i >= 0) {
LanguageBreakFactory *factory = (LanguageBreakFactory *)(gLanguageBreakFactories->elementAt(i));
lbe = factory->getEngineFor(c);
if (lbe != NULL) {
break;
}
}
return lbe;
}
//-------------------------------------------------------------------------------
//
// getLanguageBreakEngine Find an appropriate LanguageBreakEngine for the
// the character c.
//
//-------------------------------------------------------------------------------
const LanguageBreakEngine *
RuleBasedBreakIterator::getLanguageBreakEngine(UChar32 c) {
const LanguageBreakEngine *lbe = NULL;
UErrorCode status = U_ZERO_ERROR;
if (fLanguageBreakEngines == NULL) {
fLanguageBreakEngines = new UStack(status);
if (fLanguageBreakEngines == NULL || U_FAILURE(status)) {
delete fLanguageBreakEngines;
fLanguageBreakEngines = 0;
return NULL;
}
}
int32_t i = fLanguageBreakEngines->size();
while (--i >= 0) {
lbe = (const LanguageBreakEngine *)(fLanguageBreakEngines->elementAt(i));
if (lbe->handles(c)) {
return lbe;
}
}
// No existing dictionary took the character. See if a factory wants to
// give us a new LanguageBreakEngine for this character.
lbe = getLanguageBreakEngineFromFactory(c);
// If we got one, use it and push it on our stack.
if (lbe != NULL) {
fLanguageBreakEngines->push((void *)lbe, status);
// Even if we can't remember it, we can keep looking it up, so
// return it even if the push fails.
return lbe;
}
// No engine is forthcoming for this character. Add it to the
// reject set. Create the reject break engine if needed.
if (fUnhandledBreakEngine == NULL) {
fUnhandledBreakEngine = new UnhandledEngine(status);
if (U_SUCCESS(status) && fUnhandledBreakEngine == NULL) {
status = U_MEMORY_ALLOCATION_ERROR;
return nullptr;
}
// Put it last so that scripts for which we have an engine get tried
// first.
fLanguageBreakEngines->insertElementAt(fUnhandledBreakEngine, 0, status);
// If we can't insert it, or creation failed, get rid of it
if (U_FAILURE(status)) {
delete fUnhandledBreakEngine;
fUnhandledBreakEngine = 0;
return NULL;
}
}
// Tell the reject engine about the character; at its discretion, it may
// add more than just the one character.
fUnhandledBreakEngine->handleCharacter(c);
return fUnhandledBreakEngine;
}
void RuleBasedBreakIterator::dumpCache() {
fBreakCache->dumpCache();
}
void RuleBasedBreakIterator::dumpTables() {
fData->printData();
}
/**
* Returns the description used to create this iterator
*/
const UnicodeString&
RuleBasedBreakIterator::getRules() const {
if (fData != NULL) {
return fData->getRuleSourceString();
} else {
umtx_initOnce(gRBBIInitOnce, &rbbiInit);
return *gEmptyString;
}
}
U_NAMESPACE_END
#endif /* #if !UCONFIG_NO_BREAK_ITERATION */