Represents one or many transformations in 3D space such as translation, rotation, or scaling. It consists of a two [Vector2] x, y and [Vector2] "origin". It is similar to a 3x2 matrix.
</description>
<tutorials>
</tutorials>
<demos>
</demos>
<methods>
<methodname="Transform2D">
<returntype="Transform2D">
</return>
<argumentindex="0"name="from"type="Transform">
</argument>
<description>
Constructs the [Transform2D] from a 3D [Transform].
</description>
</method>
<methodname="Transform2D">
<returntype="Transform2D">
</return>
<argumentindex="0"name="x_axis"type="Vector2">
</argument>
<argumentindex="1"name="y_axis"type="Vector2">
</argument>
<argumentindex="2"name="origin"type="Vector2">
</argument>
<description>
Constructs the [Transform2D] from 3 [Vector2] consisting of rows x, y and origin.
</description>
</method>
<methodname="Transform2D">
<returntype="Transform2D">
</return>
<argumentindex="0"name="rot"type="float">
</argument>
<argumentindex="1"name="pos"type="Vector2">
</argument>
<description>
Constructs the [Transform2D] from rotation angle in radians and position [Vector2].
</description>
</method>
<methodname="affine_inverse">
<returntype="Transform2D">
</return>
<description>
Returns the inverse of the matrix.
</description>
</method>
<methodname="basis_xform">
<returntype="Transform2D">
</return>
<argumentindex="0"name="v"type="var">
</argument>
<description>
Transforms the given vector "v" by this transform basis (no translation).
</description>
</method>
<methodname="basis_xform_inv">
<returntype="Transform2D">
</return>
<argumentindex="0"name="v"type="var">
</argument>
<description>
Inverse-transforms vector "v" by this transform basis (no translation).
Interpolate to other Transform2D by weight amount (0-1).
</description>
</method>
<methodname="inverse">
<returntype="Transform2D">
</return>
<description>
Returns the inverse of the transform, under the assumption that the transformation is composed of rotation and translation (no scaling, use affine_inverse for transforms with scaling).
</description>
</method>
<methodname="orthonormalized">
<returntype="Transform2D">
</return>
<description>
Returns a transfrom with the basis orthogonal (90 degrees), and normalized axis vectors.
</description>
</method>
<methodname="rotated">
<returntype="Transform2D">
</return>
<argumentindex="0"name="phi"type="float">
</argument>
<description>
Rotate the transform by phi.
</description>
</method>
<methodname="scaled">
<returntype="Transform2D">
</return>
<argumentindex="0"name="scale"type="Vector2">
</argument>
<description>
Scale the transform by the specified 2D scaling factors.
</description>
</method>
<methodname="translated">
<returntype="Transform2D">
</return>
<argumentindex="0"name="offset"type="Vector2">
</argument>
<description>
Translate the transform by the specified offset.
</description>
</method>
<methodname="xform">
<returntype="Transform2D">
</return>
<argumentindex="0"name="v"type="var">
</argument>
<description>
Transforms the given vector "v" by this transform.
</description>
</method>
<methodname="xform_inv">
<returntype="Transform2D">
</return>
<argumentindex="0"name="v"type="var">
</argument>
<description>
Inverse-transforms the given vector "v" by this transform.
The X axis of 2x2 basis matrix containing 2 [Vector2] as its columns: X axis and Y axis. These vectors can be interpreted as the basis vectors of local coordinate system traveling with the object.
The Y axis of 2x2 basis matrix containing 2 [Vector2] as its columns: X axis and Y axis. These vectors can be interpreted as the basis vectors of local coordinate system traveling with the object.