godot/thirdparty/embree/common/tasking/taskschedulerinternal.h

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

395 lines
12 KiB
C++
Raw Normal View History

// Copyright 2009-2021 Intel Corporation
2021-04-20 16:38:09 +00:00
// SPDX-License-Identifier: Apache-2.0
#pragma once
#include "../sys/platform.h"
#include "../sys/alloc.h"
#include "../sys/barrier.h"
#include "../sys/thread.h"
#include "../sys/mutex.h"
#include "../sys/condition.h"
#include "../sys/ref.h"
#include "../sys/atomic.h"
#include "../math/range.h"
2024-02-24 11:40:55 +00:00
#include "../../include/embree4/rtcore.h"
2021-04-20 16:38:09 +00:00
#include <list>
namespace embree
{
/* The tasking system exports some symbols to be used by the tutorials. Thus we
hide is also in the API namespace when requested. */
RTC_NAMESPACE_BEGIN
struct TaskScheduler : public RefCount
{
ALIGNED_STRUCT_(64);
friend class Device;
static const size_t TASK_STACK_SIZE = 4*1024; //!< task structure stack
static const size_t CLOSURE_STACK_SIZE = 512*1024; //!< stack for task closures
struct Thread;
/*! virtual interface for all tasks */
struct TaskFunction {
virtual void execute() = 0;
};
2024-02-24 11:40:55 +00:00
struct TaskGroupContext {
TaskGroupContext() : cancellingException(nullptr) {}
std::exception_ptr cancellingException;
};
2021-04-20 16:38:09 +00:00
/*! builds a task interface from a closure */
template<typename Closure>
struct ClosureTaskFunction : public TaskFunction
{
Closure closure;
__forceinline ClosureTaskFunction (const Closure& closure) : closure(closure) {}
void execute() { closure(); };
};
struct __aligned(64) Task
{
/*! states a task can be in */
enum { DONE, INITIALIZED };
/*! switch from one state to another */
__forceinline void switch_state(int from, int to)
{
__memory_barrier();
MAYBE_UNUSED bool success = state.compare_exchange_strong(from,to);
assert(success);
}
/*! try to switch from one state to another */
__forceinline bool try_switch_state(int from, int to) {
__memory_barrier();
return state.compare_exchange_strong(from,to);
}
/*! increment/decrement dependency counter */
void add_dependencies(int n) {
dependencies+=n;
}
/*! initialize all tasks to DONE state by default */
__forceinline Task()
: state(DONE) {}
/*! construction of new task */
2024-02-24 11:40:55 +00:00
__forceinline Task (TaskFunction* closure, Task* parent, TaskGroupContext* context, size_t stackPtr, size_t N)
: dependencies(1), stealable(true), closure(closure), parent(parent), context(context), stackPtr(stackPtr), N(N)
2021-04-20 16:38:09 +00:00
{
if (parent) parent->add_dependencies(+1);
switch_state(DONE,INITIALIZED);
}
/*! construction of stolen task, stealing thread will decrement initial dependency */
2024-02-24 11:40:55 +00:00
__forceinline Task (TaskFunction* closure, Task* parent, TaskGroupContext* context)
: dependencies(1), stealable(false), closure(closure), parent(parent), context(context), stackPtr(-1), N(1)
2021-04-20 16:38:09 +00:00
{
switch_state(DONE,INITIALIZED);
}
/*! try to steal this task */
bool try_steal(Task& child)
{
if (!stealable) return false;
if (!try_switch_state(INITIALIZED,DONE)) return false;
2024-02-24 11:40:55 +00:00
new (&child) Task(closure, this, context);
2021-04-20 16:38:09 +00:00
return true;
}
/*! run this task */
dll_export void run(Thread& thread);
void run_internal(Thread& thread);
public:
std::atomic<int> state; //!< state this task is in
std::atomic<int> dependencies; //!< dependencies to wait for
std::atomic<bool> stealable; //!< true if task can be stolen
TaskFunction* closure; //!< the closure to execute
Task* parent; //!< parent task to signal when we are finished
2024-02-24 11:40:55 +00:00
TaskGroupContext* context;
2021-04-20 16:38:09 +00:00
size_t stackPtr; //!< stack location where closure is stored
size_t N; //!< approximative size of task
};
struct TaskQueue
{
TaskQueue ()
: left(0), right(0), stackPtr(0) {}
__forceinline void* alloc(size_t bytes, size_t align = 64)
{
size_t ofs = bytes + ((align - stackPtr) & (align-1));
2024-02-24 11:40:55 +00:00
// -- GODOT start --
// if (stackPtr + ofs > CLOSURE_STACK_SIZE)
// throw std::runtime_error("closure stack overflow");
if (stackPtr + ofs > CLOSURE_STACK_SIZE) {
2021-04-20 16:38:09 +00:00
abort();
2024-02-24 11:40:55 +00:00
}
// -- GODOT end --
2021-04-20 16:38:09 +00:00
stackPtr += ofs;
return &stack[stackPtr-bytes];
}
template<typename Closure>
2024-02-24 11:40:55 +00:00
__forceinline void push_right(Thread& thread, const size_t size, const Closure& closure, TaskGroupContext* context)
2021-04-20 16:38:09 +00:00
{
2024-02-24 11:40:55 +00:00
// -- GODOT start --
// if (right >= TASK_STACK_SIZE)
// throw std::runtime_error("task stack overflow");
if (right >= TASK_STACK_SIZE) {
abort();
}
// -- GODOT end --
2021-04-20 16:38:09 +00:00
/* allocate new task on right side of stack */
size_t oldStackPtr = stackPtr;
TaskFunction* func = new (alloc(sizeof(ClosureTaskFunction<Closure>))) ClosureTaskFunction<Closure>(closure);
2024-02-24 11:40:55 +00:00
new (&tasks[right.load()]) Task(func,thread.task,context,oldStackPtr,size);
2021-04-20 16:38:09 +00:00
right++;
/* also move left pointer */
if (left >= right-1) left = right-1;
}
dll_export bool execute_local(Thread& thread, Task* parent);
bool execute_local_internal(Thread& thread, Task* parent);
bool steal(Thread& thread);
size_t getTaskSizeAtLeft();
bool empty() { return right == 0; }
public:
/* task stack */
Task tasks[TASK_STACK_SIZE];
__aligned(64) std::atomic<size_t> left; //!< threads steal from left
__aligned(64) std::atomic<size_t> right; //!< new tasks are added to the right
/* closure stack */
__aligned(64) char stack[CLOSURE_STACK_SIZE];
size_t stackPtr;
};
/*! thread local structure for each thread */
struct Thread
{
ALIGNED_STRUCT_(64);
Thread (size_t threadIndex, const Ref<TaskScheduler>& scheduler)
: threadIndex(threadIndex), task(nullptr), scheduler(scheduler) {}
__forceinline size_t threadCount() {
2024-02-24 11:40:55 +00:00
return scheduler->threadCounter;
2021-04-20 16:38:09 +00:00
}
size_t threadIndex; //!< ID of this thread
TaskQueue tasks; //!< local task queue
Task* task; //!< current active task
Ref<TaskScheduler> scheduler; //!< pointer to task scheduler
};
/*! pool of worker threads */
struct ThreadPool
{
ThreadPool (bool set_affinity);
~ThreadPool ();
/*! starts the threads */
dll_export void startThreads();
/*! sets number of threads to use */
void setNumThreads(size_t numThreads, bool startThreads = false);
/*! adds a task scheduler object for scheduling */
dll_export void add(const Ref<TaskScheduler>& scheduler);
/*! remove the task scheduler object again */
dll_export void remove(const Ref<TaskScheduler>& scheduler);
/*! returns number of threads of the thread pool */
size_t size() const { return numThreads; }
/*! main loop for all threads */
void thread_loop(size_t threadIndex);
private:
std::atomic<size_t> numThreads;
std::atomic<size_t> numThreadsRunning;
bool set_affinity;
std::atomic<bool> running;
std::vector<thread_t> threads;
private:
MutexSys mutex;
ConditionSys condition;
std::list<Ref<TaskScheduler> > schedulers;
};
TaskScheduler ();
~TaskScheduler ();
/*! initializes the task scheduler */
static void create(size_t numThreads, bool set_affinity, bool start_threads);
/*! destroys the task scheduler again */
static void destroy();
/*! lets new worker threads join the tasking system */
void join();
void reset();
/*! let a worker thread allocate a thread index */
dll_export ssize_t allocThreadIndex();
/*! wait for some number of threads available (threadCount includes main thread) */
void wait_for_threads(size_t threadCount);
/*! thread loop for all worker threads */
void thread_loop(size_t threadIndex);
/*! steals a task from a different thread */
bool steal_from_other_threads(Thread& thread);
template<typename Predicate, typename Body>
static void steal_loop(Thread& thread, const Predicate& pred, const Body& body);
/* spawn a new task at the top of the threads task stack */
template<typename Closure>
2024-02-24 11:40:55 +00:00
void spawn_root(const Closure& closure, TaskGroupContext* context, size_t size = 1, bool useThreadPool = true)
2021-04-20 16:38:09 +00:00
{
if (useThreadPool) startThreads();
size_t threadIndex = allocThreadIndex();
std::unique_ptr<Thread> mthread(new Thread(threadIndex,this)); // too large for stack allocation
Thread& thread = *mthread;
assert(threadLocal[threadIndex].load() == nullptr);
threadLocal[threadIndex] = &thread;
Thread* oldThread = swapThread(&thread);
2024-02-24 11:40:55 +00:00
thread.tasks.push_right(thread,size,closure,context);
2021-04-20 16:38:09 +00:00
{
Lock<MutexSys> lock(mutex);
anyTasksRunning++;
hasRootTask = true;
condition.notify_all();
}
if (useThreadPool) addScheduler(this);
while (thread.tasks.execute_local(thread,nullptr));
anyTasksRunning--;
if (useThreadPool) removeScheduler(this);
threadLocal[threadIndex] = nullptr;
swapThread(oldThread);
/* remember exception to throw */
std::exception_ptr except = nullptr;
2024-02-24 11:40:55 +00:00
if (context->cancellingException != nullptr) except = context->cancellingException;
2021-04-20 16:38:09 +00:00
/* wait for all threads to terminate */
threadCounter--;
while (threadCounter > 0) yield();
2024-02-24 11:40:55 +00:00
context->cancellingException = nullptr;
2021-04-20 16:38:09 +00:00
/* re-throw proper exception */
2024-02-24 11:40:55 +00:00
if (except != nullptr) {
2021-04-20 16:38:09 +00:00
std::rethrow_exception(except);
2024-02-24 11:40:55 +00:00
}
2021-04-20 16:38:09 +00:00
}
/* spawn a new task at the top of the threads task stack */
template<typename Closure>
2024-02-24 11:40:55 +00:00
static __forceinline void spawn(size_t size, const Closure& closure, TaskGroupContext* context)
2021-04-20 16:38:09 +00:00
{
Thread* thread = TaskScheduler::thread();
2024-02-24 11:40:55 +00:00
if (likely(thread != nullptr)) thread->tasks.push_right(*thread,size,closure,context);
else instance()->spawn_root(closure,context,size);
2021-04-20 16:38:09 +00:00
}
/* spawn a new task at the top of the threads task stack */
template<typename Closure>
2024-02-24 11:40:55 +00:00
static __forceinline void spawn(const Closure& closure, TaskGroupContext* taskGroupContext) {
spawn(1,closure,taskGroupContext);
2021-04-20 16:38:09 +00:00
}
/* spawn a new task set */
template<typename Index, typename Closure>
2024-02-24 11:40:55 +00:00
static void spawn(const Index begin, const Index end, const Index blockSize, const Closure& closure, TaskGroupContext* context)
2021-04-20 16:38:09 +00:00
{
spawn(end-begin, [=]()
2024-02-24 11:40:55 +00:00
{
if (end-begin <= blockSize) {
return closure(range<Index>(begin,end));
}
const Index center = (begin+end)/2;
spawn(begin,center,blockSize,closure,context);
spawn(center,end ,blockSize,closure,context);
wait();
},context);
2021-04-20 16:38:09 +00:00
}
/* work on spawned subtasks and wait until all have finished */
2024-02-24 11:40:55 +00:00
dll_export static void wait();
2021-04-20 16:38:09 +00:00
/* returns the ID of the current thread */
dll_export static size_t threadID();
/* returns the index (0..threadCount-1) of the current thread */
dll_export static size_t threadIndex();
/* returns the total number of threads */
dll_export static size_t threadCount();
private:
/* returns the thread local task list of this worker thread */
dll_export static Thread* thread();
/* sets the thread local task list of this worker thread */
dll_export static Thread* swapThread(Thread* thread);
/*! returns the taskscheduler object to be used by the master thread */
dll_export static TaskScheduler* instance();
/*! starts the threads */
dll_export static void startThreads();
/*! adds a task scheduler object for scheduling */
dll_export static void addScheduler(const Ref<TaskScheduler>& scheduler);
/*! remove the task scheduler object again */
dll_export static void removeScheduler(const Ref<TaskScheduler>& scheduler);
private:
std::vector<atomic<Thread*>> threadLocal;
std::atomic<size_t> threadCounter;
std::atomic<size_t> anyTasksRunning;
std::atomic<bool> hasRootTask;
MutexSys mutex;
ConditionSys condition;
private:
static size_t g_numThreads;
static __thread TaskScheduler* g_instance;
static __thread Thread* thread_local_thread;
static ThreadPool* threadPool;
};
RTC_NAMESPACE_END
#if defined(RTC_NAMESPACE)
using RTC_NAMESPACE::TaskScheduler;
#endif
}