godot/thirdparty/bullet/BulletInverseDynamics/MultiBodyTree.hpp

364 lines
17 KiB
C++
Raw Normal View History

#ifndef MULTIBODYTREE_HPP_
#define MULTIBODYTREE_HPP_
#include "IDConfig.hpp"
#include "IDMath.hpp"
namespace btInverseDynamics {
/// Enumeration of supported joint types
enum JointType {
/// no degree of freedom, moves with parent
FIXED = 0,
/// one rotational degree of freedom relative to parent
REVOLUTE,
/// one translational degree of freedom relative to parent
PRISMATIC,
/// six degrees of freedom relative to parent
FLOATING
};
/// Interface class for calculating inverse dynamics for tree structured
/// multibody systems
///
/// Note on degrees of freedom
/// The q vector contains the generalized coordinate set defining the tree's configuration.
/// Every joint adds elements that define the corresponding link's frame pose relative to
/// its parent. For the joint types that is:
/// - FIXED: none
/// - REVOLUTE: angle of rotation [rad]
/// - PRISMATIC: displacement [m]
/// - FLOATING: Euler x-y-z angles [rad] and displacement in body-fixed frame of parent [m]
/// (in that order)
/// The u vector contains the generalized speeds, which are
/// - FIXED: none
/// - REVOLUTE: time derivative of angle of rotation [rad/s]
/// - PRISMATIC: time derivative of displacement [m/s]
/// - FLOATING: angular velocity [rad/s] (*not* time derivative of rpy angles)
/// and time derivative of displacement in parent frame [m/s]
///
/// The q and u vectors are obtained by stacking contributions of all bodies in one
/// vector in the order of body indices.
///
/// Note on generalized forces: analogous to u, i.e.,
/// - FIXED: none
/// - REVOLUTE: moment [Nm], about joint axis
/// - PRISMATIC: force [N], along joint axis
/// - FLOATING: moment vector [Nm] and force vector [N], both in body-fixed frame
/// (in that order)
///
/// TODO - force element interface (friction, springs, dampers, etc)
/// - gears and motor inertia
class MultiBodyTree {
public:
ID_DECLARE_ALIGNED_ALLOCATOR();
/// The contructor.
/// Initialization & allocation is via addBody and buildSystem calls.
MultiBodyTree();
/// the destructor. This also deallocates all memory
~MultiBodyTree();
/// Add body to the system. this allocates memory and not real-time safe.
/// This only adds the data to an initial cache. After all bodies have been
/// added,
/// the system is setup using the buildSystem call
/// @param body_index index of the body to be added. Must >=0, <number of bodies,
/// and index of parent must be < index of body
/// @param parent_index index of the parent body
/// The root of the tree has index 0 and its parent (the world frame)
/// is assigned index -1
/// the rotation and translation relative to the parent are taken as
/// pose of the root body relative to the world frame. Other parameters
/// are ignored
/// @param JointType type of joint connecting the body to the parent
/// @param mass the mass of the body
/// @param body_r_body_com the center of mass of the body relative to and
/// described in
/// the body fixed frame, which is located in the joint axis connecting
/// the body to its parent
/// @param body_I_body the moment of inertia of the body w.r.t the body-fixed
/// frame
/// (ie, the reference point is the origin of the body-fixed frame and
/// the matrix is written
/// w.r.t. those unit vectors)
/// @param parent_r_parent_body_ref position of joint relative to the parent
/// body's reference frame
/// for q=0, written in the parent bodies reference frame
/// @param body_axis_of_motion translation/rotation axis in body-fixed frame.
/// Ignored for joints that are not revolute or prismatic.
/// must be a unit vector.
/// @param body_T_parent_ref transform matrix from parent to body reference
/// frame for q=0.
/// This is the matrix transforming a vector represented in the
/// parent's reference frame into one represented
/// in this body's reference frame.
/// ie, if parent_vec is a vector in R^3 whose components are w.r.t to
/// the parent's reference frame,
/// then the same vector written w.r.t. this body's frame (for q=0) is
/// given by
/// body_vec = parent_R_body_ref * parent_vec
/// @param user_ptr pointer to user data
/// @param user_int pointer to user integer
/// @return 0 on success, -1 on error
int addBody(int body_index, int parent_index, JointType joint_type,
const vec3& parent_r_parent_body_ref, const mat33& body_T_parent_ref,
const vec3& body_axis_of_motion, idScalar mass, const vec3& body_r_body_com,
const mat33& body_I_body, const int user_int, void* user_ptr);
/// set policy for invalid mass properties
/// @param flag if true, invalid mass properties are accepted,
/// the default is false
void setAcceptInvalidMassParameters(bool flag);
/// @return the mass properties policy flag
bool getAcceptInvalidMassProperties() const;
/// build internal data structures
/// call this after all bodies have been added via addBody
/// @return 0 on success, -1 on error
int finalize();
/// pretty print ascii description of tree to stdout
void printTree();
/// print tree data to stdout
void printTreeData();
/// Calculate joint forces for given generalized state & derivatives.
/// This also updates kinematic terms computed in calculateKinematics.
/// If gravity is not set to zero, acceleration terms will contain
/// gravitational acceleration.
/// @param q generalized coordinates
/// @param u generalized velocities. In the general case, u=T(q)*dot(q) and dim(q)>=dim(u)
/// @param dot_u time derivative of u
/// @param joint_forces this is where the resulting joint forces will be
/// stored. dim(joint_forces) = dim(u)
/// @return 0 on success, -1 on error
int calculateInverseDynamics(const vecx& q, const vecx& u, const vecx& dot_u,
vecx* joint_forces);
/// Calculate joint space mass matrix
/// @param q generalized coordinates
/// @param initialize_matrix if true, initialize mass matrix with zero.
/// If mass_matrix is initialized to zero externally and only used
/// for mass matrix computations for the same system, it is safe to
/// set this to false.
/// @param set_lower_triangular_matrix if true, the lower triangular section of mass_matrix
/// is also populated, otherwise not.
/// @param mass_matrix matrix for storing the output (should be dim(q)xdim(q))
/// @return -1 on error, 0 on success
int calculateMassMatrix(const vecx& q, const bool update_kinematics,
const bool initialize_matrix, const bool set_lower_triangular_matrix,
matxx* mass_matrix);
/// Calculate joint space mass matrix.
/// This version will update kinematics, initialize all mass_matrix elements to zero and
/// populate all mass matrix entries.
/// @param q generalized coordinates
/// @param mass_matrix matrix for storing the output (should be dim(q)xdim(q))
/// @return -1 on error, 0 on success
int calculateMassMatrix(const vecx& q, matxx* mass_matrix);
/// Calculates kinematics also calculated in calculateInverseDynamics,
/// but not dynamics.
/// This function ensures that correct accelerations are computed that do not
/// contain gravitational acceleration terms.
/// Does not calculate Jacobians, but only vector quantities (positions, velocities & accelerations)
int calculateKinematics(const vecx& q, const vecx& u, const vecx& dot_u);
/// Calculate position kinematics
int calculatePositionKinematics(const vecx& q);
/// Calculate position and velocity kinematics
int calculatePositionAndVelocityKinematics(const vecx& q, const vecx& u);
#if (defined BT_ID_HAVE_MAT3X) && (defined BT_ID_WITH_JACOBIANS)
/// Calculate Jacobians (dvel/du), as well as velocity-dependent accelearation components
/// d(Jacobian)/dt*u
/// This function assumes that calculateInverseDynamics was called, or calculateKinematics,
/// or calculatePositionAndVelocityKinematics
int calculateJacobians(const vecx& q, const vecx& u);
/// Calculate Jacobians (dvel/du)
/// This function assumes that calculateInverseDynamics was called, or
/// one of the calculateKineamtics functions
int calculateJacobians(const vecx& q);
#endif // BT_ID_HAVE_MAT3X
/// set gravitational acceleration
/// the default is [0;0;-9.8] in the world frame
/// @param gravity the gravitational acceleration in world frame
/// @return 0 on success, -1 on error
int setGravityInWorldFrame(const vec3& gravity);
/// returns number of bodies in tree
int numBodies() const;
/// returns number of mechanical degrees of freedom (dimension of q-vector)
int numDoFs() const;
/// get origin of a body-fixed frame, represented in world frame
/// @param body_index index for frame/body
/// @param world_origin pointer for return data
/// @return 0 on success, -1 on error
int getBodyOrigin(const int body_index, vec3* world_origin) const;
/// get center of mass of a body, represented in world frame
/// @param body_index index for frame/body
/// @param world_com pointer for return data
/// @return 0 on success, -1 on error
int getBodyCoM(const int body_index, vec3* world_com) const;
/// get transform from of a body-fixed frame to the world frame
/// @param body_index index for frame/body
/// @param world_T_body pointer for return data
/// @return 0 on success, -1 on error
int getBodyTransform(const int body_index, mat33* world_T_body) const;
/// get absolute angular velocity for a body, represented in the world frame
/// @param body_index index for frame/body
/// @param world_omega pointer for return data
/// @return 0 on success, -1 on error
int getBodyAngularVelocity(const int body_index, vec3* world_omega) const;
/// get linear velocity of a body, represented in world frame
/// @param body_index index for frame/body
/// @param world_velocity pointer for return data
/// @return 0 on success, -1 on error
int getBodyLinearVelocity(const int body_index, vec3* world_velocity) const;
/// get linear velocity of a body's CoM, represented in world frame
/// (not required for inverse dynamics, provided for convenience)
/// @param body_index index for frame/body
/// @param world_vel_com pointer for return data
/// @return 0 on success, -1 on error
int getBodyLinearVelocityCoM(const int body_index, vec3* world_velocity) const;
/// get origin of a body-fixed frame, represented in world frame
/// @param body_index index for frame/body
/// @param world_origin pointer for return data
/// @return 0 on success, -1 on error
int getBodyAngularAcceleration(const int body_index, vec3* world_dot_omega) const;
/// get origin of a body-fixed frame, represented in world frame
/// NOTE: this will include the gravitational acceleration, so the actual acceleration is
/// obtainened by setting gravitational acceleration to zero, or subtracting it.
/// @param body_index index for frame/body
/// @param world_origin pointer for return data
/// @return 0 on success, -1 on error
int getBodyLinearAcceleration(const int body_index, vec3* world_acceleration) const;
#if (defined BT_ID_HAVE_MAT3X) && (defined BT_ID_WITH_JACOBIANS)
// get translational jacobian, in world frame (dworld_velocity/du)
int getBodyJacobianTrans(const int body_index, mat3x* world_jac_trans) const;
// get rotational jacobian, in world frame (dworld_omega/du)
int getBodyJacobianRot(const int body_index, mat3x* world_jac_rot) const;
// get product of translational jacobian derivative * generatlized velocities
int getBodyDotJacobianTransU(const int body_index, vec3* world_dot_jac_trans_u) const;
// get product of rotational jacobian derivative * generatlized velocities
int getBodyDotJacobianRotU(const int body_index, vec3* world_dot_jac_rot_u) const;
#endif // BT_ID_HAVE_MAT3X
/// returns the (internal) index of body
/// @param body_index is the index of a body
/// @param parent_index pointer to where parent index will be stored
/// @return 0 on success, -1 on error
int getParentIndex(const int body_index, int* parent_index) const;
/// get joint type
/// @param body_index index of the body
/// @param joint_type the corresponding joint type
/// @return 0 on success, -1 on failure
int getJointType(const int body_index, JointType* joint_type) const;
/// get joint type as string
/// @param body_index index of the body
/// @param joint_type string naming the corresponding joint type
/// @return 0 on success, -1 on failure
int getJointTypeStr(const int body_index, const char** joint_type) const;
/// get offset translation to parent body (see addBody)
/// @param body_index index of the body
/// @param r the offset translation (see above)
/// @return 0 on success, -1 on failure
int getParentRParentBodyRef(const int body_index, vec3* r) const;
/// get offset rotation to parent body (see addBody)
/// @param body_index index of the body
/// @param T the transform (see above)
/// @return 0 on success, -1 on failure
int getBodyTParentRef(const int body_index, mat33* T) const;
/// get axis of motion (see addBody)
/// @param body_index index of the body
/// @param axis the axis (see above)
/// @return 0 on success, -1 on failure
int getBodyAxisOfMotion(const int body_index, vec3* axis) const;
/// get offset for degrees of freedom of this body into the q-vector
/// @param body_index index of the body
/// @param q_offset offset the q vector
/// @return -1 on error, 0 on success
int getDoFOffset(const int body_index, int* q_offset) const;
/// get user integer. not used by the library.
/// @param body_index index of the body
/// @param user_int the user integer
/// @return 0 on success, -1 on error
int getUserInt(const int body_index, int* user_int) const;
/// get user pointer. not used by the library.
/// @param body_index index of the body
/// @param user_ptr the user pointer
/// @return 0 on success, -1 on error
int getUserPtr(const int body_index, void** user_ptr) const;
/// set user integer. not used by the library.
/// @param body_index index of the body
/// @param user_int the user integer
/// @return 0 on success, -1 on error
int setUserInt(const int body_index, const int user_int);
/// set user pointer. not used by the library.
/// @param body_index index of the body
/// @param user_ptr the user pointer
/// @return 0 on success, -1 on error
int setUserPtr(const int body_index, void* const user_ptr);
/// set mass for a body
/// @param body_index index of the body
/// @param mass the mass to set
/// @return 0 on success, -1 on failure
int setBodyMass(const int body_index, const idScalar mass);
/// set first moment of mass for a body
/// (mass * center of mass, in body fixed frame, relative to joint)
/// @param body_index index of the body
/// @param first_mass_moment the vector to set
/// @return 0 on success, -1 on failure
int setBodyFirstMassMoment(const int body_index, const vec3& first_mass_moment);
/// set second moment of mass for a body
/// (moment of inertia, in body fixed frame, relative to joint)
/// @param body_index index of the body
/// @param second_mass_moment the inertia matrix
/// @return 0 on success, -1 on failure
int setBodySecondMassMoment(const int body_index, const mat33& second_mass_moment);
/// get mass for a body
/// @param body_index index of the body
/// @param mass the mass
/// @return 0 on success, -1 on failure
int getBodyMass(const int body_index, idScalar* mass) const;
/// get first moment of mass for a body
/// (mass * center of mass, in body fixed frame, relative to joint)
/// @param body_index index of the body
/// @param first_moment the vector
/// @return 0 on success, -1 on failure
int getBodyFirstMassMoment(const int body_index, vec3* first_mass_moment) const;
/// get second moment of mass for a body
/// (moment of inertia, in body fixed frame, relative to joint)
/// @param body_index index of the body
/// @param second_mass_moment the inertia matrix
/// @return 0 on success, -1 on failure
int getBodySecondMassMoment(const int body_index, mat33* second_mass_moment) const;
/// set all user forces and moments to zero
void clearAllUserForcesAndMoments();
/// Add an external force to a body, acting at the origin of the body-fixed frame.
/// Calls to addUserForce are cumulative. Set the user force and moment to zero
/// via clearAllUserForcesAndMoments()
/// @param body_force the force represented in the body-fixed frame of reference
/// @return 0 on success, -1 on error
int addUserForce(const int body_index, const vec3& body_force);
/// Add an external moment to a body.
/// Calls to addUserMoment are cumulative. Set the user force and moment to zero
/// via clearAllUserForcesAndMoments()
/// @param body_moment the moment represented in the body-fixed frame of reference
/// @return 0 on success, -1 on error
int addUserMoment(const int body_index, const vec3& body_moment);
private:
// flag indicating if system has been initialized
bool m_is_finalized;
// flag indicating if mass properties are physically valid
bool m_mass_parameters_are_valid;
// flag defining if unphysical mass parameters are accepted
bool m_accept_invalid_mass_parameters;
// This struct implements the inverse dynamics calculations
class MultiBodyImpl;
MultiBodyImpl* m_impl;
// cache data structure for initialization
class InitCache;
InitCache* m_init_cache;
};
} // namespace btInverseDynamics
#endif // MULTIBODYTREE_HPP_