2023-01-10 14:26:54 +00:00
|
|
|
/**************************************************************************/
|
|
|
|
/* FBXBinaryTokenizer.cpp */
|
|
|
|
/**************************************************************************/
|
|
|
|
/* This file is part of: */
|
|
|
|
/* GODOT ENGINE */
|
|
|
|
/* https://godotengine.org */
|
|
|
|
/**************************************************************************/
|
|
|
|
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
|
|
|
|
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
|
|
|
|
/* */
|
|
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
|
|
/* a copy of this software and associated documentation files (the */
|
|
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
|
|
/* the following conditions: */
|
|
|
|
/* */
|
|
|
|
/* The above copyright notice and this permission notice shall be */
|
|
|
|
/* included in all copies or substantial portions of the Software. */
|
|
|
|
/* */
|
|
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
|
|
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
|
|
/**************************************************************************/
|
Rewrite FBX Importer to convert directly to Godot scene format
Co-authored-by: Gordon MacPherson <gordon@gordonite.tech>
Co-authored-by: Andrea Catania <info@andreacatania.com>
Co-authored-by: K. S. Ernest (iFire) Lee <ernest.lee@chibifire.com>
This is a complete rewrite of the importer. It will give more deterministic behaviour and has been sponsored by IMVU inc, over 1 year has gone into the development of this importer to remove the burden of the FBX SDK.
This was my project for 1 entire year and I really enjoyed the opportunity to add to Godot.
Along the road of implementing fixes we implemented fbx pivots, animations and inheritance type handling, which in most cases works properly.
We have implemented animation and mesh skinning too this should work out of the box, if there are issues let us know.
It's designed so that you can expand this with ease, and fix bugs easily too.
It can import from Autodesk Maya and import into Godot, with pivots.
There are bits we could polish but for now this is good enough.
Additional fixes made before upstreaming:
- fixed memory leaks
- ensure consistent ordering on mac linux and windows for fbx tree. (very important for material import to be deterministic)
- disabled incorrect warnings for fbx_material
- added compatibility code for /RootNode/ so compat is not broken
- Optimise FBX - directly import triangles
- remove debug messages
- add messages for mesh id, mesh re-import is sometimes slow and we need to know what mesh is being worked on
- Document no longer uses unordered maps
- Removed some usages of &GetRequiredToken replaced with safe *GetRequiredToken() function
- Added parser debugging
- Added ERR_FAIL_CONDS for unsupported mesh formats (we can add these later super easy to do now)
- Add memory debugging for the Tokens and the TokenParser to make it safe
- Add memory initialisation to mesh.cpp surface_tool.h and mesh.h
- Initialise boolean flags properly
- Refactored to correct naming for the fbx_mesh_data.h so you know what data you are working on
- Disabled corruption caused by the FIXME:
- Fixed document reading indexes and index_to_direct vs indexes mode
- Fixed UV1 and UV2 coordinates
- Fixed importer failing to import version 7700 files
- Replaced memory handling in the FBX Document with pointers, before it was dereferencing invalid memory.
- Fixed typed properties
- Improved Document API
- Fixed bug with ProcessDOMConnection() not working with the bool flag set to true.
- Fixed FBX skinning not deforming for more than one single mesh
- Fixed FBX skeleton mapping and skin mapping not being applied properly (now retrieved from document skin list)
- Fixed set_bone_pose being used in final version()
- Fixed material properties exceeding 1.0.
- FBX Document parser revamped to use safe memory practices, and with graceful error messages.
- ScopePtr, TokenPtr and various internal types have been fleshed out to use proper typedefs across the codebase.
- Fixed memory leaks caused by token cleanup failing (now explicit cleanup step, no shared_ptr, etc)
- Fixed bug with PropertyTable not reading all properties and not cleaning up properly.
- Fixed smoothing groups not working
- Fixed normal duplications
- Fixed duplication check for pre-existing coordinates.
- Fixed performance of vertex lookup in large meshes being slow, using lookup table separate to the data for indexing, this reduces import time from 10 minutes of bistro down to 30 seconds.
- Fixed includes requiring absolute path in headers and cpp files using CPPPath.
Bugs/Features wish list:
- locator bones
- quat anim key interpolation (most fbx maya files have euler rotations from blender and maya, nobody uses this)
- some rigs skins scale up when SSC enabled inconsistently per bone
- some skins can disappear entirely
- material mapping needs expanded, but this will be done for 4.0 as it requires rewrite.
Workarounds for issues found until we patch them:
- mesh -> clear skin can resolve most of the bugs above.
- locators can be worked around by removing them before exporting your rig.
- some material properties wont always import, this is okay to override in the material properties.
**If you are having issues or need support fear not!**
Please provide minimal rigs which can reproduce issues as we can't spend a lot of time investigating each rig. We need a small example which breaks and we can then sort the problem. In some cases this is not possible so its okay to privately send models to us via IRC or a ticket and we can provide an email address, we won't reveal or disclose privately sent rig files to any companies, or to companies I work for, they will not be shared, only tested and bugs will be drawn up from the conclusions. Also include identifying information about what you did and how it didn't work. Please file each file separately in a bug report, unless the problem is the same.
This was sponsored by IMVU, and a special thanks to everyone who supported this project.
Signed-off-by: Gordon MacPherson <gordon@gordonite.tech>
2020-10-20 17:00:16 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
Open Asset Import Library (assimp)
|
|
|
|
----------------------------------------------------------------------
|
|
|
|
|
|
|
|
Copyright (c) 2006-2019, assimp team
|
|
|
|
|
|
|
|
|
|
|
|
All rights reserved.
|
|
|
|
|
|
|
|
Redistribution and use of this software in source and binary forms,
|
|
|
|
with or without modification, are permitted provided that the
|
|
|
|
following conditions are met:
|
|
|
|
|
|
|
|
* Redistributions of source code must retain the above
|
|
|
|
copyright notice, this list of conditions and the
|
|
|
|
following disclaimer.
|
|
|
|
|
|
|
|
* Redistributions in binary form must reproduce the above
|
|
|
|
copyright notice, this list of conditions and the
|
|
|
|
following disclaimer in the documentation and/or other
|
|
|
|
materials provided with the distribution.
|
|
|
|
|
|
|
|
* Neither the name of the assimp team, nor the names of its
|
|
|
|
contributors may be used to endorse or promote products
|
|
|
|
derived from this software without specific prior
|
|
|
|
written permission of the assimp team.
|
|
|
|
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
|
|
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
|
|
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
|
|
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
|
|
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
|
|
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
|
|
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
|
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
|
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
|
|
|
|
----------------------------------------------------------------------
|
|
|
|
*/
|
|
|
|
/** @file FBXBinaryTokenizer.cpp
|
|
|
|
* @brief Implementation of a fake lexer for binary fbx files -
|
|
|
|
* we emit tokens so the parser needs almost no special handling
|
|
|
|
* for binary files.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "ByteSwapper.h"
|
|
|
|
#include "FBXTokenizer.h"
|
|
|
|
#include "core/print_string.h"
|
|
|
|
|
|
|
|
#include <stdint.h>
|
|
|
|
|
|
|
|
namespace FBXDocParser {
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
|
|
Token::Token(const char *sbegin, const char *send, TokenType type, size_t offset) :
|
|
|
|
sbegin(sbegin),
|
|
|
|
send(send),
|
|
|
|
type(type),
|
|
|
|
line(offset),
|
|
|
|
column(BINARY_MARKER) {
|
|
|
|
#ifdef DEBUG_ENABLED
|
|
|
|
contents = std::string(sbegin, static_cast<size_t>(send - sbegin));
|
|
|
|
#endif
|
|
|
|
// calc length
|
|
|
|
// measure from sBegin to sEnd and validate?
|
|
|
|
}
|
|
|
|
|
|
|
|
namespace {
|
|
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
|
|
// signal tokenization error
|
|
|
|
void TokenizeError(const std::string &message, size_t offset) {
|
|
|
|
print_error("[FBX-Tokenize] " + String(message.c_str()) + ", offset " + itos(offset));
|
|
|
|
}
|
|
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
|
|
size_t Offset(const char *begin, const char *cursor) {
|
|
|
|
//ai_assert(begin <= cursor);
|
|
|
|
|
|
|
|
return cursor - begin;
|
|
|
|
}
|
|
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
|
|
void TokenizeError(const std::string &message, const char *begin, const char *cursor) {
|
|
|
|
TokenizeError(message, Offset(begin, cursor));
|
|
|
|
}
|
|
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
|
|
uint32_t ReadWord(const char *input, const char *&cursor, const char *end) {
|
|
|
|
const size_t k_to_read = sizeof(uint32_t);
|
|
|
|
if (Offset(cursor, end) < k_to_read) {
|
|
|
|
TokenizeError("cannot ReadWord, out of bounds", input, cursor);
|
|
|
|
}
|
|
|
|
|
|
|
|
uint32_t word;
|
|
|
|
::memcpy(&word, cursor, 4);
|
|
|
|
AI_SWAP4(word);
|
|
|
|
|
|
|
|
cursor += k_to_read;
|
|
|
|
|
|
|
|
return word;
|
|
|
|
}
|
|
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
|
|
uint64_t ReadDoubleWord(const char *input, const char *&cursor, const char *end) {
|
|
|
|
const size_t k_to_read = sizeof(uint64_t);
|
|
|
|
if (Offset(cursor, end) < k_to_read) {
|
|
|
|
TokenizeError("cannot ReadDoubleWord, out of bounds", input, cursor);
|
|
|
|
}
|
|
|
|
|
|
|
|
uint64_t dword /*= *reinterpret_cast<const uint64_t*>(cursor)*/;
|
|
|
|
::memcpy(&dword, cursor, sizeof(uint64_t));
|
|
|
|
AI_SWAP8(dword);
|
|
|
|
|
|
|
|
cursor += k_to_read;
|
|
|
|
|
|
|
|
return dword;
|
|
|
|
}
|
|
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
|
|
uint8_t ReadByte(const char *input, const char *&cursor, const char *end) {
|
|
|
|
if (Offset(cursor, end) < sizeof(uint8_t)) {
|
|
|
|
TokenizeError("cannot ReadByte, out of bounds", input, cursor);
|
|
|
|
}
|
|
|
|
|
|
|
|
uint8_t word; /* = *reinterpret_cast< const uint8_t* >( cursor )*/
|
|
|
|
::memcpy(&word, cursor, sizeof(uint8_t));
|
|
|
|
++cursor;
|
|
|
|
|
|
|
|
return word;
|
|
|
|
}
|
|
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
|
|
unsigned int ReadString(const char *&sbegin_out, const char *&send_out, const char *input,
|
|
|
|
const char *&cursor, const char *end, bool long_length = false, bool allow_null = false) {
|
|
|
|
const uint32_t len_len = long_length ? 4 : 1;
|
|
|
|
if (Offset(cursor, end) < len_len) {
|
|
|
|
TokenizeError("cannot ReadString, out of bounds reading length", input, cursor);
|
|
|
|
}
|
|
|
|
|
|
|
|
const uint32_t length = long_length ? ReadWord(input, cursor, end) : ReadByte(input, cursor, end);
|
|
|
|
|
|
|
|
if (Offset(cursor, end) < length) {
|
|
|
|
TokenizeError("cannot ReadString, length is out of bounds", input, cursor);
|
|
|
|
}
|
|
|
|
|
|
|
|
sbegin_out = cursor;
|
|
|
|
cursor += length;
|
|
|
|
|
|
|
|
send_out = cursor;
|
|
|
|
|
|
|
|
if (!allow_null) {
|
|
|
|
for (unsigned int i = 0; i < length; ++i) {
|
|
|
|
if (sbegin_out[i] == '\0') {
|
|
|
|
TokenizeError("failed ReadString, unexpected NUL character in string", input, cursor);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return length;
|
|
|
|
}
|
|
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
|
|
void ReadData(const char *&sbegin_out, const char *&send_out, const char *input, const char *&cursor, const char *end) {
|
|
|
|
if (Offset(cursor, end) < 1) {
|
|
|
|
TokenizeError("cannot ReadData, out of bounds reading length", input, cursor);
|
|
|
|
}
|
|
|
|
|
|
|
|
const char type = *cursor;
|
|
|
|
sbegin_out = cursor++;
|
|
|
|
|
|
|
|
switch (type) {
|
|
|
|
// 16 bit int
|
|
|
|
case 'Y':
|
|
|
|
cursor += 2;
|
|
|
|
break;
|
|
|
|
|
|
|
|
// 1 bit bool flag (yes/no)
|
|
|
|
case 'C':
|
|
|
|
cursor += 1;
|
|
|
|
break;
|
|
|
|
|
|
|
|
// 32 bit int
|
|
|
|
case 'I':
|
|
|
|
// <- fall through
|
|
|
|
|
|
|
|
// float
|
|
|
|
case 'F':
|
|
|
|
cursor += 4;
|
|
|
|
break;
|
|
|
|
|
|
|
|
// double
|
|
|
|
case 'D':
|
|
|
|
cursor += 8;
|
|
|
|
break;
|
|
|
|
|
|
|
|
// 64 bit int
|
|
|
|
case 'L':
|
|
|
|
cursor += 8;
|
|
|
|
break;
|
|
|
|
|
|
|
|
// note: do not write cursor += ReadWord(...cursor) as this would be UB
|
|
|
|
|
|
|
|
// raw binary data
|
|
|
|
case 'R': {
|
|
|
|
const uint32_t length = ReadWord(input, cursor, end);
|
|
|
|
cursor += length;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
case 'b':
|
|
|
|
// TODO: what is the 'b' type code? Right now we just skip over it /
|
|
|
|
// take the full range we could get
|
|
|
|
cursor = end;
|
|
|
|
break;
|
|
|
|
|
|
|
|
// array of *
|
|
|
|
case 'f':
|
|
|
|
case 'd':
|
|
|
|
case 'l':
|
|
|
|
case 'i':
|
|
|
|
case 'c': {
|
|
|
|
const uint32_t length = ReadWord(input, cursor, end);
|
|
|
|
const uint32_t encoding = ReadWord(input, cursor, end);
|
|
|
|
|
|
|
|
const uint32_t comp_len = ReadWord(input, cursor, end);
|
|
|
|
|
|
|
|
// compute length based on type and check against the stored value
|
|
|
|
if (encoding == 0) {
|
|
|
|
uint32_t stride = 0;
|
|
|
|
switch (type) {
|
|
|
|
case 'f':
|
|
|
|
case 'i':
|
|
|
|
stride = 4;
|
|
|
|
break;
|
|
|
|
|
|
|
|
case 'd':
|
|
|
|
case 'l':
|
|
|
|
stride = 8;
|
|
|
|
break;
|
|
|
|
|
|
|
|
case 'c':
|
|
|
|
stride = 1;
|
|
|
|
break;
|
|
|
|
|
|
|
|
default:
|
|
|
|
break;
|
|
|
|
};
|
|
|
|
//ai_assert(stride > 0);
|
|
|
|
if (length * stride != comp_len) {
|
|
|
|
TokenizeError("cannot ReadData, calculated data stride differs from what the file claims", input, cursor);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// zip/deflate algorithm (encoding==1)? take given length. anything else? die
|
|
|
|
else if (encoding != 1) {
|
|
|
|
TokenizeError("cannot ReadData, unknown encoding", input, cursor);
|
|
|
|
}
|
|
|
|
cursor += comp_len;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
// string
|
|
|
|
case 'S': {
|
|
|
|
const char *sb, *se;
|
|
|
|
// 0 characters can legally happen in such strings
|
|
|
|
ReadString(sb, se, input, cursor, end, true, true);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
default:
|
|
|
|
TokenizeError("cannot ReadData, unexpected type code: " + std::string(&type, 1), input, cursor);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (cursor > end) {
|
|
|
|
TokenizeError("cannot ReadData, the remaining size is too small for the data type: " + std::string(&type, 1), input, cursor);
|
|
|
|
}
|
|
|
|
|
|
|
|
// the type code is contained in the returned range
|
|
|
|
send_out = cursor;
|
|
|
|
}
|
|
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
|
|
bool ReadScope(TokenList &output_tokens, const char *input, const char *&cursor, const char *end, bool const is64bits) {
|
|
|
|
// the first word contains the offset at which this block ends
|
|
|
|
const uint64_t end_offset = is64bits ? ReadDoubleWord(input, cursor, end) : ReadWord(input, cursor, end);
|
|
|
|
|
|
|
|
// we may get 0 if reading reached the end of the file -
|
|
|
|
// fbx files have a mysterious extra footer which I don't know
|
|
|
|
// how to extract any information from, but at least it always
|
|
|
|
// starts with a 0.
|
|
|
|
if (!end_offset) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (end_offset > Offset(input, end)) {
|
|
|
|
TokenizeError("block offset is out of range", input, cursor);
|
|
|
|
} else if (end_offset < Offset(input, cursor)) {
|
|
|
|
TokenizeError("block offset is negative out of range", input, cursor);
|
|
|
|
}
|
|
|
|
|
|
|
|
// the second data word contains the number of properties in the scope
|
|
|
|
const uint64_t prop_count = is64bits ? ReadDoubleWord(input, cursor, end) : ReadWord(input, cursor, end);
|
|
|
|
|
|
|
|
// the third data word contains the length of the property list
|
|
|
|
const uint64_t prop_length = is64bits ? ReadDoubleWord(input, cursor, end) : ReadWord(input, cursor, end);
|
|
|
|
|
|
|
|
// now comes the name of the scope/key
|
|
|
|
const char *sbeg, *send;
|
|
|
|
ReadString(sbeg, send, input, cursor, end);
|
|
|
|
|
|
|
|
output_tokens.push_back(new_Token(sbeg, send, TokenType_KEY, Offset(input, cursor)));
|
|
|
|
|
|
|
|
// now come the individual properties
|
|
|
|
const char *begin_cursor = cursor;
|
|
|
|
for (unsigned int i = 0; i < prop_count; ++i) {
|
|
|
|
ReadData(sbeg, send, input, cursor, begin_cursor + prop_length);
|
|
|
|
|
|
|
|
output_tokens.push_back(new_Token(sbeg, send, TokenType_DATA, Offset(input, cursor)));
|
|
|
|
|
|
|
|
if (i != prop_count - 1) {
|
|
|
|
output_tokens.push_back(new_Token(cursor, cursor + 1, TokenType_COMMA, Offset(input, cursor)));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (Offset(begin_cursor, cursor) != prop_length) {
|
|
|
|
TokenizeError("property length not reached, something is wrong", input, cursor);
|
|
|
|
}
|
|
|
|
|
|
|
|
// at the end of each nested block, there is a NUL record to indicate
|
|
|
|
// that the sub-scope exists (i.e. to distinguish between P: and P : {})
|
|
|
|
// this NUL record is 13 bytes long on 32 bit version and 25 bytes long on 64 bit.
|
|
|
|
const size_t sentinel_block_length = is64bits ? (sizeof(uint64_t) * 3 + 1) : (sizeof(uint32_t) * 3 + 1);
|
|
|
|
|
|
|
|
if (Offset(input, cursor) < end_offset) {
|
|
|
|
if (end_offset - Offset(input, cursor) < sentinel_block_length) {
|
|
|
|
TokenizeError("insufficient padding bytes at block end", input, cursor);
|
|
|
|
}
|
|
|
|
|
|
|
|
output_tokens.push_back(new_Token(cursor, cursor + 1, TokenType_OPEN_BRACKET, Offset(input, cursor)));
|
|
|
|
|
|
|
|
// XXX this is vulnerable to stack overflowing ..
|
|
|
|
while (Offset(input, cursor) < end_offset - sentinel_block_length) {
|
|
|
|
ReadScope(output_tokens, input, cursor, input + end_offset - sentinel_block_length, is64bits);
|
|
|
|
}
|
|
|
|
output_tokens.push_back(new_Token(cursor, cursor + 1, TokenType_CLOSE_BRACKET, Offset(input, cursor)));
|
|
|
|
|
|
|
|
for (unsigned int i = 0; i < sentinel_block_length; ++i) {
|
|
|
|
if (cursor[i] != '\0') {
|
|
|
|
TokenizeError("failed to read nested block sentinel, expected all bytes to be 0", input, cursor);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
cursor += sentinel_block_length;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (Offset(input, cursor) != end_offset) {
|
|
|
|
TokenizeError("scope length not reached, something is wrong", input, cursor);
|
|
|
|
}
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
} // anonymous namespace
|
|
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
|
|
// TODO: Test FBX Binary files newer than the 7500 version to check if the 64 bits address behaviour is consistent
|
|
|
|
void TokenizeBinary(TokenList &output_tokens, const char *input, size_t length) {
|
|
|
|
if (length < 0x1b) {
|
|
|
|
//TokenizeError("file is too short",0);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (strncmp(input, "Kaydara FBX Binary", 18)) {
|
|
|
|
TokenizeError("magic bytes not found", 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
const char *cursor = input + 18;
|
|
|
|
/*Result ignored*/ ReadByte(input, cursor, input + length);
|
|
|
|
/*Result ignored*/ ReadByte(input, cursor, input + length);
|
|
|
|
/*Result ignored*/ ReadByte(input, cursor, input + length);
|
|
|
|
/*Result ignored*/ ReadByte(input, cursor, input + length);
|
|
|
|
/*Result ignored*/ ReadByte(input, cursor, input + length);
|
|
|
|
const uint32_t version = ReadWord(input, cursor, input + length);
|
|
|
|
print_verbose("FBX Version: " + itos(version));
|
|
|
|
//ASSIMP_LOG_DEBUG_F("FBX version: ", version);
|
|
|
|
const bool is64bits = version >= 7500;
|
|
|
|
const char *end = input + length;
|
|
|
|
while (cursor < end) {
|
|
|
|
if (!ReadScope(output_tokens, input, cursor, input + length, is64bits)) {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
} // namespace FBXDocParser
|