godot/servers/rendering/renderer_rd/effects/fsr2.cpp

892 lines
37 KiB
C++
Raw Normal View History

/**************************************************************************/
/* fsr2.cpp */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#include "fsr2.h"
#include "../storage_rd/material_storage.h"
#include "../uniform_set_cache_rd.h"
using namespace RendererRD;
#ifndef _MSC_VER
#include <wchar.h>
#define wcscpy_s wcscpy
#endif
static RD::TextureType ffx_resource_type_to_rd_texture_type(FfxResourceType p_type) {
switch (p_type) {
case FFX_RESOURCE_TYPE_TEXTURE1D:
return RD::TEXTURE_TYPE_1D;
case FFX_RESOURCE_TYPE_TEXTURE2D:
return RD::TEXTURE_TYPE_2D;
case FFX_RESOURCE_TYPE_TEXTURE3D:
return RD::TEXTURE_TYPE_3D;
default:
return RD::TEXTURE_TYPE_MAX;
}
}
static FfxResourceType rd_texture_type_to_ffx_resource_type(RD::TextureType p_type) {
switch (p_type) {
case RD::TEXTURE_TYPE_1D:
return FFX_RESOURCE_TYPE_TEXTURE1D;
case RD::TEXTURE_TYPE_2D:
return FFX_RESOURCE_TYPE_TEXTURE2D;
case RD::TEXTURE_TYPE_3D:
return FFX_RESOURCE_TYPE_TEXTURE3D;
default:
return FFX_RESOURCE_TYPE_BUFFER;
}
}
static RD::DataFormat ffx_surface_format_to_rd_format(FfxSurfaceFormat p_format) {
switch (p_format) {
case FFX_SURFACE_FORMAT_R32G32B32A32_TYPELESS:
return RD::DATA_FORMAT_R32G32B32A32_SFLOAT;
case FFX_SURFACE_FORMAT_R32G32B32A32_FLOAT:
return RD::DATA_FORMAT_R32G32B32A32_SFLOAT;
case FFX_SURFACE_FORMAT_R16G16B16A16_FLOAT:
return RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
case FFX_SURFACE_FORMAT_R16G16B16A16_UNORM:
return RD::DATA_FORMAT_R16G16B16A16_UNORM;
case FFX_SURFACE_FORMAT_R32G32_FLOAT:
return RD::DATA_FORMAT_R32G32_SFLOAT;
case FFX_SURFACE_FORMAT_R32_UINT:
return RD::DATA_FORMAT_R32_UINT;
case FFX_SURFACE_FORMAT_R8G8B8A8_TYPELESS:
return RD::DATA_FORMAT_R8G8B8A8_UNORM;
case FFX_SURFACE_FORMAT_R8G8B8A8_UNORM:
return RD::DATA_FORMAT_R8G8B8A8_UNORM;
case FFX_SURFACE_FORMAT_R11G11B10_FLOAT:
return RD::DATA_FORMAT_B10G11R11_UFLOAT_PACK32;
case FFX_SURFACE_FORMAT_R16G16_FLOAT:
return RD::DATA_FORMAT_R16G16_SFLOAT;
case FFX_SURFACE_FORMAT_R16G16_UINT:
return RD::DATA_FORMAT_R16G16_UINT;
case FFX_SURFACE_FORMAT_R16_FLOAT:
return RD::DATA_FORMAT_R16_SFLOAT;
case FFX_SURFACE_FORMAT_R16_UINT:
return RD::DATA_FORMAT_R16_UINT;
case FFX_SURFACE_FORMAT_R16_UNORM:
return RD::DATA_FORMAT_R16_UNORM;
case FFX_SURFACE_FORMAT_R16_SNORM:
return RD::DATA_FORMAT_R16_SNORM;
case FFX_SURFACE_FORMAT_R8_UNORM:
return RD::DATA_FORMAT_R8_UNORM;
case FFX_SURFACE_FORMAT_R8_UINT:
return RD::DATA_FORMAT_R8_UINT;
case FFX_SURFACE_FORMAT_R8G8_UNORM:
return RD::DATA_FORMAT_R8G8_UNORM;
case FFX_SURFACE_FORMAT_R32_FLOAT:
return RD::DATA_FORMAT_R32_SFLOAT;
default:
return RD::DATA_FORMAT_MAX;
}
}
static FfxSurfaceFormat rd_format_to_ffx_surface_format(RD::DataFormat p_format) {
switch (p_format) {
case RD::DATA_FORMAT_R32G32B32A32_SFLOAT:
return FFX_SURFACE_FORMAT_R32G32B32A32_FLOAT;
case RD::DATA_FORMAT_R16G16B16A16_SFLOAT:
return FFX_SURFACE_FORMAT_R16G16B16A16_FLOAT;
case RD::DATA_FORMAT_R16G16B16A16_UNORM:
return FFX_SURFACE_FORMAT_R16G16B16A16_UNORM;
case RD::DATA_FORMAT_R32G32_SFLOAT:
return FFX_SURFACE_FORMAT_R32G32_FLOAT;
case RD::DATA_FORMAT_R32_UINT:
return FFX_SURFACE_FORMAT_R32_UINT;
case RD::DATA_FORMAT_R8G8B8A8_UNORM:
return FFX_SURFACE_FORMAT_R8G8B8A8_UNORM;
case RD::DATA_FORMAT_B10G11R11_UFLOAT_PACK32:
return FFX_SURFACE_FORMAT_R11G11B10_FLOAT;
case RD::DATA_FORMAT_R16G16_SFLOAT:
return FFX_SURFACE_FORMAT_R16G16_FLOAT;
case RD::DATA_FORMAT_R16G16_UINT:
return FFX_SURFACE_FORMAT_R16G16_UINT;
case RD::DATA_FORMAT_R16_SFLOAT:
return FFX_SURFACE_FORMAT_R16_FLOAT;
case RD::DATA_FORMAT_R16_UINT:
return FFX_SURFACE_FORMAT_R16_UINT;
case RD::DATA_FORMAT_R16_UNORM:
return FFX_SURFACE_FORMAT_R16_UNORM;
case RD::DATA_FORMAT_R16_SNORM:
return FFX_SURFACE_FORMAT_R16_SNORM;
case RD::DATA_FORMAT_R8_UNORM:
return FFX_SURFACE_FORMAT_R8_UNORM;
case RD::DATA_FORMAT_R8_UINT:
return FFX_SURFACE_FORMAT_R8_UINT;
case RD::DATA_FORMAT_R8G8_UNORM:
return FFX_SURFACE_FORMAT_R8G8_UNORM;
case RD::DATA_FORMAT_R32_SFLOAT:
return FFX_SURFACE_FORMAT_R32_FLOAT;
default:
return FFX_SURFACE_FORMAT_UNKNOWN;
}
}
static uint32_t ffx_usage_to_rd_usage_flags(uint32_t p_flags) {
uint32_t ret = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_UPDATE_BIT;
if (p_flags & FFX_RESOURCE_USAGE_RENDERTARGET) {
ret |= RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT;
}
if (p_flags & FFX_RESOURCE_USAGE_UAV) {
ret |= RD::TEXTURE_USAGE_STORAGE_BIT;
ret |= RD::TEXTURE_USAGE_CAN_COPY_FROM_BIT;
ret |= RD::TEXTURE_USAGE_CAN_COPY_TO_BIT;
}
return ret;
}
static FfxErrorCode create_backend_context_rd(FfxFsr2Interface *p_backend_interface, FfxDevice p_device) {
FSR2Context::Scratch &scratch = *reinterpret_cast<FSR2Context::Scratch *>(p_backend_interface->scratchBuffer);
// Store pointer to the device common to all contexts.
scratch.device = p_device;
// Create a ring buffer of uniform buffers.
// FIXME: This could be optimized to be a single memory block if it was possible for RD to create views into a particular memory range of a UBO.
for (uint32_t i = 0; i < FSR2_UBO_RING_BUFFER_SIZE; i++) {
scratch.ubo_ring_buffer[i] = RD::get_singleton()->uniform_buffer_create(FFX_MAX_CONST_SIZE * sizeof(uint32_t));
ERR_FAIL_COND_V(scratch.ubo_ring_buffer[i].is_null(), FFX_ERROR_BACKEND_API_ERROR);
}
return FFX_OK;
}
static FfxErrorCode get_device_capabilities_rd(FfxFsr2Interface *p_backend_interface, FfxDeviceCapabilities *p_out_device_capabilities, FfxDevice p_device) {
FSR2Effect::Device &effect_device = *reinterpret_cast<FSR2Effect::Device *>(p_device);
*p_out_device_capabilities = effect_device.capabilities;
return FFX_OK;
}
static FfxErrorCode destroy_backend_context_rd(FfxFsr2Interface *p_backend_interface) {
FSR2Context::Scratch &scratch = *reinterpret_cast<FSR2Context::Scratch *>(p_backend_interface->scratchBuffer);
for (uint32_t i = 0; i < FSR2_UBO_RING_BUFFER_SIZE; i++) {
RD::get_singleton()->free(scratch.ubo_ring_buffer[i]);
}
return FFX_OK;
}
static FfxErrorCode create_resource_rd(FfxFsr2Interface *p_backend_interface, const FfxCreateResourceDescription *p_create_resource_description, FfxResourceInternal *p_out_resource) {
// FSR2's base implementation won't issue a call to create a heap type that isn't just default on its own,
// so we can safely ignore it as RD does not expose this concept.
ERR_FAIL_COND_V(p_create_resource_description->heapType != FFX_HEAP_TYPE_DEFAULT, FFX_ERROR_INVALID_ARGUMENT);
RenderingDevice *rd = RD::get_singleton();
FSR2Context::Scratch &scratch = *reinterpret_cast<FSR2Context::Scratch *>(p_backend_interface->scratchBuffer);
FfxResourceDescription res_desc = p_create_resource_description->resourceDescription;
// FSR2's base implementation never requests buffer creation.
ERR_FAIL_COND_V(res_desc.type != FFX_RESOURCE_TYPE_TEXTURE1D && res_desc.type != FFX_RESOURCE_TYPE_TEXTURE2D && res_desc.type != FFX_RESOURCE_TYPE_TEXTURE3D, FFX_ERROR_INVALID_ARGUMENT);
if (res_desc.mipCount == 0) {
// Mipmap count must be derived from the resource's dimensions.
res_desc.mipCount = uint32_t(1 + floor(log2(MAX(MAX(res_desc.width, res_desc.height), res_desc.depth))));
}
Vector<PackedByteArray> initial_data;
if (p_create_resource_description->initDataSize) {
PackedByteArray byte_array;
byte_array.resize(p_create_resource_description->initDataSize);
memcpy(byte_array.ptrw(), p_create_resource_description->initData, p_create_resource_description->initDataSize);
initial_data.push_back(byte_array);
}
RD::TextureFormat texture_format;
texture_format.texture_type = ffx_resource_type_to_rd_texture_type(res_desc.type);
texture_format.format = ffx_surface_format_to_rd_format(res_desc.format);
texture_format.usage_bits = ffx_usage_to_rd_usage_flags(p_create_resource_description->usage);
texture_format.width = res_desc.width;
texture_format.height = res_desc.height;
texture_format.depth = res_desc.depth;
texture_format.mipmaps = res_desc.mipCount;
RID texture = rd->texture_create(texture_format, RD::TextureView(), initial_data);
ERR_FAIL_COND_V(texture.is_null(), FFX_ERROR_BACKEND_API_ERROR);
rd->set_resource_name(texture, String(p_create_resource_description->name));
// Add the resource to the storage and use the internal index to reference it.
p_out_resource->internalIndex = scratch.resources.add(texture, false, p_create_resource_description->id, res_desc);
return FFX_OK;
}
static FfxErrorCode register_resource_rd(FfxFsr2Interface *p_backend_interface, const FfxResource *p_in_resource, FfxResourceInternal *p_out_resource) {
if (p_in_resource->resource == nullptr) {
// Null resource case.
p_out_resource->internalIndex = -1;
return FFX_OK;
}
FSR2Context::Scratch &scratch = *reinterpret_cast<FSR2Context::Scratch *>(p_backend_interface->scratchBuffer);
const RID &rid = *reinterpret_cast<const RID *>(p_in_resource->resource);
ERR_FAIL_COND_V(rid.is_null(), FFX_ERROR_INVALID_ARGUMENT);
// Add the resource to the storage and use the internal index to reference it.
p_out_resource->internalIndex = scratch.resources.add(rid, true, FSR2Context::RESOURCE_ID_DYNAMIC, p_in_resource->description);
return FFX_OK;
}
static FfxErrorCode unregister_resources_rd(FfxFsr2Interface *p_backend_interface) {
FSR2Context::Scratch &scratch = *reinterpret_cast<FSR2Context::Scratch *>(p_backend_interface->scratchBuffer);
LocalVector<uint32_t> dynamic_list_copy = scratch.resources.dynamic_list;
for (uint32_t i : dynamic_list_copy) {
scratch.resources.remove(i);
}
return FFX_OK;
}
static FfxResourceDescription get_resource_description_rd(FfxFsr2Interface *p_backend_interface, FfxResourceInternal p_resource) {
if (p_resource.internalIndex != -1) {
FSR2Context::Scratch &scratch = *reinterpret_cast<FSR2Context::Scratch *>(p_backend_interface->scratchBuffer);
return scratch.resources.descriptions[p_resource.internalIndex];
} else {
return {};
}
}
static FfxErrorCode destroy_resource_rd(FfxFsr2Interface *p_backend_interface, FfxResourceInternal p_resource) {
if (p_resource.internalIndex != -1) {
FSR2Context::Scratch &scratch = *reinterpret_cast<FSR2Context::Scratch *>(p_backend_interface->scratchBuffer);
if (scratch.resources.rids[p_resource.internalIndex].is_valid()) {
RD::get_singleton()->free(scratch.resources.rids[p_resource.internalIndex]);
scratch.resources.remove(p_resource.internalIndex);
}
}
return FFX_OK;
}
static FfxErrorCode create_pipeline_rd(FfxFsr2Interface *p_backend_interface, FfxFsr2Pass p_pass, const FfxPipelineDescription *p_pipeline_description, FfxPipelineState *p_out_pipeline) {
FSR2Context::Scratch &scratch = *reinterpret_cast<FSR2Context::Scratch *>(p_backend_interface->scratchBuffer);
FSR2Effect::Device &device = *reinterpret_cast<FSR2Effect::Device *>(scratch.device);
FSR2Effect::Pass &effect_pass = device.passes[p_pass];
if (effect_pass.pipeline.pipeline_rid.is_null()) {
// Create pipeline for the device if it hasn't been created yet.
effect_pass.root_signature.shader_rid = effect_pass.shader->version_get_shader(effect_pass.shader_version, effect_pass.shader_variant);
ERR_FAIL_COND_V(effect_pass.root_signature.shader_rid.is_null(), FFX_ERROR_BACKEND_API_ERROR);
effect_pass.pipeline.pipeline_rid = RD::get_singleton()->compute_pipeline_create(effect_pass.root_signature.shader_rid);
ERR_FAIL_COND_V(effect_pass.pipeline.pipeline_rid.is_null(), FFX_ERROR_BACKEND_API_ERROR);
}
// While this is not their intended use, we use the pipeline and root signature pointers to store the
// RIDs to the pipeline and shader that RD needs for the compute pipeline.
p_out_pipeline->pipeline = reinterpret_cast<FfxPipeline>(&effect_pass.pipeline);
p_out_pipeline->rootSignature = reinterpret_cast<FfxRootSignature>(&effect_pass.root_signature);
p_out_pipeline->srvCount = effect_pass.sampled_bindings.size();
ERR_FAIL_COND_V(p_out_pipeline->srvCount > FFX_MAX_NUM_SRVS, FFX_ERROR_OUT_OF_RANGE);
memcpy(p_out_pipeline->srvResourceBindings, effect_pass.sampled_bindings.ptr(), sizeof(FfxResourceBinding) * p_out_pipeline->srvCount);
p_out_pipeline->uavCount = effect_pass.storage_bindings.size();
ERR_FAIL_COND_V(p_out_pipeline->uavCount > FFX_MAX_NUM_UAVS, FFX_ERROR_OUT_OF_RANGE);
memcpy(p_out_pipeline->uavResourceBindings, effect_pass.storage_bindings.ptr(), sizeof(FfxResourceBinding) * p_out_pipeline->uavCount);
p_out_pipeline->constCount = effect_pass.uniform_bindings.size();
ERR_FAIL_COND_V(p_out_pipeline->constCount > FFX_MAX_NUM_CONST_BUFFERS, FFX_ERROR_OUT_OF_RANGE);
memcpy(p_out_pipeline->cbResourceBindings, effect_pass.uniform_bindings.ptr(), sizeof(FfxResourceBinding) * p_out_pipeline->constCount);
bool low_resolution_mvs = (p_pipeline_description->contextFlags & FFX_FSR2_ENABLE_DISPLAY_RESOLUTION_MOTION_VECTORS) == 0;
if (p_pass == FFX_FSR2_PASS_ACCUMULATE || p_pass == FFX_FSR2_PASS_ACCUMULATE_SHARPEN) {
// Change the binding for motion vectors in this particular pass if low resolution MVs are used.
if (low_resolution_mvs) {
FfxResourceBinding &binding = p_out_pipeline->srvResourceBindings[2];
wcscpy_s(binding.name, L"r_dilated_motion_vectors");
}
}
return FFX_OK;
}
static FfxErrorCode destroy_pipeline_rd(FfxFsr2Interface *p_backend_interface, FfxPipelineState *p_pipeline) {
// We don't want to destroy pipelines when the FSR2 API deems it necessary as it'll do so whenever the context is destroyed.
return FFX_OK;
}
static FfxErrorCode schedule_gpu_job_rd(FfxFsr2Interface *p_backend_interface, const FfxGpuJobDescription *p_job) {
ERR_FAIL_NULL_V(p_backend_interface, FFX_ERROR_INVALID_ARGUMENT);
ERR_FAIL_NULL_V(p_job, FFX_ERROR_INVALID_ARGUMENT);
FSR2Context::Scratch &scratch = *reinterpret_cast<FSR2Context::Scratch *>(p_backend_interface->scratchBuffer);
scratch.gpu_jobs.push_back(*p_job);
return FFX_OK;
}
static FfxErrorCode execute_gpu_job_clear_float_rd(FSR2Context::Scratch &p_scratch, const FfxClearFloatJobDescription &p_job) {
RID resource = p_scratch.resources.rids[p_job.target.internalIndex];
FfxResourceDescription &desc = p_scratch.resources.descriptions[p_job.target.internalIndex];
ERR_FAIL_COND_V(desc.type == FFX_RESOURCE_TYPE_BUFFER, FFX_ERROR_INVALID_ARGUMENT);
Color color(p_job.color[0], p_job.color[1], p_job.color[2], p_job.color[3]);
RD::get_singleton()->texture_clear(resource, color, 0, desc.mipCount, 0, 1);
return FFX_OK;
}
static FfxErrorCode execute_gpu_job_copy_rd(FSR2Context::Scratch &p_scratch, const FfxCopyJobDescription &p_job) {
RID src = p_scratch.resources.rids[p_job.src.internalIndex];
RID dst = p_scratch.resources.rids[p_job.dst.internalIndex];
FfxResourceDescription &src_desc = p_scratch.resources.descriptions[p_job.src.internalIndex];
FfxResourceDescription &dst_desc = p_scratch.resources.descriptions[p_job.dst.internalIndex];
ERR_FAIL_COND_V(src_desc.type == FFX_RESOURCE_TYPE_BUFFER, FFX_ERROR_INVALID_ARGUMENT);
ERR_FAIL_COND_V(dst_desc.type == FFX_RESOURCE_TYPE_BUFFER, FFX_ERROR_INVALID_ARGUMENT);
for (uint32_t mip_level = 0; mip_level < src_desc.mipCount; mip_level++) {
// Only push the barriers on the last copy.
// FIXME: This could be optimized if RenderingDevice was able to copy multiple mip levels in a single command.
BitField<RD::BarrierMask> post_barrier = (mip_level == (src_desc.mipCount - 1)) ? RD::BARRIER_MASK_ALL_BARRIERS : RD::BARRIER_MASK_NO_BARRIER;
RD::get_singleton()->texture_copy(src, dst, Vector3(0, 0, 0), Vector3(0, 0, 0), Vector3(src_desc.width, src_desc.height, src_desc.depth), mip_level, mip_level, 0, 0, post_barrier);
}
return FFX_OK;
}
static FfxErrorCode execute_gpu_job_compute_rd(FSR2Context::Scratch &p_scratch, const FfxComputeJobDescription &p_job) {
UniformSetCacheRD *uniform_set_cache = UniformSetCacheRD::get_singleton();
ERR_FAIL_NULL_V(uniform_set_cache, FFX_ERROR_BACKEND_API_ERROR);
FSR2Effect::RootSignature &root_signature = *reinterpret_cast<FSR2Effect::RootSignature *>(p_job.pipeline.rootSignature);
ERR_FAIL_COND_V(root_signature.shader_rid.is_null(), FFX_ERROR_INVALID_ARGUMENT);
FSR2Effect::Pipeline &backend_pipeline = *reinterpret_cast<FSR2Effect::Pipeline *>(p_job.pipeline.pipeline);
ERR_FAIL_COND_V(backend_pipeline.pipeline_rid.is_null(), FFX_ERROR_INVALID_ARGUMENT);
Vector<RD::Uniform> compute_uniforms;
for (uint32_t i = 0; i < p_job.pipeline.srvCount; i++) {
RID texture_rid = p_scratch.resources.rids[p_job.srvs[i].internalIndex];
RD::Uniform texture_uniform(RD::UNIFORM_TYPE_TEXTURE, p_job.pipeline.srvResourceBindings[i].slotIndex, texture_rid);
compute_uniforms.push_back(texture_uniform);
}
for (uint32_t i = 0; i < p_job.pipeline.uavCount; i++) {
RID image_rid = p_scratch.resources.rids[p_job.uavs[i].internalIndex];
RD::Uniform storage_uniform;
storage_uniform.uniform_type = RD::UNIFORM_TYPE_IMAGE;
storage_uniform.binding = p_job.pipeline.uavResourceBindings[i].slotIndex;
if (p_job.uavMip[i] > 0) {
LocalVector<RID> &mip_slice_rids = p_scratch.resources.mip_slice_rids[p_job.uavs[i].internalIndex];
if (mip_slice_rids.is_empty()) {
mip_slice_rids.resize(p_scratch.resources.descriptions[p_job.uavs[i].internalIndex].mipCount);
}
ERR_FAIL_COND_V(p_job.uavMip[i] >= mip_slice_rids.size(), FFX_ERROR_INVALID_ARGUMENT);
if (mip_slice_rids[p_job.uavMip[i]].is_null()) {
mip_slice_rids[p_job.uavMip[i]] = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), image_rid, 0, p_job.uavMip[i]);
}
ERR_FAIL_COND_V(mip_slice_rids[p_job.uavMip[i]].is_null(), FFX_ERROR_BACKEND_API_ERROR);
storage_uniform.append_id(mip_slice_rids[p_job.uavMip[i]]);
} else {
storage_uniform.append_id(image_rid);
}
compute_uniforms.push_back(storage_uniform);
}
for (uint32_t i = 0; i < p_job.pipeline.constCount; i++) {
RID buffer_rid = p_scratch.ubo_ring_buffer[p_scratch.ubo_ring_buffer_index];
p_scratch.ubo_ring_buffer_index = (p_scratch.ubo_ring_buffer_index + 1) % FSR2_UBO_RING_BUFFER_SIZE;
BitField<RD::BarrierMask> post_barrier = (i == (p_job.pipeline.constCount - 1)) ? RD::BARRIER_MASK_ALL_BARRIERS : RD::BARRIER_MASK_NO_BARRIER;
RD::get_singleton()->buffer_update(buffer_rid, 0, p_job.cbs[i].uint32Size * sizeof(uint32_t), p_job.cbs[i].data, post_barrier);
RD::Uniform buffer_uniform(RD::UNIFORM_TYPE_UNIFORM_BUFFER, p_job.pipeline.cbResourceBindings[i].slotIndex, buffer_rid);
compute_uniforms.push_back(buffer_uniform);
}
FSR2Effect::Device &device = *reinterpret_cast<FSR2Effect::Device *>(p_scratch.device);
RD::Uniform u_point_clamp_sampler(RD::UniformType::UNIFORM_TYPE_SAMPLER, 0, device.point_clamp_sampler);
RD::Uniform u_linear_clamp_sampler(RD::UniformType::UNIFORM_TYPE_SAMPLER, 1, device.linear_clamp_sampler);
RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, backend_pipeline.pipeline_rid);
RD::get_singleton()->compute_list_bind_uniform_set(compute_list, uniform_set_cache->get_cache(root_signature.shader_rid, 0, u_point_clamp_sampler, u_linear_clamp_sampler), 0);
RD::get_singleton()->compute_list_bind_uniform_set(compute_list, uniform_set_cache->get_cache_vec(root_signature.shader_rid, 1, compute_uniforms), 1);
RD::get_singleton()->compute_list_dispatch(compute_list, p_job.dimensions[0], p_job.dimensions[1], p_job.dimensions[2]);
RD::get_singleton()->compute_list_end();
return FFX_OK;
}
static FfxErrorCode execute_gpu_jobs_rd(FfxFsr2Interface *p_backend_interface, FfxCommandList p_command_list) {
ERR_FAIL_NULL_V(p_backend_interface, FFX_ERROR_INVALID_ARGUMENT);
FSR2Context::Scratch &scratch = *reinterpret_cast<FSR2Context::Scratch *>(p_backend_interface->scratchBuffer);
FfxErrorCode error_code = FFX_OK;
for (const FfxGpuJobDescription &job : scratch.gpu_jobs) {
switch (job.jobType) {
case FFX_GPU_JOB_CLEAR_FLOAT: {
error_code = execute_gpu_job_clear_float_rd(scratch, job.clearJobDescriptor);
} break;
case FFX_GPU_JOB_COPY: {
error_code = execute_gpu_job_copy_rd(scratch, job.copyJobDescriptor);
} break;
case FFX_GPU_JOB_COMPUTE: {
error_code = execute_gpu_job_compute_rd(scratch, job.computeJobDescriptor);
} break;
default: {
error_code = FFX_ERROR_INVALID_ARGUMENT;
} break;
}
if (error_code != FFX_OK) {
scratch.gpu_jobs.clear();
return error_code;
}
}
scratch.gpu_jobs.clear();
return FFX_OK;
}
static FfxResource get_resource_rd(RID *p_rid, const wchar_t *p_name) {
FfxResource res = {};
if (p_rid->is_null()) {
return res;
}
wcscpy_s(res.name, p_name);
RD::TextureFormat texture_format = RD::get_singleton()->texture_get_format(*p_rid);
res.description.type = rd_texture_type_to_ffx_resource_type(texture_format.texture_type);
res.description.format = rd_format_to_ffx_surface_format(texture_format.format);
res.description.width = texture_format.width;
res.description.height = texture_format.height;
res.description.depth = texture_format.depth;
res.description.mipCount = texture_format.mipmaps;
res.description.flags = FFX_RESOURCE_FLAGS_NONE;
res.resource = reinterpret_cast<void *>(p_rid);
res.isDepth = texture_format.usage_bits & RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT;
return res;
}
FSR2Context::~FSR2Context() {
ffxFsr2ContextDestroy(&fsr_context);
}
FSR2Effect::FSR2Effect() {
FfxDeviceCapabilities &capabilities = device.capabilities;
uint64_t default_subgroup_size = RD::get_singleton()->limit_get(RD::LIMIT_SUBGROUP_SIZE);
capabilities.minimumSupportedShaderModel = FFX_SHADER_MODEL_5_1;
capabilities.waveLaneCountMin = RD::get_singleton()->limit_get(RD::LIMIT_SUBGROUP_MIN_SIZE);
capabilities.waveLaneCountMax = RD::get_singleton()->limit_get(RD::LIMIT_SUBGROUP_MAX_SIZE);
capabilities.fp16Supported = RD::get_singleton()->has_feature(RD::Features::SUPPORTS_FSR_HALF_FLOAT);
capabilities.raytracingSupported = false;
bool force_wave_64 = default_subgroup_size == 32 && capabilities.waveLaneCountMax == 64;
bool use_lut = force_wave_64 || default_subgroup_size == 64;
String general_defines_base =
"\n#define FFX_GPU\n"
"\n#define FFX_GLSL 1\n"
"\n#define FFX_FSR2_OPTION_LOW_RESOLUTION_MOTION_VECTORS 1\n"
"\n#define FFX_FSR2_OPTION_HDR_COLOR_INPUT 1\n"
"\n#define FFX_FSR2_OPTION_GODOT_REACTIVE_MASK_CLAMP 1\n"
"\n#define FFX_FSR2_OPTION_GODOT_DERIVE_INVALID_MOTION_VECTORS 1\n";
if (use_lut) {
general_defines_base += "\n#define FFX_FSR2_OPTION_REPROJECT_USE_LANCZOS_TYPE 1\n";
}
String general_defines = general_defines_base;
if (capabilities.fp16Supported) {
general_defines += "\n#define FFX_HALF 1\n";
}
Vector<String> modes;
modes.push_back("");
// Since Godot currently lacks a shader reflection mechanism to persist the name of the bindings in the shader cache and
// there's also no mechanism to compile the shaders offline, the bindings are created manually by looking at the GLSL
// files included in FSR2 and mapping the macro bindings (#define FSR2_BIND_*) to their respective implementation names.
//
// It is not guaranteed these will remain consistent at all between versions of FSR2, so it'll be necessary to keep these
// bindings up to date whenever the library is updated. In such cases, it is very likely the validation layer will throw an
// error if the bindings do not match.
{
Pass &pass = device.passes[FFX_FSR2_PASS_DEPTH_CLIP];
pass.shader = &shaders.depth_clip;
pass.shader->initialize(modes, general_defines);
pass.shader_version = pass.shader->version_create();
pass.sampled_bindings = {
FfxResourceBinding{ 0, 0, L"r_reconstructed_previous_nearest_depth" },
FfxResourceBinding{ 1, 0, L"r_dilated_motion_vectors" },
FfxResourceBinding{ 2, 0, L"r_dilatedDepth" },
FfxResourceBinding{ 3, 0, L"r_reactive_mask" },
FfxResourceBinding{ 4, 0, L"r_transparency_and_composition_mask" },
FfxResourceBinding{ 5, 0, L"r_prepared_input_color" },
FfxResourceBinding{ 6, 0, L"r_previous_dilated_motion_vectors" },
FfxResourceBinding{ 7, 0, L"r_input_motion_vectors" },
FfxResourceBinding{ 8, 0, L"r_input_color_jittered" },
FfxResourceBinding{ 9, 0, L"r_input_depth" },
FfxResourceBinding{ 10, 0, L"r_input_exposure" }
};
pass.storage_bindings = {
// FSR2_BIND_UAV_DEPTH_CLIP (11) does not point to anything.
FfxResourceBinding{ 12, 0, L"rw_dilated_reactive_masks" },
FfxResourceBinding{ 13, 0, L"rw_prepared_input_color" }
};
pass.uniform_bindings = {
FfxResourceBinding{ 14, 0, L"cbFSR2" }
};
}
{
Pass &pass = device.passes[FFX_FSR2_PASS_RECONSTRUCT_PREVIOUS_DEPTH];
pass.shader = &shaders.reconstruct_previous_depth;
pass.shader->initialize(modes, general_defines);
pass.shader_version = pass.shader->version_create();
pass.sampled_bindings = {
FfxResourceBinding{ 0, 0, L"r_input_motion_vectors" },
FfxResourceBinding{ 1, 0, L"r_input_depth" },
FfxResourceBinding{ 2, 0, L"r_input_color_jittered" },
FfxResourceBinding{ 3, 0, L"r_input_exposure" },
FfxResourceBinding{ 4, 0, L"r_luma_history" }
};
pass.storage_bindings = {
FfxResourceBinding{ 5, 0, L"rw_reconstructed_previous_nearest_depth" },
FfxResourceBinding{ 6, 0, L"rw_dilated_motion_vectors" },
FfxResourceBinding{ 7, 0, L"rw_dilatedDepth" },
FfxResourceBinding{ 8, 0, L"rw_prepared_input_color" },
FfxResourceBinding{ 9, 0, L"rw_luma_history" },
// FSR2_BIND_UAV_LUMA_INSTABILITY (10) does not point to anything.
FfxResourceBinding{ 11, 0, L"rw_lock_input_luma" }
};
pass.uniform_bindings = {
FfxResourceBinding{ 12, 0, L"cbFSR2" }
};
}
{
Pass &pass = device.passes[FFX_FSR2_PASS_LOCK];
pass.shader = &shaders.lock;
pass.shader->initialize(modes, general_defines);
pass.shader_version = pass.shader->version_create();
pass.sampled_bindings = {
FfxResourceBinding{ 0, 0, L"r_lock_input_luma" }
};
pass.storage_bindings = {
FfxResourceBinding{ 1, 0, L"rw_new_locks" },
FfxResourceBinding{ 2, 0, L"rw_reconstructed_previous_nearest_depth" }
};
pass.uniform_bindings = {
FfxResourceBinding{ 3, 0, L"cbFSR2" }
};
}
{
Vector<String> accumulate_modes;
accumulate_modes.push_back("\n");
accumulate_modes.push_back("\n#define FFX_FSR2_OPTION_APPLY_SHARPENING 1\n");
String general_defines_accumulate;
if (RD::get_singleton()->get_device_vendor_name() == "NVIDIA") {
// Workaround: Disable FP16 path for the accumulate pass on NVIDIA due to reduced occupancy and high VRAM throughput.
general_defines_accumulate = general_defines_base;
} else {
general_defines_accumulate = general_defines;
}
Pass &pass = device.passes[FFX_FSR2_PASS_ACCUMULATE];
pass.shader = &shaders.accumulate;
pass.shader->initialize(accumulate_modes, general_defines_accumulate);
pass.shader_version = pass.shader->version_create();
pass.sampled_bindings = {
FfxResourceBinding{ 0, 0, L"r_input_exposure" },
FfxResourceBinding{ 1, 0, L"r_dilated_reactive_masks" },
FfxResourceBinding{ 2, 0, L"r_input_motion_vectors" },
FfxResourceBinding{ 3, 0, L"r_internal_upscaled_color" },
FfxResourceBinding{ 4, 0, L"r_lock_status" },
FfxResourceBinding{ 5, 0, L"r_input_depth" },
FfxResourceBinding{ 6, 0, L"r_prepared_input_color" },
// FSR2_BIND_SRV_LUMA_INSTABILITY(7) does not point to anything.
FfxResourceBinding{ 8, 0, L"r_lanczos_lut" },
FfxResourceBinding{ 9, 0, L"r_upsample_maximum_bias_lut" },
FfxResourceBinding{ 10, 0, L"r_imgMips" },
FfxResourceBinding{ 11, 0, L"r_auto_exposure" },
FfxResourceBinding{ 12, 0, L"r_luma_history" }
};
pass.storage_bindings = {
FfxResourceBinding{ 13, 0, L"rw_internal_upscaled_color" },
FfxResourceBinding{ 14, 0, L"rw_lock_status" },
FfxResourceBinding{ 15, 0, L"rw_upscaled_output" },
FfxResourceBinding{ 16, 0, L"rw_new_locks" },
FfxResourceBinding{ 17, 0, L"rw_luma_history" }
};
pass.uniform_bindings = {
FfxResourceBinding{ 18, 0, L"cbFSR2" }
};
// Sharpen pass is a clone of the accumulate pass.
Pass &sharpen_pass = device.passes[FFX_FSR2_PASS_ACCUMULATE_SHARPEN];
sharpen_pass = pass;
sharpen_pass.shader_variant = 1;
}
{
Pass &pass = device.passes[FFX_FSR2_PASS_RCAS];
pass.shader = &shaders.rcas;
pass.shader->initialize(modes, general_defines_base);
pass.shader_version = pass.shader->version_create();
pass.sampled_bindings = {
FfxResourceBinding{ 0, 0, L"r_input_exposure" },
FfxResourceBinding{ 1, 0, L"r_rcas_input" }
};
pass.storage_bindings = {
FfxResourceBinding{ 2, 0, L"rw_upscaled_output" }
};
pass.uniform_bindings = {
FfxResourceBinding{ 3, 0, L"cbFSR2" },
FfxResourceBinding{ 4, 0, L"cbRCAS" }
};
}
{
Pass &pass = device.passes[FFX_FSR2_PASS_COMPUTE_LUMINANCE_PYRAMID];
pass.shader = &shaders.compute_luminance_pyramid;
pass.shader->initialize(modes, general_defines_base);
pass.shader_version = pass.shader->version_create();
pass.sampled_bindings = {
FfxResourceBinding{ 0, 0, L"r_input_color_jittered" }
};
pass.storage_bindings = {
FfxResourceBinding{ 1, 0, L"rw_spd_global_atomic" },
FfxResourceBinding{ 2, 0, L"rw_img_mip_shading_change" },
FfxResourceBinding{ 3, 0, L"rw_img_mip_5" },
FfxResourceBinding{ 4, 0, L"rw_auto_exposure" }
};
pass.uniform_bindings = {
FfxResourceBinding{ 5, 0, L"cbFSR2" },
FfxResourceBinding{ 6, 0, L"cbSPD" }
};
}
{
Pass &pass = device.passes[FFX_FSR2_PASS_GENERATE_REACTIVE];
pass.shader = &shaders.autogen_reactive;
pass.shader->initialize(modes, general_defines);
pass.shader_version = pass.shader->version_create();
pass.sampled_bindings = {
FfxResourceBinding{ 0, 0, L"r_input_opaque_only" },
FfxResourceBinding{ 1, 0, L"r_input_color_jittered" }
};
pass.storage_bindings = {
FfxResourceBinding{ 2, 0, L"rw_output_autoreactive" }
};
pass.uniform_bindings = {
FfxResourceBinding{ 3, 0, L"cbGenerateReactive" },
FfxResourceBinding{ 4, 0, L"cbFSR2" }
};
}
{
Pass &pass = device.passes[FFX_FSR2_PASS_TCR_AUTOGENERATE];
pass.shader = &shaders.tcr_autogen;
pass.shader->initialize(modes, general_defines);
pass.shader_version = pass.shader->version_create();
pass.sampled_bindings = {
FfxResourceBinding{ 0, 0, L"r_input_opaque_only" },
FfxResourceBinding{ 1, 0, L"r_input_color_jittered" },
FfxResourceBinding{ 2, 0, L"r_input_motion_vectors" },
FfxResourceBinding{ 3, 0, L"r_input_prev_color_pre_alpha" },
FfxResourceBinding{ 4, 0, L"r_input_prev_color_post_alpha" },
FfxResourceBinding{ 5, 0, L"r_reactive_mask" },
FfxResourceBinding{ 6, 0, L"r_transparency_and_composition_mask" },
FfxResourceBinding{ 13, 0, L"r_input_depth" }
};
pass.storage_bindings = {
FfxResourceBinding{ 7, 0, L"rw_output_autoreactive" },
FfxResourceBinding{ 8, 0, L"rw_output_autocomposition" },
FfxResourceBinding{ 9, 0, L"rw_output_prev_color_pre_alpha" },
FfxResourceBinding{ 10, 0, L"rw_output_prev_color_post_alpha" }
};
pass.uniform_bindings = {
FfxResourceBinding{ 11, 0, L"cbFSR2" },
FfxResourceBinding{ 12, 0, L"cbGenerateReactive" }
};
}
RD::SamplerState state;
state.mag_filter = RD::SAMPLER_FILTER_NEAREST;
state.min_filter = RD::SAMPLER_FILTER_NEAREST;
state.repeat_u = RD::SAMPLER_REPEAT_MODE_CLAMP_TO_EDGE;
state.repeat_v = RD::SAMPLER_REPEAT_MODE_CLAMP_TO_EDGE;
state.repeat_w = RD::SAMPLER_REPEAT_MODE_CLAMP_TO_EDGE;
state.min_lod = -1000.0f;
state.max_lod = 1000.0f;
state.anisotropy_max = 1.0;
device.point_clamp_sampler = RD::get_singleton()->sampler_create(state);
ERR_FAIL_COND(device.point_clamp_sampler.is_null());
state.mag_filter = RD::SAMPLER_FILTER_LINEAR;
state.min_filter = RD::SAMPLER_FILTER_LINEAR;
device.linear_clamp_sampler = RD::get_singleton()->sampler_create(state);
ERR_FAIL_COND(device.linear_clamp_sampler.is_null());
}
FSR2Effect::~FSR2Effect() {
RD::get_singleton()->free(device.point_clamp_sampler);
RD::get_singleton()->free(device.linear_clamp_sampler);
for (uint32_t i = 0; i < FFX_FSR2_PASS_COUNT; i++) {
if (device.passes[i].pipeline.pipeline_rid.is_valid()) {
RD::get_singleton()->free(device.passes[i].pipeline.pipeline_rid);
}
device.passes[i].shader->version_free(device.passes[i].shader_version);
}
}
FSR2Context *FSR2Effect::create_context(Size2i p_internal_size, Size2i p_target_size) {
FSR2Context *context = memnew(RendererRD::FSR2Context);
context->fsr_desc.flags = FFX_FSR2_ENABLE_HIGH_DYNAMIC_RANGE;
context->fsr_desc.maxRenderSize.width = p_internal_size.x;
context->fsr_desc.maxRenderSize.height = p_internal_size.y;
context->fsr_desc.displaySize.width = p_target_size.x;
context->fsr_desc.displaySize.height = p_target_size.y;
context->fsr_desc.device = &device;
FfxFsr2Interface &functions = context->fsr_desc.callbacks;
functions.fpCreateBackendContext = create_backend_context_rd;
functions.fpGetDeviceCapabilities = get_device_capabilities_rd;
functions.fpDestroyBackendContext = destroy_backend_context_rd;
functions.fpCreateResource = create_resource_rd;
functions.fpRegisterResource = register_resource_rd;
functions.fpUnregisterResources = unregister_resources_rd;
functions.fpGetResourceDescription = get_resource_description_rd;
functions.fpDestroyResource = destroy_resource_rd;
functions.fpCreatePipeline = create_pipeline_rd;
functions.fpDestroyPipeline = destroy_pipeline_rd;
functions.fpScheduleGpuJob = schedule_gpu_job_rd;
functions.fpExecuteGpuJobs = execute_gpu_jobs_rd;
functions.scratchBuffer = &context->scratch;
functions.scratchBufferSize = sizeof(context->scratch);
FfxErrorCode result = ffxFsr2ContextCreate(&context->fsr_context, &context->fsr_desc);
if (result == FFX_OK) {
return context;
} else {
memdelete(context);
return nullptr;
}
}
void FSR2Effect::upscale(const Parameters &p_params) {
// TODO: Transparency & Composition mask is not implemented.
FfxFsr2DispatchDescription dispatch_desc = {};
RID color = p_params.color;
RID depth = p_params.depth;
RID velocity = p_params.velocity;
RID reactive = p_params.reactive;
RID exposure = p_params.exposure;
RID output = p_params.output;
dispatch_desc.commandList = nullptr;
dispatch_desc.color = get_resource_rd(&color, L"color");
dispatch_desc.depth = get_resource_rd(&depth, L"depth");
dispatch_desc.motionVectors = get_resource_rd(&velocity, L"velocity");
dispatch_desc.reactive = get_resource_rd(&reactive, L"reactive");
dispatch_desc.exposure = get_resource_rd(&exposure, L"exposure");
dispatch_desc.transparencyAndComposition = {};
dispatch_desc.output = get_resource_rd(&output, L"output");
dispatch_desc.colorOpaqueOnly = {};
dispatch_desc.jitterOffset.x = p_params.jitter.x;
dispatch_desc.jitterOffset.y = p_params.jitter.y;
dispatch_desc.motionVectorScale.x = float(p_params.internal_size.width);
dispatch_desc.motionVectorScale.y = float(p_params.internal_size.height);
dispatch_desc.reset = p_params.reset_accumulation;
dispatch_desc.renderSize.width = p_params.internal_size.width;
dispatch_desc.renderSize.height = p_params.internal_size.height;
dispatch_desc.enableSharpening = (p_params.sharpness > 1e-6f);
dispatch_desc.sharpness = p_params.sharpness;
dispatch_desc.frameTimeDelta = p_params.delta_time;
dispatch_desc.preExposure = 1.0f;
dispatch_desc.cameraNear = p_params.z_near;
dispatch_desc.cameraFar = p_params.z_far;
dispatch_desc.cameraFovAngleVertical = p_params.fovy;
dispatch_desc.viewSpaceToMetersFactor = 1.0f;
dispatch_desc.enableAutoReactive = false;
dispatch_desc.autoTcThreshold = 1.0f;
dispatch_desc.autoTcScale = 1.0f;
dispatch_desc.autoReactiveScale = 1.0f;
dispatch_desc.autoReactiveMax = 1.0f;
RendererRD::MaterialStorage::store_camera(p_params.reprojection, dispatch_desc.reprojectionMatrix);
FfxErrorCode result = ffxFsr2ContextDispatch(&p_params.context->fsr_context, &dispatch_desc);
ERR_FAIL_COND(result != FFX_OK);
}