godot/thirdparty/libvpx/vp9/decoder/vp9_decodemv.c

912 lines
32 KiB
C
Raw Normal View History

/*
Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <assert.h>
#include "vp9/common/vp9_common.h"
#include "vp9/common/vp9_entropy.h"
#include "vp9/common/vp9_entropymode.h"
#include "vp9/common/vp9_entropymv.h"
#include "vp9/common/vp9_mvref_common.h"
#include "vp9/common/vp9_pred_common.h"
#include "vp9/common/vp9_reconinter.h"
#include "vp9/common/vp9_seg_common.h"
#include "vp9/decoder/vp9_decodemv.h"
#include "vp9/decoder/vp9_decodeframe.h"
#include "vpx_dsp/vpx_dsp_common.h"
static PREDICTION_MODE read_intra_mode(vpx_reader *r, const vpx_prob *p) {
return (PREDICTION_MODE)vpx_read_tree(r, vp9_intra_mode_tree, p);
}
static PREDICTION_MODE read_intra_mode_y(VP9_COMMON *cm, MACROBLOCKD *xd,
vpx_reader *r, int size_group) {
const PREDICTION_MODE y_mode =
read_intra_mode(r, cm->fc->y_mode_prob[size_group]);
FRAME_COUNTS *counts = xd->counts;
if (counts)
++counts->y_mode[size_group][y_mode];
return y_mode;
}
static PREDICTION_MODE read_intra_mode_uv(VP9_COMMON *cm, MACROBLOCKD *xd,
vpx_reader *r,
PREDICTION_MODE y_mode) {
const PREDICTION_MODE uv_mode = read_intra_mode(r,
cm->fc->uv_mode_prob[y_mode]);
FRAME_COUNTS *counts = xd->counts;
if (counts)
++counts->uv_mode[y_mode][uv_mode];
return uv_mode;
}
static PREDICTION_MODE read_inter_mode(VP9_COMMON *cm, MACROBLOCKD *xd,
vpx_reader *r, int ctx) {
const int mode = vpx_read_tree(r, vp9_inter_mode_tree,
cm->fc->inter_mode_probs[ctx]);
FRAME_COUNTS *counts = xd->counts;
if (counts)
++counts->inter_mode[ctx][mode];
return NEARESTMV + mode;
}
static int read_segment_id(vpx_reader *r, const struct segmentation *seg) {
return vpx_read_tree(r, vp9_segment_tree, seg->tree_probs);
}
static TX_SIZE read_selected_tx_size(VP9_COMMON *cm, MACROBLOCKD *xd,
TX_SIZE max_tx_size, vpx_reader *r) {
FRAME_COUNTS *counts = xd->counts;
const int ctx = get_tx_size_context(xd);
const vpx_prob *tx_probs = get_tx_probs(max_tx_size, ctx, &cm->fc->tx_probs);
int tx_size = vpx_read(r, tx_probs[0]);
if (tx_size != TX_4X4 && max_tx_size >= TX_16X16) {
tx_size += vpx_read(r, tx_probs[1]);
if (tx_size != TX_8X8 && max_tx_size >= TX_32X32)
tx_size += vpx_read(r, tx_probs[2]);
}
if (counts)
++get_tx_counts(max_tx_size, ctx, &counts->tx)[tx_size];
return (TX_SIZE)tx_size;
}
static INLINE TX_SIZE read_tx_size(VP9_COMMON *cm, MACROBLOCKD *xd,
int allow_select, vpx_reader *r) {
TX_MODE tx_mode = cm->tx_mode;
BLOCK_SIZE bsize = xd->mi[0]->sb_type;
const TX_SIZE max_tx_size = max_txsize_lookup[bsize];
if (allow_select && tx_mode == TX_MODE_SELECT && bsize >= BLOCK_8X8)
return read_selected_tx_size(cm, xd, max_tx_size, r);
else
return VPXMIN(max_tx_size, tx_mode_to_biggest_tx_size[tx_mode]);
}
static int dec_get_segment_id(const VP9_COMMON *cm, const uint8_t *segment_ids,
int mi_offset, int x_mis, int y_mis) {
int x, y, segment_id = INT_MAX;
for (y = 0; y < y_mis; y++)
for (x = 0; x < x_mis; x++)
segment_id =
VPXMIN(segment_id, segment_ids[mi_offset + y * cm->mi_cols + x]);
assert(segment_id >= 0 && segment_id < MAX_SEGMENTS);
return segment_id;
}
static void set_segment_id(VP9_COMMON *cm, int mi_offset,
int x_mis, int y_mis, int segment_id) {
int x, y;
assert(segment_id >= 0 && segment_id < MAX_SEGMENTS);
for (y = 0; y < y_mis; y++)
for (x = 0; x < x_mis; x++)
cm->current_frame_seg_map[mi_offset + y * cm->mi_cols + x] = segment_id;
}
static void copy_segment_id(const VP9_COMMON *cm,
const uint8_t *last_segment_ids,
uint8_t *current_segment_ids,
int mi_offset, int x_mis, int y_mis) {
int x, y;
for (y = 0; y < y_mis; y++)
for (x = 0; x < x_mis; x++)
current_segment_ids[mi_offset + y * cm->mi_cols + x] = last_segment_ids ?
last_segment_ids[mi_offset + y * cm->mi_cols + x] : 0;
}
static int read_intra_segment_id(VP9_COMMON *const cm, int mi_offset,
int x_mis, int y_mis,
vpx_reader *r) {
struct segmentation *const seg = &cm->seg;
int segment_id;
if (!seg->enabled)
return 0; // Default for disabled segmentation
if (!seg->update_map) {
copy_segment_id(cm, cm->last_frame_seg_map, cm->current_frame_seg_map,
mi_offset, x_mis, y_mis);
return 0;
}
segment_id = read_segment_id(r, seg);
set_segment_id(cm, mi_offset, x_mis, y_mis, segment_id);
return segment_id;
}
static int read_inter_segment_id(VP9_COMMON *const cm, MACROBLOCKD *const xd,
int mi_row, int mi_col, vpx_reader *r,
int x_mis, int y_mis) {
struct segmentation *const seg = &cm->seg;
MODE_INFO *const mi = xd->mi[0];
int predicted_segment_id, segment_id;
const int mi_offset = mi_row * cm->mi_cols + mi_col;
if (!seg->enabled)
return 0; // Default for disabled segmentation
predicted_segment_id = cm->last_frame_seg_map ?
dec_get_segment_id(cm, cm->last_frame_seg_map, mi_offset, x_mis, y_mis) :
0;
if (!seg->update_map) {
copy_segment_id(cm, cm->last_frame_seg_map, cm->current_frame_seg_map,
mi_offset, x_mis, y_mis);
return predicted_segment_id;
}
if (seg->temporal_update) {
const vpx_prob pred_prob = vp9_get_pred_prob_seg_id(seg, xd);
mi->seg_id_predicted = vpx_read(r, pred_prob);
segment_id = mi->seg_id_predicted ? predicted_segment_id
: read_segment_id(r, seg);
} else {
segment_id = read_segment_id(r, seg);
}
set_segment_id(cm, mi_offset, x_mis, y_mis, segment_id);
return segment_id;
}
static int read_skip(VP9_COMMON *cm, const MACROBLOCKD *xd,
int segment_id, vpx_reader *r) {
if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) {
return 1;
} else {
const int ctx = vp9_get_skip_context(xd);
const int skip = vpx_read(r, cm->fc->skip_probs[ctx]);
FRAME_COUNTS *counts = xd->counts;
if (counts)
++counts->skip[ctx][skip];
return skip;
}
}
static void read_intra_frame_mode_info(VP9_COMMON *const cm,
MACROBLOCKD *const xd,
int mi_row, int mi_col, vpx_reader *r,
int x_mis, int y_mis) {
MODE_INFO *const mi = xd->mi[0];
const MODE_INFO *above_mi = xd->above_mi;
const MODE_INFO *left_mi = xd->left_mi;
const BLOCK_SIZE bsize = mi->sb_type;
int i;
const int mi_offset = mi_row * cm->mi_cols + mi_col;
mi->segment_id = read_intra_segment_id(cm, mi_offset, x_mis, y_mis, r);
mi->skip = read_skip(cm, xd, mi->segment_id, r);
mi->tx_size = read_tx_size(cm, xd, 1, r);
mi->ref_frame[0] = INTRA_FRAME;
mi->ref_frame[1] = NONE;
switch (bsize) {
case BLOCK_4X4:
for (i = 0; i < 4; ++i)
mi->bmi[i].as_mode =
read_intra_mode(r, get_y_mode_probs(mi, above_mi, left_mi, i));
mi->mode = mi->bmi[3].as_mode;
break;
case BLOCK_4X8:
mi->bmi[0].as_mode = mi->bmi[2].as_mode =
read_intra_mode(r, get_y_mode_probs(mi, above_mi, left_mi, 0));
mi->bmi[1].as_mode = mi->bmi[3].as_mode = mi->mode =
read_intra_mode(r, get_y_mode_probs(mi, above_mi, left_mi, 1));
break;
case BLOCK_8X4:
mi->bmi[0].as_mode = mi->bmi[1].as_mode =
read_intra_mode(r, get_y_mode_probs(mi, above_mi, left_mi, 0));
mi->bmi[2].as_mode = mi->bmi[3].as_mode = mi->mode =
read_intra_mode(r, get_y_mode_probs(mi, above_mi, left_mi, 2));
break;
default:
mi->mode = read_intra_mode(r,
get_y_mode_probs(mi, above_mi, left_mi, 0));
}
mi->uv_mode = read_intra_mode(r, vp9_kf_uv_mode_prob[mi->mode]);
}
static int read_mv_component(vpx_reader *r,
const nmv_component *mvcomp, int usehp) {
int mag, d, fr, hp;
const int sign = vpx_read(r, mvcomp->sign);
const int mv_class = vpx_read_tree(r, vp9_mv_class_tree, mvcomp->classes);
const int class0 = mv_class == MV_CLASS_0;
// Integer part
if (class0) {
d = vpx_read_tree(r, vp9_mv_class0_tree, mvcomp->class0);
mag = 0;
} else {
int i;
const int n = mv_class + CLASS0_BITS - 1; // number of bits
d = 0;
for (i = 0; i < n; ++i)
d |= vpx_read(r, mvcomp->bits[i]) << i;
mag = CLASS0_SIZE << (mv_class + 2);
}
// Fractional part
fr = vpx_read_tree(r, vp9_mv_fp_tree, class0 ? mvcomp->class0_fp[d]
: mvcomp->fp);
// High precision part (if hp is not used, the default value of the hp is 1)
hp = usehp ? vpx_read(r, class0 ? mvcomp->class0_hp : mvcomp->hp)
: 1;
// Result
mag += ((d << 3) | (fr << 1) | hp) + 1;
return sign ? -mag : mag;
}
static INLINE void read_mv(vpx_reader *r, MV *mv, const MV *ref,
const nmv_context *ctx,
nmv_context_counts *counts, int allow_hp) {
const MV_JOINT_TYPE joint_type =
(MV_JOINT_TYPE)vpx_read_tree(r, vp9_mv_joint_tree, ctx->joints);
const int use_hp = allow_hp && use_mv_hp(ref);
MV diff = {0, 0};
if (mv_joint_vertical(joint_type))
diff.row = read_mv_component(r, &ctx->comps[0], use_hp);
if (mv_joint_horizontal(joint_type))
diff.col = read_mv_component(r, &ctx->comps[1], use_hp);
vp9_inc_mv(&diff, counts);
mv->row = ref->row + diff.row;
mv->col = ref->col + diff.col;
}
static REFERENCE_MODE read_block_reference_mode(VP9_COMMON *cm,
const MACROBLOCKD *xd,
vpx_reader *r) {
if (cm->reference_mode == REFERENCE_MODE_SELECT) {
const int ctx = vp9_get_reference_mode_context(cm, xd);
const REFERENCE_MODE mode =
(REFERENCE_MODE)vpx_read(r, cm->fc->comp_inter_prob[ctx]);
FRAME_COUNTS *counts = xd->counts;
if (counts)
++counts->comp_inter[ctx][mode];
return mode; // SINGLE_REFERENCE or COMPOUND_REFERENCE
} else {
return cm->reference_mode;
}
}
// Read the referncence frame
static void read_ref_frames(VP9_COMMON *const cm, MACROBLOCKD *const xd,
vpx_reader *r,
int segment_id, MV_REFERENCE_FRAME ref_frame[2]) {
FRAME_CONTEXT *const fc = cm->fc;
FRAME_COUNTS *counts = xd->counts;
if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) {
ref_frame[0] = (MV_REFERENCE_FRAME)get_segdata(&cm->seg, segment_id,
SEG_LVL_REF_FRAME);
ref_frame[1] = NONE;
} else {
const REFERENCE_MODE mode = read_block_reference_mode(cm, xd, r);
// FIXME(rbultje) I'm pretty sure this breaks segmentation ref frame coding
if (mode == COMPOUND_REFERENCE) {
const int idx = cm->ref_frame_sign_bias[cm->comp_fixed_ref];
const int ctx = vp9_get_pred_context_comp_ref_p(cm, xd);
const int bit = vpx_read(r, fc->comp_ref_prob[ctx]);
if (counts)
++counts->comp_ref[ctx][bit];
ref_frame[idx] = cm->comp_fixed_ref;
ref_frame[!idx] = cm->comp_var_ref[bit];
} else if (mode == SINGLE_REFERENCE) {
const int ctx0 = vp9_get_pred_context_single_ref_p1(xd);
const int bit0 = vpx_read(r, fc->single_ref_prob[ctx0][0]);
if (counts)
++counts->single_ref[ctx0][0][bit0];
if (bit0) {
const int ctx1 = vp9_get_pred_context_single_ref_p2(xd);
const int bit1 = vpx_read(r, fc->single_ref_prob[ctx1][1]);
if (counts)
++counts->single_ref[ctx1][1][bit1];
ref_frame[0] = bit1 ? ALTREF_FRAME : GOLDEN_FRAME;
} else {
ref_frame[0] = LAST_FRAME;
}
ref_frame[1] = NONE;
} else {
assert(0 && "Invalid prediction mode.");
}
}
}
// TODO(slavarnway): Move this decoder version of
// vp9_get_pred_context_switchable_interp() to vp9_pred_common.h and update the
// encoder.
//
// Returns a context number for the given MB prediction signal
static int dec_get_pred_context_switchable_interp(const MACROBLOCKD *xd) {
// Note:
// The mode info data structure has a one element border above and to the
// left of the entries corresponding to real macroblocks.
// The prediction flags in these dummy entries are initialized to 0.
const MODE_INFO *const left_mi = xd->left_mi;
const int left_type = left_mi ? left_mi->interp_filter : SWITCHABLE_FILTERS;
const MODE_INFO *const above_mi = xd->above_mi;
const int above_type = above_mi ? above_mi->interp_filter
: SWITCHABLE_FILTERS;
if (left_type == above_type)
return left_type;
else if (left_type == SWITCHABLE_FILTERS)
return above_type;
else if (above_type == SWITCHABLE_FILTERS)
return left_type;
else
return SWITCHABLE_FILTERS;
}
static INLINE INTERP_FILTER read_switchable_interp_filter(
VP9_COMMON *const cm, MACROBLOCKD *const xd,
vpx_reader *r) {
const int ctx = dec_get_pred_context_switchable_interp(xd);
const INTERP_FILTER type =
(INTERP_FILTER)vpx_read_tree(r, vp9_switchable_interp_tree,
cm->fc->switchable_interp_prob[ctx]);
FRAME_COUNTS *counts = xd->counts;
if (counts)
++counts->switchable_interp[ctx][type];
return type;
}
static void read_intra_block_mode_info(VP9_COMMON *const cm,
MACROBLOCKD *const xd, MODE_INFO *mi,
vpx_reader *r) {
const BLOCK_SIZE bsize = mi->sb_type;
int i;
switch (bsize) {
case BLOCK_4X4:
for (i = 0; i < 4; ++i)
mi->bmi[i].as_mode = read_intra_mode_y(cm, xd, r, 0);
mi->mode = mi->bmi[3].as_mode;
break;
case BLOCK_4X8:
mi->bmi[0].as_mode = mi->bmi[2].as_mode = read_intra_mode_y(cm, xd,
r, 0);
mi->bmi[1].as_mode = mi->bmi[3].as_mode = mi->mode =
read_intra_mode_y(cm, xd, r, 0);
break;
case BLOCK_8X4:
mi->bmi[0].as_mode = mi->bmi[1].as_mode = read_intra_mode_y(cm, xd,
r, 0);
mi->bmi[2].as_mode = mi->bmi[3].as_mode = mi->mode =
read_intra_mode_y(cm, xd, r, 0);
break;
default:
mi->mode = read_intra_mode_y(cm, xd, r, size_group_lookup[bsize]);
}
mi->uv_mode = read_intra_mode_uv(cm, xd, r, mi->mode);
// Initialize interp_filter here so we do not have to check for inter block
// modes in dec_get_pred_context_switchable_interp()
mi->interp_filter = SWITCHABLE_FILTERS;
mi->ref_frame[0] = INTRA_FRAME;
mi->ref_frame[1] = NONE;
}
static INLINE int is_mv_valid(const MV *mv) {
return mv->row > MV_LOW && mv->row < MV_UPP &&
mv->col > MV_LOW && mv->col < MV_UPP;
}
static INLINE void copy_mv_pair(int_mv *dst, const int_mv *src) {
memcpy(dst, src, sizeof(*dst) * 2);
}
static INLINE void zero_mv_pair(int_mv *dst) {
memset(dst, 0, sizeof(*dst) * 2);
}
static INLINE int assign_mv(VP9_COMMON *cm, MACROBLOCKD *xd,
PREDICTION_MODE mode,
int_mv mv[2], int_mv ref_mv[2],
int_mv near_nearest_mv[2],
int is_compound, int allow_hp, vpx_reader *r) {
int i;
int ret = 1;
switch (mode) {
case NEWMV: {
FRAME_COUNTS *counts = xd->counts;
nmv_context_counts *const mv_counts = counts ? &counts->mv : NULL;
for (i = 0; i < 1 + is_compound; ++i) {
read_mv(r, &mv[i].as_mv, &ref_mv[i].as_mv, &cm->fc->nmvc, mv_counts,
allow_hp);
ret = ret && is_mv_valid(&mv[i].as_mv);
}
break;
}
case NEARMV:
case NEARESTMV: {
copy_mv_pair(mv, near_nearest_mv);
break;
}
case ZEROMV: {
zero_mv_pair(mv);
break;
}
default: {
return 0;
}
}
return ret;
}
static int read_is_inter_block(VP9_COMMON *const cm, MACROBLOCKD *const xd,
int segment_id, vpx_reader *r) {
if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) {
return get_segdata(&cm->seg, segment_id, SEG_LVL_REF_FRAME) != INTRA_FRAME;
} else {
const int ctx = get_intra_inter_context(xd);
const int is_inter = vpx_read(r, cm->fc->intra_inter_prob[ctx]);
FRAME_COUNTS *counts = xd->counts;
if (counts)
++counts->intra_inter[ctx][is_inter];
return is_inter;
}
}
static void dec_find_best_ref_mvs(int allow_hp, int_mv *mvlist, int_mv *best_mv,
int refmv_count) {
int i;
// Make sure all the candidates are properly clamped etc
for (i = 0; i < refmv_count; ++i) {
lower_mv_precision(&mvlist[i].as_mv, allow_hp);
*best_mv = mvlist[i];
}
}
static void fpm_sync(void *const data, int mi_row) {
VP9Decoder *const pbi = (VP9Decoder *)data;
vp9_frameworker_wait(pbi->frame_worker_owner, pbi->common.prev_frame,
mi_row << MI_BLOCK_SIZE_LOG2);
}
// This macro is used to add a motion vector mv_ref list if it isn't
// already in the list. If it's the second motion vector or early_break
// it will also skip all additional processing and jump to Done!
#define ADD_MV_REF_LIST_EB(mv, refmv_count, mv_ref_list, Done) \
do { \
if (refmv_count) { \
if ((mv).as_int != (mv_ref_list)[0].as_int) { \
(mv_ref_list)[(refmv_count)] = (mv); \
refmv_count++; \
goto Done; \
} \
} else { \
(mv_ref_list)[(refmv_count)++] = (mv); \
if (early_break) \
goto Done; \
} \
} while (0)
// If either reference frame is different, not INTRA, and they
// are different from each other scale and add the mv to our list.
#define IF_DIFF_REF_FRAME_ADD_MV_EB(mbmi, ref_frame, ref_sign_bias, \
refmv_count, mv_ref_list, Done) \
do { \
if (is_inter_block(mbmi)) { \
if ((mbmi)->ref_frame[0] != ref_frame) \
ADD_MV_REF_LIST_EB(scale_mv((mbmi), 0, ref_frame, ref_sign_bias), \
refmv_count, mv_ref_list, Done); \
if (has_second_ref(mbmi) && \
(mbmi)->ref_frame[1] != ref_frame && \
(mbmi)->mv[1].as_int != (mbmi)->mv[0].as_int) \
ADD_MV_REF_LIST_EB(scale_mv((mbmi), 1, ref_frame, ref_sign_bias), \
refmv_count, mv_ref_list, Done); \
} \
} while (0)
// This function searches the neighborhood of a given MB/SB
// to try and find candidate reference vectors.
static int dec_find_mv_refs(const VP9_COMMON *cm, const MACROBLOCKD *xd,
PREDICTION_MODE mode, MV_REFERENCE_FRAME ref_frame,
const POSITION *const mv_ref_search,
int_mv *mv_ref_list,
int mi_row, int mi_col, int block, int is_sub8x8,
find_mv_refs_sync sync, void *const data) {
const int *ref_sign_bias = cm->ref_frame_sign_bias;
int i, refmv_count = 0;
int different_ref_found = 0;
const MV_REF *const prev_frame_mvs = cm->use_prev_frame_mvs ?
cm->prev_frame->mvs + mi_row * cm->mi_cols + mi_col : NULL;
const TileInfo *const tile = &xd->tile;
// If mode is nearestmv or newmv (uses nearestmv as a reference) then stop
// searching after the first mv is found.
const int early_break = (mode != NEARMV);
// Blank the reference vector list
memset(mv_ref_list, 0, sizeof(*mv_ref_list) * MAX_MV_REF_CANDIDATES);
i = 0;
if (is_sub8x8) {
// If the size < 8x8 we get the mv from the bmi substructure for the
// nearest two blocks.
for (i = 0; i < 2; ++i) {
const POSITION *const mv_ref = &mv_ref_search[i];
if (is_inside(tile, mi_col, mi_row, cm->mi_rows, mv_ref)) {
const MODE_INFO *const candidate_mi =
xd->mi[mv_ref->col + mv_ref->row * xd->mi_stride];
different_ref_found = 1;
if (candidate_mi->ref_frame[0] == ref_frame)
ADD_MV_REF_LIST_EB(
get_sub_block_mv(candidate_mi, 0, mv_ref->col, block),
refmv_count, mv_ref_list, Done);
else if (candidate_mi->ref_frame[1] == ref_frame)
ADD_MV_REF_LIST_EB(
get_sub_block_mv(candidate_mi, 1, mv_ref->col, block),
refmv_count, mv_ref_list, Done);
}
}
}
// Check the rest of the neighbors in much the same way
// as before except we don't need to keep track of sub blocks or
// mode counts.
for (; i < MVREF_NEIGHBOURS; ++i) {
const POSITION *const mv_ref = &mv_ref_search[i];
if (is_inside(tile, mi_col, mi_row, cm->mi_rows, mv_ref)) {
const MODE_INFO *const candidate =
xd->mi[mv_ref->col + mv_ref->row * xd->mi_stride];
different_ref_found = 1;
if (candidate->ref_frame[0] == ref_frame)
ADD_MV_REF_LIST_EB(candidate->mv[0], refmv_count, mv_ref_list, Done);
else if (candidate->ref_frame[1] == ref_frame)
ADD_MV_REF_LIST_EB(candidate->mv[1], refmv_count, mv_ref_list, Done);
}
}
// TODO(hkuang): Remove this sync after fixing pthread_cond_broadcast
// on windows platform. The sync here is unnecessary if use_prev_frame_mvs
// is 0. But after removing it, there will be hang in the unit test on windows
// due to several threads waiting for a thread's signal.
#if defined(_WIN32) && !HAVE_PTHREAD_H
if (cm->frame_parallel_decode && sync != NULL) {
sync(data, mi_row);
}
#endif
// Check the last frame's mode and mv info.
if (prev_frame_mvs) {
// Synchronize here for frame parallel decode if sync function is provided.
if (cm->frame_parallel_decode && sync != NULL) {
sync(data, mi_row);
}
if (prev_frame_mvs->ref_frame[0] == ref_frame) {
ADD_MV_REF_LIST_EB(prev_frame_mvs->mv[0], refmv_count, mv_ref_list, Done);
} else if (prev_frame_mvs->ref_frame[1] == ref_frame) {
ADD_MV_REF_LIST_EB(prev_frame_mvs->mv[1], refmv_count, mv_ref_list, Done);
}
}
// Since we couldn't find 2 mvs from the same reference frame
// go back through the neighbors and find motion vectors from
// different reference frames.
if (different_ref_found) {
for (i = 0; i < MVREF_NEIGHBOURS; ++i) {
const POSITION *mv_ref = &mv_ref_search[i];
if (is_inside(tile, mi_col, mi_row, cm->mi_rows, mv_ref)) {
const MODE_INFO *const candidate =
xd->mi[mv_ref->col + mv_ref->row * xd->mi_stride];
// If the candidate is INTRA we don't want to consider its mv.
IF_DIFF_REF_FRAME_ADD_MV_EB(candidate, ref_frame, ref_sign_bias,
refmv_count, mv_ref_list, Done);
}
}
}
// Since we still don't have a candidate we'll try the last frame.
if (prev_frame_mvs) {
if (prev_frame_mvs->ref_frame[0] != ref_frame &&
prev_frame_mvs->ref_frame[0] > INTRA_FRAME) {
int_mv mv = prev_frame_mvs->mv[0];
if (ref_sign_bias[prev_frame_mvs->ref_frame[0]] !=
ref_sign_bias[ref_frame]) {
mv.as_mv.row *= -1;
mv.as_mv.col *= -1;
}
ADD_MV_REF_LIST_EB(mv, refmv_count, mv_ref_list, Done);
}
if (prev_frame_mvs->ref_frame[1] > INTRA_FRAME &&
prev_frame_mvs->ref_frame[1] != ref_frame &&
prev_frame_mvs->mv[1].as_int != prev_frame_mvs->mv[0].as_int) {
int_mv mv = prev_frame_mvs->mv[1];
if (ref_sign_bias[prev_frame_mvs->ref_frame[1]] !=
ref_sign_bias[ref_frame]) {
mv.as_mv.row *= -1;
mv.as_mv.col *= -1;
}
ADD_MV_REF_LIST_EB(mv, refmv_count, mv_ref_list, Done);
}
}
if (mode == NEARMV)
refmv_count = MAX_MV_REF_CANDIDATES;
else
// we only care about the nearestmv for the remaining modes
refmv_count = 1;
Done:
// Clamp vectors
for (i = 0; i < refmv_count; ++i)
clamp_mv_ref(&mv_ref_list[i].as_mv, xd);
return refmv_count;
}
static void append_sub8x8_mvs_for_idx(VP9_COMMON *cm, MACROBLOCKD *xd,
const POSITION *const mv_ref_search,
PREDICTION_MODE b_mode, int block,
int ref, int mi_row, int mi_col,
int_mv *best_sub8x8) {
int_mv mv_list[MAX_MV_REF_CANDIDATES];
MODE_INFO *const mi = xd->mi[0];
b_mode_info *bmi = mi->bmi;
int n;
int refmv_count;
assert(MAX_MV_REF_CANDIDATES == 2);
refmv_count = dec_find_mv_refs(cm, xd, b_mode, mi->ref_frame[ref],
mv_ref_search, mv_list, mi_row, mi_col, block,
1, NULL, NULL);
switch (block) {
case 0:
best_sub8x8->as_int = mv_list[refmv_count - 1].as_int;
break;
case 1:
case 2:
if (b_mode == NEARESTMV) {
best_sub8x8->as_int = bmi[0].as_mv[ref].as_int;
} else {
best_sub8x8->as_int = 0;
for (n = 0; n < refmv_count; ++n)
if (bmi[0].as_mv[ref].as_int != mv_list[n].as_int) {
best_sub8x8->as_int = mv_list[n].as_int;
break;
}
}
break;
case 3:
if (b_mode == NEARESTMV) {
best_sub8x8->as_int = bmi[2].as_mv[ref].as_int;
} else {
int_mv candidates[2 + MAX_MV_REF_CANDIDATES];
candidates[0] = bmi[1].as_mv[ref];
candidates[1] = bmi[0].as_mv[ref];
candidates[2] = mv_list[0];
candidates[3] = mv_list[1];
best_sub8x8->as_int = 0;
for (n = 0; n < 2 + MAX_MV_REF_CANDIDATES; ++n)
if (bmi[2].as_mv[ref].as_int != candidates[n].as_int) {
best_sub8x8->as_int = candidates[n].as_int;
break;
}
}
break;
default:
assert(0 && "Invalid block index.");
}
}
static uint8_t get_mode_context(const VP9_COMMON *cm, const MACROBLOCKD *xd,
const POSITION *const mv_ref_search,
int mi_row, int mi_col) {
int i;
int context_counter = 0;
const TileInfo *const tile = &xd->tile;
// Get mode count from nearest 2 blocks
for (i = 0; i < 2; ++i) {
const POSITION *const mv_ref = &mv_ref_search[i];
if (is_inside(tile, mi_col, mi_row, cm->mi_rows, mv_ref)) {
const MODE_INFO *const candidate =
xd->mi[mv_ref->col + mv_ref->row * xd->mi_stride];
// Keep counts for entropy encoding.
context_counter += mode_2_counter[candidate->mode];
}
}
return counter_to_context[context_counter];
}
static void read_inter_block_mode_info(VP9Decoder *const pbi,
MACROBLOCKD *const xd,
MODE_INFO *const mi,
int mi_row, int mi_col, vpx_reader *r) {
VP9_COMMON *const cm = &pbi->common;
const BLOCK_SIZE bsize = mi->sb_type;
const int allow_hp = cm->allow_high_precision_mv;
int_mv best_ref_mvs[2];
int ref, is_compound;
uint8_t inter_mode_ctx;
const POSITION *const mv_ref_search = mv_ref_blocks[bsize];
read_ref_frames(cm, xd, r, mi->segment_id, mi->ref_frame);
is_compound = has_second_ref(mi);
inter_mode_ctx = get_mode_context(cm, xd, mv_ref_search, mi_row, mi_col);
if (segfeature_active(&cm->seg, mi->segment_id, SEG_LVL_SKIP)) {
mi->mode = ZEROMV;
if (bsize < BLOCK_8X8) {
vpx_internal_error(xd->error_info, VPX_CODEC_UNSUP_BITSTREAM,
"Invalid usage of segement feature on small blocks");
return;
}
} else {
if (bsize >= BLOCK_8X8)
mi->mode = read_inter_mode(cm, xd, r, inter_mode_ctx);
else
// Sub 8x8 blocks use the nearestmv as a ref_mv if the b_mode is NEWMV.
// Setting mode to NEARESTMV forces the search to stop after the nearestmv
// has been found. After b_modes have been read, mode will be overwritten
// by the last b_mode.
mi->mode = NEARESTMV;
if (mi->mode != ZEROMV) {
for (ref = 0; ref < 1 + is_compound; ++ref) {
int_mv tmp_mvs[MAX_MV_REF_CANDIDATES];
const MV_REFERENCE_FRAME frame = mi->ref_frame[ref];
int refmv_count;
refmv_count = dec_find_mv_refs(cm, xd, mi->mode, frame, mv_ref_search,
tmp_mvs, mi_row, mi_col, -1, 0,
fpm_sync, (void *)pbi);
dec_find_best_ref_mvs(allow_hp, tmp_mvs, &best_ref_mvs[ref],
refmv_count);
}
}
}
mi->interp_filter = (cm->interp_filter == SWITCHABLE)
? read_switchable_interp_filter(cm, xd, r)
: cm->interp_filter;
if (bsize < BLOCK_8X8) {
const int num_4x4_w = 1 << xd->bmode_blocks_wl;
const int num_4x4_h = 1 << xd->bmode_blocks_hl;
int idx, idy;
PREDICTION_MODE b_mode;
int_mv best_sub8x8[2];
for (idy = 0; idy < 2; idy += num_4x4_h) {
for (idx = 0; idx < 2; idx += num_4x4_w) {
const int j = idy * 2 + idx;
b_mode = read_inter_mode(cm, xd, r, inter_mode_ctx);
if (b_mode == NEARESTMV || b_mode == NEARMV) {
for (ref = 0; ref < 1 + is_compound; ++ref)
append_sub8x8_mvs_for_idx(cm, xd, mv_ref_search, b_mode, j, ref,
mi_row, mi_col, &best_sub8x8[ref]);
}
if (!assign_mv(cm, xd, b_mode, mi->bmi[j].as_mv, best_ref_mvs,
best_sub8x8, is_compound, allow_hp, r)) {
xd->corrupted |= 1;
break;
}
if (num_4x4_h == 2)
mi->bmi[j + 2] = mi->bmi[j];
if (num_4x4_w == 2)
mi->bmi[j + 1] = mi->bmi[j];
}
}
mi->mode = b_mode;
copy_mv_pair(mi->mv, mi->bmi[3].as_mv);
} else {
xd->corrupted |= !assign_mv(cm, xd, mi->mode, mi->mv, best_ref_mvs,
best_ref_mvs, is_compound, allow_hp, r);
}
}
static void read_inter_frame_mode_info(VP9Decoder *const pbi,
MACROBLOCKD *const xd,
int mi_row, int mi_col, vpx_reader *r,
int x_mis, int y_mis) {
VP9_COMMON *const cm = &pbi->common;
MODE_INFO *const mi = xd->mi[0];
int inter_block;
mi->segment_id = read_inter_segment_id(cm, xd, mi_row, mi_col, r, x_mis,
y_mis);
mi->skip = read_skip(cm, xd, mi->segment_id, r);
inter_block = read_is_inter_block(cm, xd, mi->segment_id, r);
mi->tx_size = read_tx_size(cm, xd, !mi->skip || !inter_block, r);
if (inter_block)
read_inter_block_mode_info(pbi, xd, mi, mi_row, mi_col, r);
else
read_intra_block_mode_info(cm, xd, mi, r);
}
static INLINE void copy_ref_frame_pair(MV_REFERENCE_FRAME *dst,
const MV_REFERENCE_FRAME *src) {
memcpy(dst, src, sizeof(*dst) * 2);
}
void vp9_read_mode_info(VP9Decoder *const pbi, MACROBLOCKD *xd,
int mi_row, int mi_col, vpx_reader *r,
int x_mis, int y_mis) {
VP9_COMMON *const cm = &pbi->common;
MODE_INFO *const mi = xd->mi[0];
MV_REF* frame_mvs = cm->cur_frame->mvs + mi_row * cm->mi_cols + mi_col;
int w, h;
if (frame_is_intra_only(cm)) {
read_intra_frame_mode_info(cm, xd, mi_row, mi_col, r, x_mis, y_mis);
} else {
read_inter_frame_mode_info(pbi, xd, mi_row, mi_col, r, x_mis, y_mis);
for (h = 0; h < y_mis; ++h) {
for (w = 0; w < x_mis; ++w) {
MV_REF *const mv = frame_mvs + w;
copy_ref_frame_pair(mv->ref_frame, mi->ref_frame);
copy_mv_pair(mv->mv, mi->mv);
}
frame_mvs += cm->mi_cols;
}
}
#if CONFIG_BETTER_HW_COMPATIBILITY && CONFIG_VP9_HIGHBITDEPTH
if ((xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) &&
(xd->above_mi == NULL || xd->left_mi == NULL) &&
!is_inter_block(mi) && need_top_left[mi->uv_mode])
assert(0);
#endif // CONFIG_BETTER_HW_COMPATIBILITY && CONFIG_VP9_HIGHBITDEPTH
}