Rewrite FBX Importer to convert directly to Godot scene format
Co-authored-by: Gordon MacPherson <gordon@gordonite.tech>
Co-authored-by: Andrea Catania <info@andreacatania.com>
Co-authored-by: K. S. Ernest (iFire) Lee <ernest.lee@chibifire.com>
This is a complete rewrite of the importer. It will give more deterministic behaviour and has been sponsored by IMVU inc, over 1 year has gone into the development of this importer to remove the burden of the FBX SDK.
This was my project for 1 entire year and I really enjoyed the opportunity to add to Godot.
Along the road of implementing fixes we implemented fbx pivots, animations and inheritance type handling, which in most cases works properly.
We have implemented animation and mesh skinning too this should work out of the box, if there are issues let us know.
It's designed so that you can expand this with ease, and fix bugs easily too.
It can import from Autodesk Maya and import into Godot, with pivots.
There are bits we could polish but for now this is good enough.
Additional fixes made before upstreaming:
- fixed memory leaks
- ensure consistent ordering on mac linux and windows for fbx tree. (very important for material import to be deterministic)
- disabled incorrect warnings for fbx_material
- added compatibility code for /RootNode/ so compat is not broken
- Optimise FBX - directly import triangles
- remove debug messages
- add messages for mesh id, mesh re-import is sometimes slow and we need to know what mesh is being worked on
- Document no longer uses unordered maps
- Removed some usages of &GetRequiredToken replaced with safe *GetRequiredToken() function
- Added parser debugging
- Added ERR_FAIL_CONDS for unsupported mesh formats (we can add these later super easy to do now)
- Add memory debugging for the Tokens and the TokenParser to make it safe
- Add memory initialisation to mesh.cpp surface_tool.h and mesh.h
- Initialise boolean flags properly
- Refactored to correct naming for the fbx_mesh_data.h so you know what data you are working on
- Disabled corruption caused by the FIXME:
- Fixed document reading indexes and index_to_direct vs indexes mode
- Fixed UV1 and UV2 coordinates
- Fixed importer failing to import version 7700 files
- Replaced memory handling in the FBX Document with pointers, before it was dereferencing invalid memory.
- Fixed typed properties
- Improved Document API
- Fixed bug with ProcessDOMConnection() not working with the bool flag set to true.
- Fixed FBX skinning not deforming for more than one single mesh
- Fixed FBX skeleton mapping and skin mapping not being applied properly (now retrieved from document skin list)
- Fixed set_bone_pose being used in final version()
- Fixed material properties exceeding 1.0.
- FBX Document parser revamped to use safe memory practices, and with graceful error messages.
- ScopePtr, TokenPtr and various internal types have been fleshed out to use proper typedefs across the codebase.
- Fixed memory leaks caused by token cleanup failing (now explicit cleanup step, no shared_ptr, etc)
- Fixed bug with PropertyTable not reading all properties and not cleaning up properly.
- Fixed smoothing groups not working
- Fixed normal duplications
- Fixed duplication check for pre-existing coordinates.
- Fixed performance of vertex lookup in large meshes being slow, using lookup table separate to the data for indexing, this reduces import time from 10 minutes of bistro down to 30 seconds.
- Fixed includes requiring absolute path in headers and cpp files using CPPPath.
Bugs/Features wish list:
- locator bones
- quat anim key interpolation (most fbx maya files have euler rotations from blender and maya, nobody uses this)
- some rigs skins scale up when SSC enabled inconsistently per bone
- some skins can disappear entirely
- material mapping needs expanded, but this will be done for 4.0 as it requires rewrite.
Workarounds for issues found until we patch them:
- mesh -> clear skin can resolve most of the bugs above.
- locators can be worked around by removing them before exporting your rig.
- some material properties wont always import, this is okay to override in the material properties.
**If you are having issues or need support fear not!**
Please provide minimal rigs which can reproduce issues as we can't spend a lot of time investigating each rig. We need a small example which breaks and we can then sort the problem. In some cases this is not possible so its okay to privately send models to us via IRC or a ticket and we can provide an email address, we won't reveal or disclose privately sent rig files to any companies, or to companies I work for, they will not be shared, only tested and bugs will be drawn up from the conclusions. Also include identifying information about what you did and how it didn't work. Please file each file separately in a bug report, unless the problem is the same.
This was sponsored by IMVU, and a special thanks to everyone who supported this project.
Signed-off-by: Gordon MacPherson <gordon@gordonite.tech>
2020-10-20 17:00:16 +00:00
|
|
|
/*************************************************************************/
|
|
|
|
/* FBXParser.cpp */
|
|
|
|
/*************************************************************************/
|
|
|
|
/* This file is part of: */
|
|
|
|
/* GODOT ENGINE */
|
|
|
|
/* https://godotengine.org */
|
|
|
|
/*************************************************************************/
|
2021-01-01 19:13:46 +00:00
|
|
|
/* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */
|
|
|
|
/* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */
|
Rewrite FBX Importer to convert directly to Godot scene format
Co-authored-by: Gordon MacPherson <gordon@gordonite.tech>
Co-authored-by: Andrea Catania <info@andreacatania.com>
Co-authored-by: K. S. Ernest (iFire) Lee <ernest.lee@chibifire.com>
This is a complete rewrite of the importer. It will give more deterministic behaviour and has been sponsored by IMVU inc, over 1 year has gone into the development of this importer to remove the burden of the FBX SDK.
This was my project for 1 entire year and I really enjoyed the opportunity to add to Godot.
Along the road of implementing fixes we implemented fbx pivots, animations and inheritance type handling, which in most cases works properly.
We have implemented animation and mesh skinning too this should work out of the box, if there are issues let us know.
It's designed so that you can expand this with ease, and fix bugs easily too.
It can import from Autodesk Maya and import into Godot, with pivots.
There are bits we could polish but for now this is good enough.
Additional fixes made before upstreaming:
- fixed memory leaks
- ensure consistent ordering on mac linux and windows for fbx tree. (very important for material import to be deterministic)
- disabled incorrect warnings for fbx_material
- added compatibility code for /RootNode/ so compat is not broken
- Optimise FBX - directly import triangles
- remove debug messages
- add messages for mesh id, mesh re-import is sometimes slow and we need to know what mesh is being worked on
- Document no longer uses unordered maps
- Removed some usages of &GetRequiredToken replaced with safe *GetRequiredToken() function
- Added parser debugging
- Added ERR_FAIL_CONDS for unsupported mesh formats (we can add these later super easy to do now)
- Add memory debugging for the Tokens and the TokenParser to make it safe
- Add memory initialisation to mesh.cpp surface_tool.h and mesh.h
- Initialise boolean flags properly
- Refactored to correct naming for the fbx_mesh_data.h so you know what data you are working on
- Disabled corruption caused by the FIXME:
- Fixed document reading indexes and index_to_direct vs indexes mode
- Fixed UV1 and UV2 coordinates
- Fixed importer failing to import version 7700 files
- Replaced memory handling in the FBX Document with pointers, before it was dereferencing invalid memory.
- Fixed typed properties
- Improved Document API
- Fixed bug with ProcessDOMConnection() not working with the bool flag set to true.
- Fixed FBX skinning not deforming for more than one single mesh
- Fixed FBX skeleton mapping and skin mapping not being applied properly (now retrieved from document skin list)
- Fixed set_bone_pose being used in final version()
- Fixed material properties exceeding 1.0.
- FBX Document parser revamped to use safe memory practices, and with graceful error messages.
- ScopePtr, TokenPtr and various internal types have been fleshed out to use proper typedefs across the codebase.
- Fixed memory leaks caused by token cleanup failing (now explicit cleanup step, no shared_ptr, etc)
- Fixed bug with PropertyTable not reading all properties and not cleaning up properly.
- Fixed smoothing groups not working
- Fixed normal duplications
- Fixed duplication check for pre-existing coordinates.
- Fixed performance of vertex lookup in large meshes being slow, using lookup table separate to the data for indexing, this reduces import time from 10 minutes of bistro down to 30 seconds.
- Fixed includes requiring absolute path in headers and cpp files using CPPPath.
Bugs/Features wish list:
- locator bones
- quat anim key interpolation (most fbx maya files have euler rotations from blender and maya, nobody uses this)
- some rigs skins scale up when SSC enabled inconsistently per bone
- some skins can disappear entirely
- material mapping needs expanded, but this will be done for 4.0 as it requires rewrite.
Workarounds for issues found until we patch them:
- mesh -> clear skin can resolve most of the bugs above.
- locators can be worked around by removing them before exporting your rig.
- some material properties wont always import, this is okay to override in the material properties.
**If you are having issues or need support fear not!**
Please provide minimal rigs which can reproduce issues as we can't spend a lot of time investigating each rig. We need a small example which breaks and we can then sort the problem. In some cases this is not possible so its okay to privately send models to us via IRC or a ticket and we can provide an email address, we won't reveal or disclose privately sent rig files to any companies, or to companies I work for, they will not be shared, only tested and bugs will be drawn up from the conclusions. Also include identifying information about what you did and how it didn't work. Please file each file separately in a bug report, unless the problem is the same.
This was sponsored by IMVU, and a special thanks to everyone who supported this project.
Signed-off-by: Gordon MacPherson <gordon@gordonite.tech>
2020-10-20 17:00:16 +00:00
|
|
|
/* */
|
|
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
|
|
/* a copy of this software and associated documentation files (the */
|
|
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
|
|
/* the following conditions: */
|
|
|
|
/* */
|
|
|
|
/* The above copyright notice and this permission notice shall be */
|
|
|
|
/* included in all copies or substantial portions of the Software. */
|
|
|
|
/* */
|
|
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
|
|
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
|
|
/*************************************************************************/
|
|
|
|
|
|
|
|
/*
|
|
|
|
Open Asset Import Library (assimp)
|
|
|
|
----------------------------------------------------------------------
|
|
|
|
|
|
|
|
Copyright (c) 2006-2019, assimp team
|
|
|
|
|
|
|
|
|
|
|
|
All rights reserved.
|
|
|
|
|
|
|
|
Redistribution and use of this software in source and binary forms,
|
|
|
|
with or without modification, are permitted provided that the
|
|
|
|
following conditions are met:
|
|
|
|
|
|
|
|
* Redistributions of source code must retain the above
|
|
|
|
copyright notice, this list of conditions and the
|
|
|
|
following disclaimer.
|
|
|
|
|
|
|
|
* Redistributions in binary form must reproduce the above
|
|
|
|
copyright notice, this list of conditions and the
|
|
|
|
following disclaimer in the documentation and/or other
|
|
|
|
materials provided with the distribution.
|
|
|
|
|
|
|
|
* Neither the name of the assimp team, nor the names of its
|
|
|
|
contributors may be used to endorse or promote products
|
|
|
|
derived from this software without specific prior
|
|
|
|
written permission of the assimp team.
|
|
|
|
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
|
|
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
|
|
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
|
|
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
|
|
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
|
|
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
|
|
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
|
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
|
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
|
|
|
|
----------------------------------------------------------------------
|
|
|
|
*/
|
|
|
|
|
|
|
|
/** @file FBXParser.cpp
|
|
|
|
* @brief Implementation of the FBX parser and the rudimentary DOM that we use
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <stdlib.h> /* strtol */
|
2021-04-22 00:18:44 +00:00
|
|
|
#include <zlib.h>
|
Rewrite FBX Importer to convert directly to Godot scene format
Co-authored-by: Gordon MacPherson <gordon@gordonite.tech>
Co-authored-by: Andrea Catania <info@andreacatania.com>
Co-authored-by: K. S. Ernest (iFire) Lee <ernest.lee@chibifire.com>
This is a complete rewrite of the importer. It will give more deterministic behaviour and has been sponsored by IMVU inc, over 1 year has gone into the development of this importer to remove the burden of the FBX SDK.
This was my project for 1 entire year and I really enjoyed the opportunity to add to Godot.
Along the road of implementing fixes we implemented fbx pivots, animations and inheritance type handling, which in most cases works properly.
We have implemented animation and mesh skinning too this should work out of the box, if there are issues let us know.
It's designed so that you can expand this with ease, and fix bugs easily too.
It can import from Autodesk Maya and import into Godot, with pivots.
There are bits we could polish but for now this is good enough.
Additional fixes made before upstreaming:
- fixed memory leaks
- ensure consistent ordering on mac linux and windows for fbx tree. (very important for material import to be deterministic)
- disabled incorrect warnings for fbx_material
- added compatibility code for /RootNode/ so compat is not broken
- Optimise FBX - directly import triangles
- remove debug messages
- add messages for mesh id, mesh re-import is sometimes slow and we need to know what mesh is being worked on
- Document no longer uses unordered maps
- Removed some usages of &GetRequiredToken replaced with safe *GetRequiredToken() function
- Added parser debugging
- Added ERR_FAIL_CONDS for unsupported mesh formats (we can add these later super easy to do now)
- Add memory debugging for the Tokens and the TokenParser to make it safe
- Add memory initialisation to mesh.cpp surface_tool.h and mesh.h
- Initialise boolean flags properly
- Refactored to correct naming for the fbx_mesh_data.h so you know what data you are working on
- Disabled corruption caused by the FIXME:
- Fixed document reading indexes and index_to_direct vs indexes mode
- Fixed UV1 and UV2 coordinates
- Fixed importer failing to import version 7700 files
- Replaced memory handling in the FBX Document with pointers, before it was dereferencing invalid memory.
- Fixed typed properties
- Improved Document API
- Fixed bug with ProcessDOMConnection() not working with the bool flag set to true.
- Fixed FBX skinning not deforming for more than one single mesh
- Fixed FBX skeleton mapping and skin mapping not being applied properly (now retrieved from document skin list)
- Fixed set_bone_pose being used in final version()
- Fixed material properties exceeding 1.0.
- FBX Document parser revamped to use safe memory practices, and with graceful error messages.
- ScopePtr, TokenPtr and various internal types have been fleshed out to use proper typedefs across the codebase.
- Fixed memory leaks caused by token cleanup failing (now explicit cleanup step, no shared_ptr, etc)
- Fixed bug with PropertyTable not reading all properties and not cleaning up properly.
- Fixed smoothing groups not working
- Fixed normal duplications
- Fixed duplication check for pre-existing coordinates.
- Fixed performance of vertex lookup in large meshes being slow, using lookup table separate to the data for indexing, this reduces import time from 10 minutes of bistro down to 30 seconds.
- Fixed includes requiring absolute path in headers and cpp files using CPPPath.
Bugs/Features wish list:
- locator bones
- quat anim key interpolation (most fbx maya files have euler rotations from blender and maya, nobody uses this)
- some rigs skins scale up when SSC enabled inconsistently per bone
- some skins can disappear entirely
- material mapping needs expanded, but this will be done for 4.0 as it requires rewrite.
Workarounds for issues found until we patch them:
- mesh -> clear skin can resolve most of the bugs above.
- locators can be worked around by removing them before exporting your rig.
- some material properties wont always import, this is okay to override in the material properties.
**If you are having issues or need support fear not!**
Please provide minimal rigs which can reproduce issues as we can't spend a lot of time investigating each rig. We need a small example which breaks and we can then sort the problem. In some cases this is not possible so its okay to privately send models to us via IRC or a ticket and we can provide an email address, we won't reveal or disclose privately sent rig files to any companies, or to companies I work for, they will not be shared, only tested and bugs will be drawn up from the conclusions. Also include identifying information about what you did and how it didn't work. Please file each file separately in a bug report, unless the problem is the same.
This was sponsored by IMVU, and a special thanks to everyone who supported this project.
Signed-off-by: Gordon MacPherson <gordon@gordonite.tech>
2020-10-20 17:00:16 +00:00
|
|
|
|
|
|
|
#include "ByteSwapper.h"
|
|
|
|
#include "FBXParseTools.h"
|
|
|
|
#include "FBXParser.h"
|
|
|
|
#include "FBXTokenizer.h"
|
|
|
|
#include "core/math/math_defs.h"
|
|
|
|
#include "core/math/transform.h"
|
|
|
|
#include "core/math/vector3.h"
|
|
|
|
#include "core/print_string.h"
|
|
|
|
|
|
|
|
using namespace FBXDocParser;
|
|
|
|
namespace {
|
|
|
|
|
|
|
|
// Initially, we did reinterpret_cast, breaking strict aliasing rules.
|
|
|
|
// This actually caused trouble on Android, so let's be safe this time.
|
|
|
|
// https://github.com/assimp/assimp/issues/24
|
|
|
|
template <typename T>
|
|
|
|
T SafeParse(const char *data, const char *end) {
|
|
|
|
// Actual size validation happens during Tokenization so
|
|
|
|
// this is valid as an assertion.
|
|
|
|
(void)(end);
|
|
|
|
//ai_assert(static_cast<size_t>(end - data) >= sizeof(T));
|
|
|
|
T result = static_cast<T>(0);
|
|
|
|
::memcpy(&result, data, sizeof(T));
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
} // namespace
|
|
|
|
|
|
|
|
namespace FBXDocParser {
|
|
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
|
|
Element::Element(const TokenPtr key_token, Parser &parser) :
|
|
|
|
key_token(key_token) {
|
|
|
|
TokenPtr n = nullptr;
|
|
|
|
do {
|
|
|
|
n = parser.AdvanceToNextToken();
|
|
|
|
if (n == nullptr) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!n) {
|
|
|
|
print_error("unexpected end of file, expected closing bracket" + String(parser.LastToken()->StringContents().c_str()));
|
|
|
|
}
|
|
|
|
|
|
|
|
if (n && n->Type() == TokenType_DATA) {
|
|
|
|
tokens.push_back(n);
|
|
|
|
TokenPtr prev = n;
|
|
|
|
n = parser.AdvanceToNextToken();
|
|
|
|
|
|
|
|
if (n == nullptr) {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!n) {
|
|
|
|
print_error("unexpected end of file, expected bracket, comma or key" + String(parser.LastToken()->StringContents().c_str()));
|
|
|
|
}
|
|
|
|
|
|
|
|
const TokenType ty = n->Type();
|
|
|
|
|
|
|
|
// some exporters are missing a comma on the next line
|
|
|
|
if (ty == TokenType_DATA && prev->Type() == TokenType_DATA && (n->Line() == prev->Line() + 1)) {
|
|
|
|
tokens.push_back(n);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (ty != TokenType_OPEN_BRACKET && ty != TokenType_CLOSE_BRACKET && ty != TokenType_COMMA && ty != TokenType_KEY) {
|
|
|
|
print_error("unexpected token; expected bracket, comma or key" + String(n->StringContents().c_str()));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (n && n->Type() == TokenType_OPEN_BRACKET) {
|
|
|
|
compound = new_Scope(parser);
|
|
|
|
parser.scopes.push_back(compound);
|
|
|
|
|
|
|
|
// current token should be a TOK_CLOSE_BRACKET
|
|
|
|
n = parser.CurrentToken();
|
|
|
|
|
|
|
|
if (n && n->Type() != TokenType_CLOSE_BRACKET) {
|
|
|
|
print_error("expected closing bracket" + String(n->StringContents().c_str()));
|
|
|
|
}
|
|
|
|
|
|
|
|
parser.AdvanceToNextToken();
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
} while (n && n->Type() != TokenType_KEY && n->Type() != TokenType_CLOSE_BRACKET);
|
|
|
|
}
|
|
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
|
|
Element::~Element() {
|
|
|
|
}
|
|
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
|
|
Scope::Scope(Parser &parser, bool topLevel) {
|
|
|
|
if (!topLevel) {
|
|
|
|
TokenPtr t = parser.CurrentToken();
|
|
|
|
if (t->Type() != TokenType_OPEN_BRACKET) {
|
|
|
|
print_error("expected open bracket" + String(t->StringContents().c_str()));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
TokenPtr n = parser.AdvanceToNextToken();
|
|
|
|
if (n == nullptr) {
|
|
|
|
print_error("unexpected end of file");
|
|
|
|
}
|
|
|
|
|
|
|
|
// note: empty scopes are allowed
|
|
|
|
while (n && n->Type() != TokenType_CLOSE_BRACKET) {
|
|
|
|
if (n->Type() != TokenType_KEY) {
|
|
|
|
print_error("unexpected token, expected TOK_KEY" + String(n->StringContents().c_str()));
|
|
|
|
}
|
|
|
|
|
|
|
|
const std::string str = n->StringContents();
|
|
|
|
|
|
|
|
// std::multimap<std::string, ElementPtr> (key and value)
|
|
|
|
elements.insert(ElementMap::value_type(str, new_Element(n, parser)));
|
|
|
|
|
|
|
|
// Element() should stop at the next Key token (or right after a Close token)
|
|
|
|
n = parser.CurrentToken();
|
|
|
|
if (n == nullptr) {
|
|
|
|
if (topLevel) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
//print_error("unexpected end of file" + String(parser.LastToken()->StringContents().c_str()));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
|
|
Scope::~Scope() {
|
|
|
|
for (ElementMap::value_type &v : elements) {
|
|
|
|
delete v.second;
|
|
|
|
v.second = nullptr;
|
|
|
|
}
|
|
|
|
|
|
|
|
elements.clear();
|
|
|
|
}
|
|
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
|
|
Parser::Parser(const TokenList &tokens, bool is_binary) :
|
|
|
|
tokens(tokens), last(), current(), cursor(tokens.begin()), is_binary(is_binary) {
|
|
|
|
root = new_Scope(*this, true);
|
|
|
|
scopes.push_back(root);
|
|
|
|
}
|
|
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
|
|
Parser::~Parser() {
|
|
|
|
for (ScopePtr scope : scopes) {
|
|
|
|
delete scope;
|
|
|
|
scope = nullptr;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
|
|
TokenPtr Parser::AdvanceToNextToken() {
|
|
|
|
last = current;
|
|
|
|
if (cursor == tokens.end()) {
|
|
|
|
current = nullptr;
|
|
|
|
} else {
|
|
|
|
current = *cursor++;
|
|
|
|
}
|
|
|
|
return current;
|
|
|
|
}
|
|
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
|
|
TokenPtr Parser::CurrentToken() const {
|
|
|
|
return current;
|
|
|
|
}
|
|
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
|
|
TokenPtr Parser::LastToken() const {
|
|
|
|
return last;
|
|
|
|
}
|
|
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
|
|
uint64_t ParseTokenAsID(const TokenPtr t, const char *&err_out) {
|
|
|
|
ERR_FAIL_COND_V_MSG(t == nullptr, 0L, "Invalid token passed to ParseTokenAsID");
|
|
|
|
err_out = nullptr;
|
|
|
|
|
|
|
|
if (t->Type() != TokenType_DATA) {
|
|
|
|
err_out = "expected TOK_DATA token";
|
|
|
|
return 0L;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (t->IsBinary()) {
|
|
|
|
const char *data = t->begin();
|
|
|
|
if (data[0] != 'L') {
|
|
|
|
err_out = "failed to parse ID, unexpected data type, expected L(ong) (binary)";
|
|
|
|
return 0L;
|
|
|
|
}
|
|
|
|
|
|
|
|
uint64_t id = SafeParse<uint64_t>(data + 1, t->end());
|
|
|
|
return id;
|
|
|
|
}
|
|
|
|
|
|
|
|
// XXX: should use size_t here
|
|
|
|
unsigned int length = static_cast<unsigned int>(t->end() - t->begin());
|
|
|
|
//ai_assert(length > 0);
|
|
|
|
|
|
|
|
const char *out = nullptr;
|
|
|
|
bool errored = false;
|
|
|
|
|
|
|
|
const uint64_t id = strtoul10_64(t->begin(), errored, &out, &length);
|
|
|
|
if (errored || out > t->end()) {
|
|
|
|
err_out = "failed to parse ID (text)";
|
|
|
|
return 0L;
|
|
|
|
}
|
|
|
|
|
|
|
|
return id;
|
|
|
|
}
|
|
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
|
|
// wrapper around ParseTokenAsID() with print_error handling
|
|
|
|
uint64_t ParseTokenAsID(const TokenPtr t) {
|
|
|
|
const char *err = nullptr;
|
|
|
|
const uint64_t i = ParseTokenAsID(t, err);
|
|
|
|
if (err) {
|
|
|
|
print_error(String(err) + " " + String(t->StringContents().c_str()));
|
|
|
|
}
|
|
|
|
return i;
|
|
|
|
}
|
|
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
|
|
size_t ParseTokenAsDim(const TokenPtr t, const char *&err_out) {
|
|
|
|
// same as ID parsing, except there is a trailing asterisk
|
|
|
|
err_out = nullptr;
|
|
|
|
|
|
|
|
if (t->Type() != TokenType_DATA) {
|
|
|
|
err_out = "expected TOK_DATA token";
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (t->IsBinary()) {
|
|
|
|
const char *data = t->begin();
|
|
|
|
if (data[0] != 'L') {
|
|
|
|
err_out = "failed to parse ID, unexpected data type, expected L(ong) (binary)";
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
uint64_t id = SafeParse<uint64_t>(data + 1, t->end());
|
|
|
|
AI_SWAP8(id);
|
|
|
|
return static_cast<size_t>(id);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (*t->begin() != '*') {
|
|
|
|
err_out = "expected asterisk before array dimension";
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
// XXX: should use size_t here
|
|
|
|
unsigned int length = static_cast<unsigned int>(t->end() - t->begin());
|
|
|
|
if (length == 0) {
|
|
|
|
err_out = "expected valid integer number after asterisk";
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
const char *out = nullptr;
|
|
|
|
bool errored = false;
|
|
|
|
const size_t id = static_cast<size_t>(strtoul10_64(t->begin() + 1, errored, &out, &length));
|
|
|
|
if (errored || out > t->end()) {
|
|
|
|
print_error("failed to parse id");
|
|
|
|
err_out = "failed to parse ID";
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
return id;
|
|
|
|
}
|
|
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
|
|
float ParseTokenAsFloat(const TokenPtr t, const char *&err_out) {
|
|
|
|
err_out = nullptr;
|
|
|
|
|
|
|
|
if (t->Type() != TokenType_DATA) {
|
|
|
|
err_out = "expected TOK_DATA token";
|
|
|
|
return 0.0f;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (t->IsBinary()) {
|
|
|
|
const char *data = t->begin();
|
|
|
|
if (data[0] != 'F' && data[0] != 'D') {
|
|
|
|
err_out = "failed to parse F(loat) or D(ouble), unexpected data type (binary)";
|
|
|
|
return 0.0f;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (data[0] == 'F') {
|
|
|
|
return SafeParse<float>(data + 1, t->end());
|
|
|
|
} else {
|
|
|
|
return static_cast<float>(SafeParse<double>(data + 1, t->end()));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// need to copy the input string to a temporary buffer
|
|
|
|
// first - next in the fbx token stream comes ',',
|
|
|
|
// which fast_atof could interpret as decimal point.
|
|
|
|
#define MAX_FLOAT_LENGTH 31
|
|
|
|
char temp[MAX_FLOAT_LENGTH + 1];
|
|
|
|
const size_t length = static_cast<size_t>(t->end() - t->begin());
|
|
|
|
std::copy(t->begin(), t->end(), temp);
|
|
|
|
temp[std::min(static_cast<size_t>(MAX_FLOAT_LENGTH), length)] = '\0';
|
|
|
|
|
|
|
|
return atof(temp);
|
|
|
|
}
|
|
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
|
|
int ParseTokenAsInt(const TokenPtr t, const char *&err_out) {
|
|
|
|
err_out = nullptr;
|
|
|
|
|
|
|
|
if (t->Type() != TokenType_DATA) {
|
|
|
|
err_out = "expected TOK_DATA token";
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
// binary files are simple to parse
|
|
|
|
if (t->IsBinary()) {
|
|
|
|
const char *data = t->begin();
|
|
|
|
if (data[0] != 'I') {
|
|
|
|
err_out = "failed to parse I(nt), unexpected data type (binary)";
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
int32_t ival = SafeParse<int32_t>(data + 1, t->end());
|
|
|
|
AI_SWAP4(ival);
|
|
|
|
return static_cast<int>(ival);
|
|
|
|
}
|
|
|
|
|
|
|
|
// ASCII files are unsafe.
|
|
|
|
const size_t length = static_cast<size_t>(t->end() - t->begin());
|
|
|
|
if (length == 0) {
|
|
|
|
err_out = "expected valid integer number after asterisk";
|
|
|
|
ERR_FAIL_V_MSG(0, "expected valid integer number after asterisk");
|
|
|
|
}
|
|
|
|
|
|
|
|
// must not be null for strtol to work
|
|
|
|
char *out = (char *)t->end();
|
|
|
|
// string begin, end ptr ref, base 10
|
|
|
|
const int value = strtol(t->begin(), &out, 10);
|
|
|
|
if (out == nullptr || out != t->end()) {
|
|
|
|
err_out = "failed to parse ID";
|
|
|
|
ERR_FAIL_V_MSG(0, "failed to parse ID");
|
|
|
|
}
|
|
|
|
|
|
|
|
return value;
|
|
|
|
}
|
|
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
|
|
int64_t ParseTokenAsInt64(const TokenPtr t, const char *&err_out) {
|
|
|
|
err_out = nullptr;
|
|
|
|
|
|
|
|
if (t->Type() != TokenType_DATA) {
|
|
|
|
err_out = "expected TOK_DATA token";
|
|
|
|
return 0L;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (t->IsBinary()) {
|
|
|
|
const char *data = t->begin();
|
|
|
|
if (data[0] != 'L') {
|
|
|
|
err_out = "failed to parse Int64, unexpected data type";
|
|
|
|
return 0L;
|
|
|
|
}
|
|
|
|
|
|
|
|
int64_t id = SafeParse<int64_t>(data + 1, t->end());
|
|
|
|
AI_SWAP8(id);
|
|
|
|
return id;
|
|
|
|
}
|
|
|
|
|
|
|
|
// XXX: should use size_t here
|
|
|
|
unsigned int length = static_cast<unsigned int>(t->end() - t->begin());
|
|
|
|
//ai_assert(length > 0);
|
|
|
|
|
|
|
|
char *out = nullptr;
|
|
|
|
const int64_t id = strtol(t->begin(), &out, length);
|
|
|
|
if (out > t->end()) {
|
|
|
|
err_out = "failed to parse Int64 (text)";
|
|
|
|
return 0L;
|
|
|
|
}
|
|
|
|
|
|
|
|
return id;
|
|
|
|
}
|
|
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
|
|
std::string ParseTokenAsString(const TokenPtr t, const char *&err_out) {
|
|
|
|
err_out = nullptr;
|
|
|
|
|
|
|
|
if (t->Type() != TokenType_DATA) {
|
|
|
|
err_out = "expected TOK_DATA token";
|
|
|
|
return "";
|
|
|
|
}
|
|
|
|
|
|
|
|
if (t->IsBinary()) {
|
|
|
|
const char *data = t->begin();
|
|
|
|
if (data[0] != 'S') {
|
|
|
|
err_out = "failed to parse String, unexpected data type (binary)";
|
|
|
|
return "";
|
|
|
|
}
|
|
|
|
|
|
|
|
// read string length
|
|
|
|
int32_t len = SafeParse<int32_t>(data + 1, t->end());
|
|
|
|
AI_SWAP4(len);
|
|
|
|
|
|
|
|
//ai_assert(t.end() - data == 5 + len);
|
|
|
|
return std::string(data + 5, len);
|
|
|
|
}
|
|
|
|
|
|
|
|
const size_t length = static_cast<size_t>(t->end() - t->begin());
|
|
|
|
if (length < 2) {
|
|
|
|
err_out = "token is too short to hold a string";
|
|
|
|
return "";
|
|
|
|
}
|
|
|
|
|
|
|
|
const char *s = t->begin(), *e = t->end() - 1;
|
|
|
|
if (*s != '\"' || *e != '\"') {
|
|
|
|
err_out = "expected double quoted string";
|
|
|
|
return "";
|
|
|
|
}
|
|
|
|
|
|
|
|
return std::string(s + 1, length - 2);
|
|
|
|
}
|
|
|
|
|
|
|
|
namespace {
|
|
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
|
|
// read the type code and element count of a binary data array and stop there
|
|
|
|
void ReadBinaryDataArrayHead(const char *&data, const char *end, char &type, uint32_t &count,
|
|
|
|
const ElementPtr el) {
|
|
|
|
TokenPtr token = el->KeyToken();
|
|
|
|
if (static_cast<size_t>(end - data) < 5) {
|
|
|
|
print_error("binary data array is too short, need five (5) bytes for type signature and element count: " + String(token->StringContents().c_str()));
|
|
|
|
}
|
|
|
|
|
|
|
|
// data type
|
|
|
|
type = *data;
|
|
|
|
|
|
|
|
// read number of elements
|
|
|
|
uint32_t len = SafeParse<uint32_t>(data + 1, end);
|
|
|
|
AI_SWAP4(len);
|
|
|
|
|
|
|
|
count = len;
|
|
|
|
data += 5;
|
|
|
|
}
|
|
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
|
|
// read binary data array, assume cursor points to the 'compression mode' field (i.e. behind the header)
|
|
|
|
void ReadBinaryDataArray(char type, uint32_t count, const char *&data, const char *end,
|
|
|
|
std::vector<char> &buff,
|
|
|
|
const ElementPtr /*el*/) {
|
|
|
|
uint32_t encmode = SafeParse<uint32_t>(data, end);
|
|
|
|
AI_SWAP4(encmode);
|
|
|
|
data += 4;
|
|
|
|
|
|
|
|
// next comes the compressed length
|
|
|
|
uint32_t comp_len = SafeParse<uint32_t>(data, end);
|
|
|
|
AI_SWAP4(comp_len);
|
|
|
|
data += 4;
|
|
|
|
|
|
|
|
//ai_assert(data + comp_len == end);
|
|
|
|
|
|
|
|
// determine the length of the uncompressed data by looking at the type signature
|
|
|
|
uint32_t stride = 0;
|
|
|
|
switch (type) {
|
|
|
|
case 'f':
|
|
|
|
case 'i':
|
|
|
|
stride = 4;
|
|
|
|
break;
|
|
|
|
|
|
|
|
case 'd':
|
|
|
|
case 'l':
|
|
|
|
stride = 8;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
const uint32_t full_length = stride * count;
|
|
|
|
buff.resize(full_length);
|
|
|
|
|
|
|
|
if (encmode == 0) {
|
|
|
|
//ai_assert(full_length == comp_len);
|
|
|
|
|
|
|
|
// plain data, no compression
|
|
|
|
std::copy(data, end, buff.begin());
|
|
|
|
} else if (encmode == 1) {
|
|
|
|
// zlib/deflate, next comes ZIP head (0x78 0x01)
|
|
|
|
// see http://www.ietf.org/rfc/rfc1950.txt
|
|
|
|
|
|
|
|
z_stream zstream;
|
|
|
|
zstream.opaque = Z_NULL;
|
|
|
|
zstream.zalloc = Z_NULL;
|
|
|
|
zstream.zfree = Z_NULL;
|
|
|
|
zstream.data_type = Z_BINARY;
|
|
|
|
|
|
|
|
// http://hewgill.com/journal/entries/349-how-to-decompress-gzip-stream-with-zlib
|
|
|
|
if (Z_OK != inflateInit(&zstream)) {
|
|
|
|
print_error("failure initializing zlib");
|
|
|
|
}
|
|
|
|
|
|
|
|
zstream.next_in = reinterpret_cast<Bytef *>(const_cast<char *>(data));
|
|
|
|
zstream.avail_in = comp_len;
|
|
|
|
|
|
|
|
zstream.avail_out = static_cast<uInt>(buff.size());
|
|
|
|
zstream.next_out = reinterpret_cast<Bytef *>(&*buff.begin());
|
|
|
|
const int ret = inflate(&zstream, Z_FINISH);
|
|
|
|
|
|
|
|
if (ret != Z_STREAM_END && ret != Z_OK) {
|
|
|
|
print_error("failure decompressing compressed data section");
|
|
|
|
}
|
|
|
|
|
|
|
|
// terminate zlib
|
|
|
|
inflateEnd(&zstream);
|
|
|
|
}
|
|
|
|
#ifdef ASSIMP_BUILD_DEBUG
|
|
|
|
else {
|
|
|
|
// runtime check for this happens at tokenization stage
|
|
|
|
//ai_assert(false);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
data += comp_len;
|
|
|
|
//ai_assert(data == end);
|
|
|
|
}
|
|
|
|
|
|
|
|
} // namespace
|
|
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
|
|
// read an array of float3 tuples
|
|
|
|
void ParseVectorDataArray(std::vector<Vector3> &out, const ElementPtr el) {
|
|
|
|
out.resize(0);
|
|
|
|
|
|
|
|
const TokenList &tok = el->Tokens();
|
|
|
|
TokenPtr token = el->KeyToken();
|
|
|
|
if (tok.empty()) {
|
|
|
|
print_error("unexpected empty element" + String(token->StringContents().c_str()));
|
|
|
|
}
|
|
|
|
|
|
|
|
if (tok[0]->IsBinary()) {
|
|
|
|
const char *data = tok[0]->begin(), *end = tok[0]->end();
|
|
|
|
|
|
|
|
char type;
|
|
|
|
uint32_t count;
|
|
|
|
ReadBinaryDataArrayHead(data, end, type, count, el);
|
|
|
|
|
|
|
|
if (count % 3 != 0) {
|
|
|
|
print_error("number of floats is not a multiple of three (3) (binary)" + String(token->StringContents().c_str()));
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!count) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (type != 'd' && type != 'f') {
|
|
|
|
print_error("expected float or double array (binary)" + String(token->StringContents().c_str()));
|
|
|
|
}
|
|
|
|
|
|
|
|
std::vector<char> buff;
|
|
|
|
ReadBinaryDataArray(type, count, data, end, buff, el);
|
|
|
|
|
|
|
|
//ai_assert(data == end);
|
|
|
|
//ai_assert(buff.size() == count * (type == 'd' ? 8 : 4));
|
|
|
|
|
|
|
|
const uint32_t count3 = count / 3;
|
|
|
|
out.reserve(count3);
|
|
|
|
|
|
|
|
if (type == 'd') {
|
|
|
|
const double *d = reinterpret_cast<const double *>(&buff[0]);
|
|
|
|
for (unsigned int i = 0; i < count3; ++i, d += 3) {
|
|
|
|
out.push_back(Vector3(static_cast<real_t>(d[0]),
|
|
|
|
static_cast<real_t>(d[1]),
|
|
|
|
static_cast<real_t>(d[2])));
|
|
|
|
}
|
|
|
|
} else if (type == 'f') {
|
|
|
|
const float *f = reinterpret_cast<const float *>(&buff[0]);
|
|
|
|
for (unsigned int i = 0; i < count3; ++i, f += 3) {
|
|
|
|
out.push_back(Vector3(f[0], f[1], f[2]));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
const size_t dim = ParseTokenAsDim(tok[0]);
|
|
|
|
|
|
|
|
// may throw bad_alloc if the input is rubbish, but this need
|
|
|
|
// not to be prevented - importing would fail but we wouldn't
|
|
|
|
// crash since assimp handles this case properly.
|
|
|
|
out.reserve(dim);
|
|
|
|
|
|
|
|
const ScopePtr scope = GetRequiredScope(el);
|
|
|
|
const ElementPtr a = GetRequiredElement(scope, "a", el);
|
|
|
|
|
|
|
|
if (a->Tokens().size() % 3 != 0) {
|
|
|
|
print_error("number of floats is not a multiple of three (3)" + String(token->StringContents().c_str()));
|
|
|
|
}
|
|
|
|
for (TokenList::const_iterator it = a->Tokens().begin(), end = a->Tokens().end(); it != end;) {
|
|
|
|
Vector3 v;
|
|
|
|
v.x = ParseTokenAsFloat(*it++);
|
|
|
|
v.y = ParseTokenAsFloat(*it++);
|
|
|
|
v.z = ParseTokenAsFloat(*it++);
|
|
|
|
|
|
|
|
out.push_back(v);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
|
|
// read an array of color4 tuples
|
|
|
|
void ParseVectorDataArray(std::vector<Color> &out, const ElementPtr el) {
|
|
|
|
out.resize(0);
|
|
|
|
const TokenList &tok = el->Tokens();
|
|
|
|
|
|
|
|
TokenPtr token = el->KeyToken();
|
|
|
|
|
|
|
|
if (tok.empty()) {
|
|
|
|
print_error("unexpected empty element" + String(token->StringContents().c_str()));
|
|
|
|
}
|
|
|
|
|
|
|
|
if (tok[0]->IsBinary()) {
|
|
|
|
const char *data = tok[0]->begin(), *end = tok[0]->end();
|
|
|
|
|
|
|
|
char type;
|
|
|
|
uint32_t count;
|
|
|
|
ReadBinaryDataArrayHead(data, end, type, count, el);
|
|
|
|
|
|
|
|
if (count % 4 != 0) {
|
|
|
|
print_error("number of floats is not a multiple of four (4) (binary)" + String(token->StringContents().c_str()));
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!count) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (type != 'd' && type != 'f') {
|
|
|
|
print_error("expected float or double array (binary)" + String(token->StringContents().c_str()));
|
|
|
|
}
|
|
|
|
|
|
|
|
std::vector<char> buff;
|
|
|
|
ReadBinaryDataArray(type, count, data, end, buff, el);
|
|
|
|
|
|
|
|
//ai_assert(data == end);
|
|
|
|
//ai_assert(buff.size() == count * (type == 'd' ? 8 : 4));
|
|
|
|
|
|
|
|
const uint32_t count4 = count / 4;
|
|
|
|
out.reserve(count4);
|
|
|
|
|
|
|
|
if (type == 'd') {
|
|
|
|
const double *d = reinterpret_cast<const double *>(&buff[0]);
|
|
|
|
for (unsigned int i = 0; i < count4; ++i, d += 4) {
|
|
|
|
out.push_back(Color(static_cast<float>(d[0]),
|
|
|
|
static_cast<float>(d[1]),
|
|
|
|
static_cast<float>(d[2]),
|
|
|
|
static_cast<float>(d[3])));
|
|
|
|
}
|
|
|
|
} else if (type == 'f') {
|
|
|
|
const float *f = reinterpret_cast<const float *>(&buff[0]);
|
|
|
|
for (unsigned int i = 0; i < count4; ++i, f += 4) {
|
|
|
|
out.push_back(Color(f[0], f[1], f[2], f[3]));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
const size_t dim = ParseTokenAsDim(tok[0]);
|
|
|
|
|
|
|
|
// see notes in ParseVectorDataArray() above
|
|
|
|
out.reserve(dim);
|
|
|
|
|
|
|
|
const ScopePtr scope = GetRequiredScope(el);
|
|
|
|
const ElementPtr a = GetRequiredElement(scope, "a", el);
|
|
|
|
|
|
|
|
if (a->Tokens().size() % 4 != 0) {
|
|
|
|
print_error("number of floats is not a multiple of four (4)" + String(token->StringContents().c_str()));
|
|
|
|
}
|
|
|
|
for (TokenList::const_iterator it = a->Tokens().begin(), end = a->Tokens().end(); it != end;) {
|
|
|
|
Color v;
|
|
|
|
v.r = ParseTokenAsFloat(*it++);
|
|
|
|
v.g = ParseTokenAsFloat(*it++);
|
|
|
|
v.b = ParseTokenAsFloat(*it++);
|
|
|
|
v.a = ParseTokenAsFloat(*it++);
|
|
|
|
|
|
|
|
out.push_back(v);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
|
|
// read an array of float2 tuples
|
|
|
|
void ParseVectorDataArray(std::vector<Vector2> &out, const ElementPtr el) {
|
|
|
|
out.resize(0);
|
|
|
|
const TokenList &tok = el->Tokens();
|
|
|
|
TokenPtr token = el->KeyToken();
|
|
|
|
if (tok.empty()) {
|
|
|
|
print_error("unexpected empty element" + String(token->StringContents().c_str()));
|
|
|
|
}
|
|
|
|
|
|
|
|
if (tok[0]->IsBinary()) {
|
|
|
|
const char *data = tok[0]->begin(), *end = tok[0]->end();
|
|
|
|
|
|
|
|
char type;
|
|
|
|
uint32_t count;
|
|
|
|
ReadBinaryDataArrayHead(data, end, type, count, el);
|
|
|
|
|
|
|
|
if (count % 2 != 0) {
|
|
|
|
print_error("number of floats is not a multiple of two (2) (binary)" + String(token->StringContents().c_str()));
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!count) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (type != 'd' && type != 'f') {
|
|
|
|
print_error("expected float or double array (binary)" + String(token->StringContents().c_str()));
|
|
|
|
}
|
|
|
|
|
|
|
|
std::vector<char> buff;
|
|
|
|
ReadBinaryDataArray(type, count, data, end, buff, el);
|
|
|
|
|
|
|
|
//ai_assert(data == end);
|
|
|
|
//ai_assert(buff.size() == count * (type == 'd' ? 8 : 4));
|
|
|
|
|
|
|
|
const uint32_t count2 = count / 2;
|
|
|
|
out.reserve(count2);
|
|
|
|
|
|
|
|
if (type == 'd') {
|
|
|
|
const double *d = reinterpret_cast<const double *>(&buff[0]);
|
|
|
|
for (unsigned int i = 0; i < count2; ++i, d += 2) {
|
|
|
|
out.push_back(Vector2(static_cast<float>(d[0]),
|
|
|
|
static_cast<float>(d[1])));
|
|
|
|
}
|
|
|
|
} else if (type == 'f') {
|
|
|
|
const float *f = reinterpret_cast<const float *>(&buff[0]);
|
|
|
|
for (unsigned int i = 0; i < count2; ++i, f += 2) {
|
|
|
|
out.push_back(Vector2(f[0], f[1]));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
const size_t dim = ParseTokenAsDim(tok[0]);
|
|
|
|
|
|
|
|
// see notes in ParseVectorDataArray() above
|
|
|
|
out.reserve(dim);
|
|
|
|
|
|
|
|
const ScopePtr scope = GetRequiredScope(el);
|
|
|
|
const ElementPtr a = GetRequiredElement(scope, "a", el);
|
|
|
|
|
|
|
|
if (a->Tokens().size() % 2 != 0) {
|
|
|
|
print_error("number of floats is not a multiple of two (2)" + String(token->StringContents().c_str()));
|
|
|
|
}
|
|
|
|
for (TokenList::const_iterator it = a->Tokens().begin(), end = a->Tokens().end(); it != end;) {
|
|
|
|
Vector2 v;
|
|
|
|
v.x = ParseTokenAsFloat(*it++);
|
|
|
|
v.y = ParseTokenAsFloat(*it++);
|
|
|
|
out.push_back(v);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
|
|
// read an array of ints
|
|
|
|
void ParseVectorDataArray(std::vector<int> &out, const ElementPtr el) {
|
|
|
|
out.resize(0);
|
|
|
|
const TokenList &tok = el->Tokens();
|
|
|
|
TokenPtr token = el->KeyToken();
|
|
|
|
if (tok.empty()) {
|
|
|
|
print_error("unexpected empty element" + String(token->StringContents().c_str()));
|
|
|
|
}
|
|
|
|
|
|
|
|
if (tok[0]->IsBinary()) {
|
|
|
|
const char *data = tok[0]->begin(), *end = tok[0]->end();
|
|
|
|
|
|
|
|
char type;
|
|
|
|
uint32_t count;
|
|
|
|
ReadBinaryDataArrayHead(data, end, type, count, el);
|
|
|
|
|
|
|
|
if (!count) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (type != 'i') {
|
|
|
|
print_error("expected int array (binary)" + String(token->StringContents().c_str()));
|
|
|
|
}
|
|
|
|
|
|
|
|
std::vector<char> buff;
|
|
|
|
ReadBinaryDataArray(type, count, data, end, buff, el);
|
|
|
|
|
|
|
|
//ai_assert(data == end);
|
|
|
|
//ai_assert(buff.size() == count * 4);
|
|
|
|
|
|
|
|
out.reserve(count);
|
|
|
|
|
|
|
|
const int32_t *ip = reinterpret_cast<const int32_t *>(&buff[0]);
|
|
|
|
for (unsigned int i = 0; i < count; ++i, ++ip) {
|
|
|
|
int32_t val = *ip;
|
|
|
|
AI_SWAP4(val);
|
|
|
|
out.push_back(val);
|
|
|
|
}
|
|
|
|
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
const size_t dim = ParseTokenAsDim(tok[0]);
|
|
|
|
|
|
|
|
// see notes in ParseVectorDataArray()
|
|
|
|
out.reserve(dim);
|
|
|
|
|
|
|
|
const ScopePtr scope = GetRequiredScope(el);
|
|
|
|
const ElementPtr a = GetRequiredElement(scope, "a", el);
|
|
|
|
|
|
|
|
for (TokenList::const_iterator it = a->Tokens().begin(), end = a->Tokens().end(); it != end;) {
|
|
|
|
const int ival = ParseTokenAsInt(*it++);
|
|
|
|
out.push_back(ival);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
|
|
// read an array of floats
|
|
|
|
void ParseVectorDataArray(std::vector<float> &out, const ElementPtr el) {
|
|
|
|
out.resize(0);
|
|
|
|
const TokenList &tok = el->Tokens();
|
|
|
|
TokenPtr token = el->KeyToken();
|
|
|
|
if (tok.empty()) {
|
|
|
|
print_error("unexpected empty element: " + String(token->StringContents().c_str()));
|
|
|
|
}
|
|
|
|
|
|
|
|
if (tok[0]->IsBinary()) {
|
|
|
|
const char *data = tok[0]->begin(), *end = tok[0]->end();
|
|
|
|
|
|
|
|
char type;
|
|
|
|
uint32_t count;
|
|
|
|
ReadBinaryDataArrayHead(data, end, type, count, el);
|
|
|
|
|
|
|
|
if (!count) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (type != 'd' && type != 'f') {
|
|
|
|
print_error("expected float or double array (binary) " + String(token->StringContents().c_str()));
|
|
|
|
}
|
|
|
|
|
|
|
|
std::vector<char> buff;
|
|
|
|
ReadBinaryDataArray(type, count, data, end, buff, el);
|
|
|
|
|
|
|
|
//ai_assert(data == end);
|
|
|
|
//ai_assert(buff.size() == count * (type == 'd' ? 8 : 4));
|
|
|
|
|
|
|
|
if (type == 'd') {
|
|
|
|
const double *d = reinterpret_cast<const double *>(&buff[0]);
|
|
|
|
for (unsigned int i = 0; i < count; ++i, ++d) {
|
|
|
|
out.push_back(static_cast<float>(*d));
|
|
|
|
}
|
|
|
|
} else if (type == 'f') {
|
|
|
|
const float *f = reinterpret_cast<const float *>(&buff[0]);
|
|
|
|
for (unsigned int i = 0; i < count; ++i, ++f) {
|
|
|
|
out.push_back(*f);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
const size_t dim = ParseTokenAsDim(tok[0]);
|
|
|
|
|
|
|
|
// see notes in ParseVectorDataArray()
|
|
|
|
out.reserve(dim);
|
|
|
|
|
|
|
|
const ScopePtr scope = GetRequiredScope(el);
|
|
|
|
const ElementPtr a = GetRequiredElement(scope, "a", el);
|
|
|
|
|
|
|
|
for (TokenList::const_iterator it = a->Tokens().begin(), end = a->Tokens().end(); it != end;) {
|
|
|
|
const float ival = ParseTokenAsFloat(*it++);
|
|
|
|
out.push_back(ival);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
|
|
// read an array of uints
|
|
|
|
void ParseVectorDataArray(std::vector<unsigned int> &out, const ElementPtr el) {
|
|
|
|
out.resize(0);
|
|
|
|
const TokenList &tok = el->Tokens();
|
|
|
|
const TokenPtr token = el->KeyToken();
|
|
|
|
|
|
|
|
ERR_FAIL_COND_MSG(!token, "invalid ParseVectorDataArrat token invalid");
|
|
|
|
|
|
|
|
if (tok.empty()) {
|
|
|
|
print_error("unexpected empty element: " + String(token->StringContents().c_str()));
|
|
|
|
}
|
|
|
|
|
|
|
|
if (tok[0]->IsBinary()) {
|
|
|
|
const char *data = tok[0]->begin(), *end = tok[0]->end();
|
|
|
|
|
|
|
|
char type;
|
|
|
|
uint32_t count;
|
|
|
|
ReadBinaryDataArrayHead(data, end, type, count, el);
|
|
|
|
|
|
|
|
if (!count) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (type != 'i') {
|
|
|
|
print_error("expected (u)int array (binary)" + String(token->StringContents().c_str()));
|
|
|
|
}
|
|
|
|
|
|
|
|
std::vector<char> buff;
|
|
|
|
ReadBinaryDataArray(type, count, data, end, buff, el);
|
|
|
|
|
|
|
|
//ai_assert(data == end);
|
|
|
|
//ai_assert(buff.size() == count * 4);
|
|
|
|
|
|
|
|
out.reserve(count);
|
|
|
|
|
|
|
|
const int32_t *ip = reinterpret_cast<const int32_t *>(&buff[0]);
|
|
|
|
for (unsigned int i = 0; i < count; ++i, ++ip) {
|
|
|
|
int32_t val = *ip;
|
|
|
|
if (val < 0) {
|
|
|
|
print_error("encountered negative integer index (binary)");
|
|
|
|
}
|
|
|
|
|
|
|
|
out.push_back(val);
|
|
|
|
}
|
|
|
|
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
const size_t dim = ParseTokenAsDim(tok[0]);
|
|
|
|
|
|
|
|
// see notes in ParseVectorDataArray()
|
|
|
|
out.reserve(dim);
|
|
|
|
|
|
|
|
const ScopePtr scope = GetRequiredScope(el);
|
|
|
|
const ElementPtr a = GetRequiredElement(scope, "a", el);
|
|
|
|
|
|
|
|
for (TokenList::const_iterator it = a->Tokens().begin(), end = a->Tokens().end(); it != end;) {
|
|
|
|
const int ival = ParseTokenAsInt(*it++);
|
|
|
|
if (ival < 0) {
|
|
|
|
print_error("encountered negative integer index");
|
|
|
|
}
|
|
|
|
out.push_back(static_cast<unsigned int>(ival));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
|
|
// read an array of uint64_ts
|
|
|
|
void ParseVectorDataArray(std::vector<uint64_t> &out, const ElementPtr el) {
|
|
|
|
out.resize(0);
|
|
|
|
|
|
|
|
const TokenList &tok = el->Tokens();
|
|
|
|
TokenPtr token = el->KeyToken();
|
|
|
|
ERR_FAIL_COND(!token);
|
|
|
|
|
|
|
|
if (tok.empty()) {
|
|
|
|
print_error("unexpected empty element " + String(token->StringContents().c_str()));
|
|
|
|
}
|
|
|
|
|
|
|
|
if (tok[0]->IsBinary()) {
|
|
|
|
const char *data = tok[0]->begin(), *end = tok[0]->end();
|
|
|
|
|
|
|
|
char type;
|
|
|
|
uint32_t count;
|
|
|
|
ReadBinaryDataArrayHead(data, end, type, count, el);
|
|
|
|
|
|
|
|
if (!count) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (type != 'l') {
|
|
|
|
print_error("expected long array (binary): " + String(token->StringContents().c_str()));
|
|
|
|
}
|
|
|
|
|
|
|
|
std::vector<char> buff;
|
|
|
|
ReadBinaryDataArray(type, count, data, end, buff, el);
|
|
|
|
|
|
|
|
//ai_assert(data == end);
|
|
|
|
//ai_assert(buff.size() == count * 8);
|
|
|
|
|
|
|
|
out.reserve(count);
|
|
|
|
|
|
|
|
const uint64_t *ip = reinterpret_cast<const uint64_t *>(&buff[0]);
|
|
|
|
for (unsigned int i = 0; i < count; ++i, ++ip) {
|
|
|
|
uint64_t val = *ip;
|
|
|
|
AI_SWAP8(val);
|
|
|
|
out.push_back(val);
|
|
|
|
}
|
|
|
|
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
const size_t dim = ParseTokenAsDim(tok[0]);
|
|
|
|
|
|
|
|
// see notes in ParseVectorDataArray()
|
|
|
|
out.reserve(dim);
|
|
|
|
|
|
|
|
const ScopePtr scope = GetRequiredScope(el);
|
|
|
|
const ElementPtr a = GetRequiredElement(scope, "a", el);
|
|
|
|
|
|
|
|
for (TokenList::const_iterator it = a->Tokens().begin(), end = a->Tokens().end(); it != end;) {
|
|
|
|
const uint64_t ival = ParseTokenAsID(*it++);
|
|
|
|
|
|
|
|
out.push_back(ival);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
|
|
// read an array of int64_ts
|
|
|
|
void ParseVectorDataArray(std::vector<int64_t> &out, const ElementPtr el) {
|
|
|
|
out.resize(0);
|
|
|
|
const TokenList &tok = el->Tokens();
|
|
|
|
TokenPtr token = el->KeyToken();
|
|
|
|
ERR_FAIL_COND(!token);
|
|
|
|
if (tok.empty()) {
|
|
|
|
print_error("unexpected empty element: " + String(token->StringContents().c_str()));
|
|
|
|
}
|
|
|
|
|
|
|
|
if (tok[0]->IsBinary()) {
|
|
|
|
const char *data = tok[0]->begin(), *end = tok[0]->end();
|
|
|
|
|
|
|
|
char type;
|
|
|
|
uint32_t count;
|
|
|
|
ReadBinaryDataArrayHead(data, end, type, count, el);
|
|
|
|
|
|
|
|
if (!count) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (type != 'l') {
|
|
|
|
print_error("expected long array (binary) " + String(token->StringContents().c_str()));
|
|
|
|
}
|
|
|
|
|
|
|
|
std::vector<char> buff;
|
|
|
|
ReadBinaryDataArray(type, count, data, end, buff, el);
|
|
|
|
|
|
|
|
//ai_assert(data == end);
|
|
|
|
//ai_assert(buff.size() == count * 8);
|
|
|
|
|
|
|
|
out.reserve(count);
|
|
|
|
|
|
|
|
const int64_t *ip = reinterpret_cast<const int64_t *>(&buff[0]);
|
|
|
|
for (unsigned int i = 0; i < count; ++i, ++ip) {
|
|
|
|
int64_t val = *ip;
|
|
|
|
AI_SWAP8(val);
|
|
|
|
out.push_back(val);
|
|
|
|
}
|
|
|
|
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
const size_t dim = ParseTokenAsDim(tok[0]);
|
|
|
|
|
|
|
|
// see notes in ParseVectorDataArray()
|
|
|
|
out.reserve(dim);
|
|
|
|
|
|
|
|
const ScopePtr scope = GetRequiredScope(el);
|
|
|
|
const ElementPtr a = GetRequiredElement(scope, "a", el);
|
|
|
|
|
|
|
|
for (TokenList::const_iterator it = a->Tokens().begin(), end = a->Tokens().end(); it != end;) {
|
|
|
|
const int64_t val = ParseTokenAsInt64(*it++);
|
|
|
|
out.push_back(val);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
|
|
Transform ReadMatrix(const ElementPtr element) {
|
|
|
|
std::vector<float> values;
|
|
|
|
ParseVectorDataArray(values, element);
|
|
|
|
|
|
|
|
if (values.size() != 16) {
|
|
|
|
print_error("expected 16 matrix elements");
|
|
|
|
}
|
|
|
|
|
|
|
|
// clean values to prevent any IBM damage on inverse() / affine_inverse()
|
|
|
|
for (float &value : values) {
|
|
|
|
if (::Math::is_equal_approx(0, value)) {
|
|
|
|
value = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
Transform xform;
|
|
|
|
Basis basis;
|
|
|
|
|
|
|
|
basis.set(
|
|
|
|
Vector3(values[0], values[1], values[2]),
|
|
|
|
Vector3(values[4], values[5], values[6]),
|
|
|
|
Vector3(values[8], values[9], values[10]));
|
|
|
|
|
|
|
|
xform.basis = basis;
|
|
|
|
xform.origin = Vector3(values[12], values[13], values[14]);
|
|
|
|
// determine if we need to think about this with dynamic rotation order?
|
|
|
|
// for example:
|
|
|
|
// xform.basis = z_axis * y_axis * x_axis;
|
|
|
|
//xform.basis.transpose();
|
|
|
|
|
|
|
|
print_verbose("xform verbose basis: " + (xform.basis.get_euler() * (180 / Math_PI)) + " xform origin:" + xform.origin);
|
|
|
|
|
|
|
|
return xform;
|
|
|
|
}
|
|
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
|
|
// wrapper around ParseTokenAsString() with print_error handling
|
|
|
|
std::string ParseTokenAsString(const TokenPtr t) {
|
|
|
|
ERR_FAIL_COND_V(!t, "");
|
|
|
|
const char *err;
|
|
|
|
const std::string &i = ParseTokenAsString(t, err);
|
|
|
|
if (err) {
|
|
|
|
print_error(String(err) + ", " + String(t->StringContents().c_str()));
|
|
|
|
}
|
|
|
|
return i;
|
|
|
|
}
|
|
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
|
|
// extract a required element from a scope, abort if the element cannot be found
|
2021-01-21 16:18:44 +00:00
|
|
|
ElementPtr GetRequiredElement(const ScopePtr sc, const std::string &index, const ElementPtr element /*= NULL*/) {
|
|
|
|
ElementPtr el = sc->GetElement(index);
|
Rewrite FBX Importer to convert directly to Godot scene format
Co-authored-by: Gordon MacPherson <gordon@gordonite.tech>
Co-authored-by: Andrea Catania <info@andreacatania.com>
Co-authored-by: K. S. Ernest (iFire) Lee <ernest.lee@chibifire.com>
This is a complete rewrite of the importer. It will give more deterministic behaviour and has been sponsored by IMVU inc, over 1 year has gone into the development of this importer to remove the burden of the FBX SDK.
This was my project for 1 entire year and I really enjoyed the opportunity to add to Godot.
Along the road of implementing fixes we implemented fbx pivots, animations and inheritance type handling, which in most cases works properly.
We have implemented animation and mesh skinning too this should work out of the box, if there are issues let us know.
It's designed so that you can expand this with ease, and fix bugs easily too.
It can import from Autodesk Maya and import into Godot, with pivots.
There are bits we could polish but for now this is good enough.
Additional fixes made before upstreaming:
- fixed memory leaks
- ensure consistent ordering on mac linux and windows for fbx tree. (very important for material import to be deterministic)
- disabled incorrect warnings for fbx_material
- added compatibility code for /RootNode/ so compat is not broken
- Optimise FBX - directly import triangles
- remove debug messages
- add messages for mesh id, mesh re-import is sometimes slow and we need to know what mesh is being worked on
- Document no longer uses unordered maps
- Removed some usages of &GetRequiredToken replaced with safe *GetRequiredToken() function
- Added parser debugging
- Added ERR_FAIL_CONDS for unsupported mesh formats (we can add these later super easy to do now)
- Add memory debugging for the Tokens and the TokenParser to make it safe
- Add memory initialisation to mesh.cpp surface_tool.h and mesh.h
- Initialise boolean flags properly
- Refactored to correct naming for the fbx_mesh_data.h so you know what data you are working on
- Disabled corruption caused by the FIXME:
- Fixed document reading indexes and index_to_direct vs indexes mode
- Fixed UV1 and UV2 coordinates
- Fixed importer failing to import version 7700 files
- Replaced memory handling in the FBX Document with pointers, before it was dereferencing invalid memory.
- Fixed typed properties
- Improved Document API
- Fixed bug with ProcessDOMConnection() not working with the bool flag set to true.
- Fixed FBX skinning not deforming for more than one single mesh
- Fixed FBX skeleton mapping and skin mapping not being applied properly (now retrieved from document skin list)
- Fixed set_bone_pose being used in final version()
- Fixed material properties exceeding 1.0.
- FBX Document parser revamped to use safe memory practices, and with graceful error messages.
- ScopePtr, TokenPtr and various internal types have been fleshed out to use proper typedefs across the codebase.
- Fixed memory leaks caused by token cleanup failing (now explicit cleanup step, no shared_ptr, etc)
- Fixed bug with PropertyTable not reading all properties and not cleaning up properly.
- Fixed smoothing groups not working
- Fixed normal duplications
- Fixed duplication check for pre-existing coordinates.
- Fixed performance of vertex lookup in large meshes being slow, using lookup table separate to the data for indexing, this reduces import time from 10 minutes of bistro down to 30 seconds.
- Fixed includes requiring absolute path in headers and cpp files using CPPPath.
Bugs/Features wish list:
- locator bones
- quat anim key interpolation (most fbx maya files have euler rotations from blender and maya, nobody uses this)
- some rigs skins scale up when SSC enabled inconsistently per bone
- some skins can disappear entirely
- material mapping needs expanded, but this will be done for 4.0 as it requires rewrite.
Workarounds for issues found until we patch them:
- mesh -> clear skin can resolve most of the bugs above.
- locators can be worked around by removing them before exporting your rig.
- some material properties wont always import, this is okay to override in the material properties.
**If you are having issues or need support fear not!**
Please provide minimal rigs which can reproduce issues as we can't spend a lot of time investigating each rig. We need a small example which breaks and we can then sort the problem. In some cases this is not possible so its okay to privately send models to us via IRC or a ticket and we can provide an email address, we won't reveal or disclose privately sent rig files to any companies, or to companies I work for, they will not be shared, only tested and bugs will be drawn up from the conclusions. Also include identifying information about what you did and how it didn't work. Please file each file separately in a bug report, unless the problem is the same.
This was sponsored by IMVU, and a special thanks to everyone who supported this project.
Signed-off-by: Gordon MacPherson <gordon@gordonite.tech>
2020-10-20 17:00:16 +00:00
|
|
|
TokenPtr token = el->KeyToken();
|
|
|
|
ERR_FAIL_COND_V(!token, nullptr);
|
|
|
|
if (!el) {
|
|
|
|
print_error("did not find required element \"" + String(index.c_str()) + "\" " + String(token->StringContents().c_str()));
|
|
|
|
}
|
|
|
|
return el;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool HasElement(const ScopePtr sc, const std::string &index) {
|
|
|
|
const ElementPtr el = sc->GetElement(index);
|
|
|
|
if (nullptr == el) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
|
|
// extract a required element from a scope, abort if the element cannot be found
|
2021-01-21 16:18:44 +00:00
|
|
|
ElementPtr GetOptionalElement(const ScopePtr sc, const std::string &index, const ElementPtr element /*= NULL*/) {
|
|
|
|
ElementPtr el = sc->GetElement(index);
|
Rewrite FBX Importer to convert directly to Godot scene format
Co-authored-by: Gordon MacPherson <gordon@gordonite.tech>
Co-authored-by: Andrea Catania <info@andreacatania.com>
Co-authored-by: K. S. Ernest (iFire) Lee <ernest.lee@chibifire.com>
This is a complete rewrite of the importer. It will give more deterministic behaviour and has been sponsored by IMVU inc, over 1 year has gone into the development of this importer to remove the burden of the FBX SDK.
This was my project for 1 entire year and I really enjoyed the opportunity to add to Godot.
Along the road of implementing fixes we implemented fbx pivots, animations and inheritance type handling, which in most cases works properly.
We have implemented animation and mesh skinning too this should work out of the box, if there are issues let us know.
It's designed so that you can expand this with ease, and fix bugs easily too.
It can import from Autodesk Maya and import into Godot, with pivots.
There are bits we could polish but for now this is good enough.
Additional fixes made before upstreaming:
- fixed memory leaks
- ensure consistent ordering on mac linux and windows for fbx tree. (very important for material import to be deterministic)
- disabled incorrect warnings for fbx_material
- added compatibility code for /RootNode/ so compat is not broken
- Optimise FBX - directly import triangles
- remove debug messages
- add messages for mesh id, mesh re-import is sometimes slow and we need to know what mesh is being worked on
- Document no longer uses unordered maps
- Removed some usages of &GetRequiredToken replaced with safe *GetRequiredToken() function
- Added parser debugging
- Added ERR_FAIL_CONDS for unsupported mesh formats (we can add these later super easy to do now)
- Add memory debugging for the Tokens and the TokenParser to make it safe
- Add memory initialisation to mesh.cpp surface_tool.h and mesh.h
- Initialise boolean flags properly
- Refactored to correct naming for the fbx_mesh_data.h so you know what data you are working on
- Disabled corruption caused by the FIXME:
- Fixed document reading indexes and index_to_direct vs indexes mode
- Fixed UV1 and UV2 coordinates
- Fixed importer failing to import version 7700 files
- Replaced memory handling in the FBX Document with pointers, before it was dereferencing invalid memory.
- Fixed typed properties
- Improved Document API
- Fixed bug with ProcessDOMConnection() not working with the bool flag set to true.
- Fixed FBX skinning not deforming for more than one single mesh
- Fixed FBX skeleton mapping and skin mapping not being applied properly (now retrieved from document skin list)
- Fixed set_bone_pose being used in final version()
- Fixed material properties exceeding 1.0.
- FBX Document parser revamped to use safe memory practices, and with graceful error messages.
- ScopePtr, TokenPtr and various internal types have been fleshed out to use proper typedefs across the codebase.
- Fixed memory leaks caused by token cleanup failing (now explicit cleanup step, no shared_ptr, etc)
- Fixed bug with PropertyTable not reading all properties and not cleaning up properly.
- Fixed smoothing groups not working
- Fixed normal duplications
- Fixed duplication check for pre-existing coordinates.
- Fixed performance of vertex lookup in large meshes being slow, using lookup table separate to the data for indexing, this reduces import time from 10 minutes of bistro down to 30 seconds.
- Fixed includes requiring absolute path in headers and cpp files using CPPPath.
Bugs/Features wish list:
- locator bones
- quat anim key interpolation (most fbx maya files have euler rotations from blender and maya, nobody uses this)
- some rigs skins scale up when SSC enabled inconsistently per bone
- some skins can disappear entirely
- material mapping needs expanded, but this will be done for 4.0 as it requires rewrite.
Workarounds for issues found until we patch them:
- mesh -> clear skin can resolve most of the bugs above.
- locators can be worked around by removing them before exporting your rig.
- some material properties wont always import, this is okay to override in the material properties.
**If you are having issues or need support fear not!**
Please provide minimal rigs which can reproduce issues as we can't spend a lot of time investigating each rig. We need a small example which breaks and we can then sort the problem. In some cases this is not possible so its okay to privately send models to us via IRC or a ticket and we can provide an email address, we won't reveal or disclose privately sent rig files to any companies, or to companies I work for, they will not be shared, only tested and bugs will be drawn up from the conclusions. Also include identifying information about what you did and how it didn't work. Please file each file separately in a bug report, unless the problem is the same.
This was sponsored by IMVU, and a special thanks to everyone who supported this project.
Signed-off-by: Gordon MacPherson <gordon@gordonite.tech>
2020-10-20 17:00:16 +00:00
|
|
|
return el;
|
|
|
|
}
|
|
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
|
|
// extract required compound scope
|
2021-01-21 16:18:44 +00:00
|
|
|
ScopePtr GetRequiredScope(const ElementPtr el) {
|
Rewrite FBX Importer to convert directly to Godot scene format
Co-authored-by: Gordon MacPherson <gordon@gordonite.tech>
Co-authored-by: Andrea Catania <info@andreacatania.com>
Co-authored-by: K. S. Ernest (iFire) Lee <ernest.lee@chibifire.com>
This is a complete rewrite of the importer. It will give more deterministic behaviour and has been sponsored by IMVU inc, over 1 year has gone into the development of this importer to remove the burden of the FBX SDK.
This was my project for 1 entire year and I really enjoyed the opportunity to add to Godot.
Along the road of implementing fixes we implemented fbx pivots, animations and inheritance type handling, which in most cases works properly.
We have implemented animation and mesh skinning too this should work out of the box, if there are issues let us know.
It's designed so that you can expand this with ease, and fix bugs easily too.
It can import from Autodesk Maya and import into Godot, with pivots.
There are bits we could polish but for now this is good enough.
Additional fixes made before upstreaming:
- fixed memory leaks
- ensure consistent ordering on mac linux and windows for fbx tree. (very important for material import to be deterministic)
- disabled incorrect warnings for fbx_material
- added compatibility code for /RootNode/ so compat is not broken
- Optimise FBX - directly import triangles
- remove debug messages
- add messages for mesh id, mesh re-import is sometimes slow and we need to know what mesh is being worked on
- Document no longer uses unordered maps
- Removed some usages of &GetRequiredToken replaced with safe *GetRequiredToken() function
- Added parser debugging
- Added ERR_FAIL_CONDS for unsupported mesh formats (we can add these later super easy to do now)
- Add memory debugging for the Tokens and the TokenParser to make it safe
- Add memory initialisation to mesh.cpp surface_tool.h and mesh.h
- Initialise boolean flags properly
- Refactored to correct naming for the fbx_mesh_data.h so you know what data you are working on
- Disabled corruption caused by the FIXME:
- Fixed document reading indexes and index_to_direct vs indexes mode
- Fixed UV1 and UV2 coordinates
- Fixed importer failing to import version 7700 files
- Replaced memory handling in the FBX Document with pointers, before it was dereferencing invalid memory.
- Fixed typed properties
- Improved Document API
- Fixed bug with ProcessDOMConnection() not working with the bool flag set to true.
- Fixed FBX skinning not deforming for more than one single mesh
- Fixed FBX skeleton mapping and skin mapping not being applied properly (now retrieved from document skin list)
- Fixed set_bone_pose being used in final version()
- Fixed material properties exceeding 1.0.
- FBX Document parser revamped to use safe memory practices, and with graceful error messages.
- ScopePtr, TokenPtr and various internal types have been fleshed out to use proper typedefs across the codebase.
- Fixed memory leaks caused by token cleanup failing (now explicit cleanup step, no shared_ptr, etc)
- Fixed bug with PropertyTable not reading all properties and not cleaning up properly.
- Fixed smoothing groups not working
- Fixed normal duplications
- Fixed duplication check for pre-existing coordinates.
- Fixed performance of vertex lookup in large meshes being slow, using lookup table separate to the data for indexing, this reduces import time from 10 minutes of bistro down to 30 seconds.
- Fixed includes requiring absolute path in headers and cpp files using CPPPath.
Bugs/Features wish list:
- locator bones
- quat anim key interpolation (most fbx maya files have euler rotations from blender and maya, nobody uses this)
- some rigs skins scale up when SSC enabled inconsistently per bone
- some skins can disappear entirely
- material mapping needs expanded, but this will be done for 4.0 as it requires rewrite.
Workarounds for issues found until we patch them:
- mesh -> clear skin can resolve most of the bugs above.
- locators can be worked around by removing them before exporting your rig.
- some material properties wont always import, this is okay to override in the material properties.
**If you are having issues or need support fear not!**
Please provide minimal rigs which can reproduce issues as we can't spend a lot of time investigating each rig. We need a small example which breaks and we can then sort the problem. In some cases this is not possible so its okay to privately send models to us via IRC or a ticket and we can provide an email address, we won't reveal or disclose privately sent rig files to any companies, or to companies I work for, they will not be shared, only tested and bugs will be drawn up from the conclusions. Also include identifying information about what you did and how it didn't work. Please file each file separately in a bug report, unless the problem is the same.
This was sponsored by IMVU, and a special thanks to everyone who supported this project.
Signed-off-by: Gordon MacPherson <gordon@gordonite.tech>
2020-10-20 17:00:16 +00:00
|
|
|
if (el) {
|
|
|
|
ScopePtr s = el->Compound();
|
|
|
|
TokenPtr token = el->KeyToken();
|
|
|
|
ERR_FAIL_COND_V(!token, nullptr);
|
|
|
|
if (s) {
|
|
|
|
return s;
|
|
|
|
}
|
|
|
|
|
|
|
|
ERR_FAIL_V_MSG(nullptr, "expected compound scope " + String(token->StringContents().c_str()));
|
|
|
|
}
|
|
|
|
|
|
|
|
ERR_FAIL_V_MSG(nullptr, "Invalid element supplied to parser");
|
|
|
|
}
|
|
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
|
|
// get token at a particular index
|
|
|
|
TokenPtr GetRequiredToken(const ElementPtr el, unsigned int index) {
|
|
|
|
if (el) {
|
|
|
|
const TokenList &x = el->Tokens();
|
|
|
|
TokenPtr token = el->KeyToken();
|
|
|
|
|
|
|
|
ERR_FAIL_COND_V(!token, nullptr);
|
|
|
|
|
|
|
|
if (index >= x.size()) {
|
|
|
|
ERR_FAIL_V_MSG(nullptr, "missing token at index: " + itos(index) + " " + String(token->StringContents().c_str()));
|
|
|
|
}
|
|
|
|
|
|
|
|
return x[index];
|
|
|
|
}
|
|
|
|
|
|
|
|
return nullptr;
|
|
|
|
}
|
|
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
|
|
// wrapper around ParseTokenAsDim() with print_error handling
|
|
|
|
size_t ParseTokenAsDim(const TokenPtr t) {
|
|
|
|
const char *err;
|
|
|
|
const size_t i = ParseTokenAsDim(t, err);
|
|
|
|
if (err) {
|
|
|
|
print_error(String(err) + " " + String(t->StringContents().c_str()));
|
|
|
|
}
|
|
|
|
return i;
|
|
|
|
}
|
|
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
|
|
// wrapper around ParseTokenAsFloat() with print_error handling
|
|
|
|
float ParseTokenAsFloat(const TokenPtr t) {
|
|
|
|
const char *err;
|
|
|
|
const float i = ParseTokenAsFloat(t, err);
|
|
|
|
if (err) {
|
|
|
|
print_error(String(err) + " " + String(t->StringContents().c_str()));
|
|
|
|
}
|
|
|
|
return i;
|
|
|
|
}
|
|
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
|
|
// wrapper around ParseTokenAsInt() with print_error handling
|
|
|
|
int ParseTokenAsInt(const TokenPtr t) {
|
|
|
|
const char *err;
|
|
|
|
const int i = ParseTokenAsInt(t, err);
|
|
|
|
if (err) {
|
|
|
|
print_error(String(err) + " " + String(t->StringContents().c_str()));
|
|
|
|
}
|
|
|
|
return i;
|
|
|
|
}
|
|
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
|
|
// wrapper around ParseTokenAsInt64() with print_error handling
|
|
|
|
int64_t ParseTokenAsInt64(const TokenPtr t) {
|
|
|
|
const char *err;
|
|
|
|
const int64_t i = ParseTokenAsInt64(t, err);
|
|
|
|
if (err) {
|
|
|
|
print_error(String(err) + " " + String(t->StringContents().c_str()));
|
|
|
|
}
|
|
|
|
return i;
|
|
|
|
}
|
|
|
|
|
|
|
|
} // namespace FBXDocParser
|