godot/servers/visual/rasterizer.cpp

734 lines
26 KiB
C++
Raw Normal View History

/**************************************************************************/
/* rasterizer.cpp */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
2014-02-10 01:10:30 +00:00
#include "rasterizer.h"
2017-08-27 19:07:15 +00:00
#include "core/os/os.h"
#include "core/print_string.h"
2014-02-10 01:10:30 +00:00
#if defined(DEBUG_ENABLED) && defined(TOOLS_ENABLED)
#include "core/project_settings.h"
#endif
Rasterizer *(*Rasterizer::_create_func)() = nullptr;
Rasterizer *Rasterizer::create() {
return _create_func();
}
RasterizerStorage *RasterizerStorage::base_singleton = nullptr;
RasterizerStorage::RasterizerStorage() {
base_singleton = this;
}
bool RasterizerStorage::material_uses_tangents(RID p_material) {
return false;
}
bool RasterizerStorage::material_uses_ensure_correct_normals(RID p_material) {
return false;
}
void RasterizerStorage::InterpolationData::notify_free_multimesh(RID p_rid) {
// print_line("free multimesh " + itos(p_rid.get_id()));
// if the instance was on any of the lists, remove
multimesh_interpolate_update_list.erase_multiple_unordered(p_rid);
multimesh_transform_update_lists[0].erase_multiple_unordered(p_rid);
multimesh_transform_update_lists[1].erase_multiple_unordered(p_rid);
}
void RasterizerStorage::update_interpolation_tick(bool p_process) {
// detect any that were on the previous transform list that are no longer active,
// we should remove them from the interpolate list
for (unsigned int n = 0; n < _interpolation_data.multimesh_transform_update_list_prev->size(); n++) {
const RID &rid = (*_interpolation_data.multimesh_transform_update_list_prev)[n];
bool active = true;
// no longer active? (either the instance deleted or no longer being transformed)
MMInterpolator *mmi = _multimesh_get_interpolator(rid);
if (mmi && !mmi->on_transform_update_list) {
active = false;
mmi->on_interpolate_update_list = false;
// make sure the most recent transform is set
// copy data rather than use Pool = function?
mmi->_data_interpolated = mmi->_data_curr;
// and that both prev and current are the same, just in case of any interpolations
mmi->_data_prev = mmi->_data_curr;
// make sure are updated one more time to ensure the AABBs are correct
//_instance_queue_update(instance, true);
}
if (!mmi) {
active = false;
}
if (!active) {
_interpolation_data.multimesh_interpolate_update_list.erase(rid);
}
}
if (p_process) {
for (unsigned int i = 0; i < _interpolation_data.multimesh_transform_update_list_curr->size(); i++) {
const RID &rid = (*_interpolation_data.multimesh_transform_update_list_curr)[i];
MMInterpolator *mmi = _multimesh_get_interpolator(rid);
if (mmi) {
// reset for next tick
mmi->on_transform_update_list = false;
mmi->_data_prev = mmi->_data_curr;
}
} // for n
}
// if any have left the transform list, remove from the interpolate list
// we maintain a mirror list for the transform updates, so we can detect when an instance
// is no longer being transformed, and remove it from the interpolate list
SWAP(_interpolation_data.multimesh_transform_update_list_curr, _interpolation_data.multimesh_transform_update_list_prev);
// prepare for the next iteration
_interpolation_data.multimesh_transform_update_list_curr->clear();
}
void RasterizerStorage::update_interpolation_frame(bool p_process) {
if (p_process) {
// Only need 32 bit for interpolation, don't use real_t
float f = Engine::get_singleton()->get_physics_interpolation_fraction();
for (unsigned int c = 0; c < _interpolation_data.multimesh_interpolate_update_list.size(); c++) {
const RID &rid = _interpolation_data.multimesh_interpolate_update_list[c];
// We could use the TransformInterpolator here to slerp transforms, but that might be too expensive,
// so just using a Basis lerp for now.
MMInterpolator *mmi = _multimesh_get_interpolator(rid);
if (mmi) {
// make sure arrays are correct size
DEV_ASSERT(mmi->_data_prev.size() == mmi->_data_curr.size());
if (mmi->_data_interpolated.size() < mmi->_data_curr.size()) {
mmi->_data_interpolated.resize(mmi->_data_curr.size());
}
DEV_ASSERT(mmi->_data_interpolated.size() >= mmi->_data_curr.size());
DEV_ASSERT((mmi->_data_curr.size() % mmi->_stride) == 0);
int num = mmi->_data_curr.size() / mmi->_stride;
PoolVector<float>::Read r_prev = mmi->_data_prev.read();
PoolVector<float>::Read r_curr = mmi->_data_curr.read();
PoolVector<float>::Write w = mmi->_data_interpolated.write();
const float *pf_prev = r_prev.ptr();
const float *pf_curr = r_curr.ptr();
float *pf_int = w.ptr();
bool use_lerp = mmi->quality == 0;
// temporary transform (needed for swizzling)
// (transform prev, curr and result)
Transform tp, tc, tr;
// Test for cache friendliness versus doing branchless
for (int n = 0; n < num; n++) {
// Transform
if (use_lerp) {
for (int i = 0; i < mmi->_vf_size_xform; i++) {
float a = pf_prev[i];
float b = pf_curr[i];
pf_int[i] = (a + ((b - a) * f));
}
} else {
// Silly swizzling, this will slow things down. no idea why it is using this format
// .. maybe due to the shader.
tp.basis.elements[0][0] = pf_prev[0];
tp.basis.elements[0][1] = pf_prev[1];
tp.basis.elements[0][2] = pf_prev[2];
tp.basis.elements[1][0] = pf_prev[4];
tp.basis.elements[1][1] = pf_prev[5];
tp.basis.elements[1][2] = pf_prev[6];
tp.basis.elements[2][0] = pf_prev[8];
tp.basis.elements[2][1] = pf_prev[9];
tp.basis.elements[2][2] = pf_prev[10];
tp.origin.x = pf_prev[3];
tp.origin.y = pf_prev[7];
tp.origin.z = pf_prev[11];
tc.basis.elements[0][0] = pf_curr[0];
tc.basis.elements[0][1] = pf_curr[1];
tc.basis.elements[0][2] = pf_curr[2];
tc.basis.elements[1][0] = pf_curr[4];
tc.basis.elements[1][1] = pf_curr[5];
tc.basis.elements[1][2] = pf_curr[6];
tc.basis.elements[2][0] = pf_curr[8];
tc.basis.elements[2][1] = pf_curr[9];
tc.basis.elements[2][2] = pf_curr[10];
tc.origin.x = pf_curr[3];
tc.origin.y = pf_curr[7];
tc.origin.z = pf_curr[11];
TransformInterpolator::interpolate_transform(tp, tc, tr, f);
pf_int[0] = tr.basis.elements[0][0];
pf_int[1] = tr.basis.elements[0][1];
pf_int[2] = tr.basis.elements[0][2];
pf_int[4] = tr.basis.elements[1][0];
pf_int[5] = tr.basis.elements[1][1];
pf_int[6] = tr.basis.elements[1][2];
pf_int[8] = tr.basis.elements[2][0];
pf_int[9] = tr.basis.elements[2][1];
pf_int[10] = tr.basis.elements[2][2];
pf_int[3] = tr.origin.x;
pf_int[7] = tr.origin.y;
pf_int[11] = tr.origin.z;
}
pf_prev += mmi->_vf_size_xform;
pf_curr += mmi->_vf_size_xform;
pf_int += mmi->_vf_size_xform;
// Color
if (mmi->_vf_size_color == 1) {
const uint8_t *p8_prev = (const uint8_t *)pf_prev;
const uint8_t *p8_curr = (const uint8_t *)pf_curr;
uint8_t *p8_int = (uint8_t *)pf_int;
_interpolate_RGBA8(p8_prev, p8_curr, p8_int, f);
pf_prev += 1;
pf_curr += 1;
pf_int += 1;
} else if (mmi->_vf_size_color == 4) {
for (int i = 0; i < 4; i++) {
pf_int[i] = pf_prev[i] + ((pf_curr[i] - pf_prev[i]) * f);
}
pf_prev += 4;
pf_curr += 4;
pf_int += 4;
}
// Custom Data
if (mmi->_vf_size_data == 1) {
const uint8_t *p8_prev = (const uint8_t *)pf_prev;
const uint8_t *p8_curr = (const uint8_t *)pf_curr;
uint8_t *p8_int = (uint8_t *)pf_int;
_interpolate_RGBA8(p8_prev, p8_curr, p8_int, f);
pf_prev += 1;
pf_curr += 1;
pf_int += 1;
} else if (mmi->_vf_size_data == 4) {
for (int i = 0; i < 4; i++) {
pf_int[i] = pf_prev[i] + ((pf_curr[i] - pf_prev[i]) * f);
}
pf_prev += 4;
pf_curr += 4;
pf_int += 4;
}
}
_multimesh_set_as_bulk_array(rid, mmi->_data_interpolated);
// make sure AABBs are constantly up to date through the interpolation?
// NYI
}
} // for n
}
}
RID RasterizerStorage::multimesh_create() {
return _multimesh_create();
}
void RasterizerStorage::multimesh_allocate(RID p_multimesh, int p_instances, VS::MultimeshTransformFormat p_transform_format, VS::MultimeshColorFormat p_color_format, VS::MultimeshCustomDataFormat p_data) {
MMInterpolator *mmi = _multimesh_get_interpolator(p_multimesh);
if (mmi) {
mmi->_transform_format = p_transform_format;
mmi->_color_format = p_color_format;
mmi->_data_format = p_data;
mmi->_num_instances = p_instances;
mmi->_vf_size_xform = p_transform_format == VS::MULTIMESH_TRANSFORM_3D ? 12 : 8;
switch (p_color_format) {
default: {
mmi->_vf_size_color = 0;
} break;
case VS::MULTIMESH_COLOR_8BIT: {
mmi->_vf_size_color = 1;
} break;
case VS::MULTIMESH_COLOR_FLOAT: {
mmi->_vf_size_color = 4;
} break;
}
switch (p_data) {
default: {
mmi->_vf_size_data = 0;
} break;
case VS::MULTIMESH_CUSTOM_DATA_8BIT: {
mmi->_vf_size_data = 1;
} break;
case VS::MULTIMESH_CUSTOM_DATA_FLOAT: {
mmi->_vf_size_data = 4;
} break;
}
mmi->_stride = mmi->_vf_size_xform + mmi->_vf_size_color + mmi->_vf_size_data;
int size_in_floats = p_instances * mmi->_stride;
mmi->_data_curr.resize(size_in_floats);
mmi->_data_prev.resize(size_in_floats);
mmi->_data_interpolated.resize(size_in_floats);
}
return _multimesh_allocate(p_multimesh, p_instances, p_transform_format, p_color_format, p_data);
}
int RasterizerStorage::multimesh_get_instance_count(RID p_multimesh) const {
return _multimesh_get_instance_count(p_multimesh);
}
void RasterizerStorage::multimesh_set_mesh(RID p_multimesh, RID p_mesh) {
_multimesh_set_mesh(p_multimesh, p_mesh);
}
void RasterizerStorage::multimesh_instance_set_transform(RID p_multimesh, int p_index, const Transform &p_transform) {
MMInterpolator *mmi = _multimesh_get_interpolator(p_multimesh);
if (mmi) {
if (mmi->interpolated) {
ERR_FAIL_COND(p_index >= mmi->_num_instances);
ERR_FAIL_COND(mmi->_vf_size_xform != 12);
PoolVector<float>::Write w = mmi->_data_curr.write();
int start = p_index * mmi->_stride;
float *ptr = w.ptr();
ptr += start;
const Transform &t = p_transform;
ptr[0] = t.basis.elements[0][0];
ptr[1] = t.basis.elements[0][1];
ptr[2] = t.basis.elements[0][2];
ptr[3] = t.origin.x;
ptr[4] = t.basis.elements[1][0];
ptr[5] = t.basis.elements[1][1];
ptr[6] = t.basis.elements[1][2];
ptr[7] = t.origin.y;
ptr[8] = t.basis.elements[2][0];
ptr[9] = t.basis.elements[2][1];
ptr[10] = t.basis.elements[2][2];
ptr[11] = t.origin.z;
_multimesh_add_to_interpolation_lists(p_multimesh, *mmi);
#if defined(DEBUG_ENABLED) && defined(TOOLS_ENABLED)
if (!Engine::get_singleton()->is_in_physics_frame()) {
static int32_t warn_count = 0;
warn_count++;
if (((warn_count % 2048) == 0) && GLOBAL_GET("debug/settings/physics_interpolation/enable_warnings")) {
WARN_PRINT("[Physics interpolation] MultiMesh interpolation is being triggered from outside physics process, this might lead to issues (possibly benign).");
}
}
#endif
return;
}
}
_multimesh_instance_set_transform(p_multimesh, p_index, p_transform);
}
void RasterizerStorage::multimesh_instance_set_transform_2d(RID p_multimesh, int p_index, const Transform2D &p_transform) {
_multimesh_instance_set_transform_2d(p_multimesh, p_index, p_transform);
}
void RasterizerStorage::multimesh_instance_set_color(RID p_multimesh, int p_index, const Color &p_color) {
MMInterpolator *mmi = _multimesh_get_interpolator(p_multimesh);
if (mmi) {
if (mmi->interpolated) {
ERR_FAIL_COND(p_index >= mmi->_num_instances);
ERR_FAIL_COND(mmi->_vf_size_color == 0);
PoolVector<float>::Write w = mmi->_data_curr.write();
int start = (p_index * mmi->_stride) + mmi->_vf_size_xform;
float *ptr = w.ptr();
ptr += start;
if (mmi->_vf_size_color == 4) {
for (int n = 0; n < 4; n++) {
ptr[n] = p_color.components[n];
}
} else {
#ifdef DEV_ENABLED
// The options are currently 4, 1, or zero, but just in case this changes in future...
ERR_FAIL_COND(mmi->_vf_size_color != 1);
#endif
uint32_t *pui = (uint32_t *)ptr;
*pui = p_color.to_rgba32();
}
_multimesh_add_to_interpolation_lists(p_multimesh, *mmi);
return;
}
}
_multimesh_instance_set_color(p_multimesh, p_index, p_color);
}
void RasterizerStorage::multimesh_instance_set_custom_data(RID p_multimesh, int p_index, const Color &p_color) {
MMInterpolator *mmi = _multimesh_get_interpolator(p_multimesh);
if (mmi) {
if (mmi->interpolated) {
ERR_FAIL_COND(p_index >= mmi->_num_instances);
ERR_FAIL_COND(mmi->_vf_size_data == 0);
PoolVector<float>::Write w = mmi->_data_curr.write();
int start = (p_index * mmi->_stride) + mmi->_vf_size_xform + mmi->_vf_size_color;
float *ptr = w.ptr();
ptr += start;
if (mmi->_vf_size_data == 4) {
for (int n = 0; n < 4; n++) {
ptr[n] = p_color.components[n];
}
} else {
#ifdef DEV_ENABLED
// The options are currently 4, 1, or zero, but just in case this changes in future...
ERR_FAIL_COND(mmi->_vf_size_data != 1);
#endif
uint32_t *pui = (uint32_t *)ptr;
*pui = p_color.to_rgba32();
}
_multimesh_add_to_interpolation_lists(p_multimesh, *mmi);
return;
}
}
_multimesh_instance_set_custom_data(p_multimesh, p_index, p_color);
}
RID RasterizerStorage::multimesh_get_mesh(RID p_multimesh) const {
return _multimesh_get_mesh(p_multimesh);
}
Transform RasterizerStorage::multimesh_instance_get_transform(RID p_multimesh, int p_index) const {
return _multimesh_instance_get_transform(p_multimesh, p_index);
}
Transform2D RasterizerStorage::multimesh_instance_get_transform_2d(RID p_multimesh, int p_index) const {
return _multimesh_instance_get_transform_2d(p_multimesh, p_index);
}
Color RasterizerStorage::multimesh_instance_get_color(RID p_multimesh, int p_index) const {
return _multimesh_instance_get_color(p_multimesh, p_index);
}
Color RasterizerStorage::multimesh_instance_get_custom_data(RID p_multimesh, int p_index) const {
return _multimesh_instance_get_custom_data(p_multimesh, p_index);
}
void RasterizerStorage::multimesh_set_physics_interpolated(RID p_multimesh, bool p_interpolated) {
MMInterpolator *mmi = _multimesh_get_interpolator(p_multimesh);
if (mmi) {
mmi->interpolated = p_interpolated;
}
}
void RasterizerStorage::multimesh_set_physics_interpolation_quality(RID p_multimesh, VS::MultimeshPhysicsInterpolationQuality p_quality) {
ERR_FAIL_COND((p_quality < 0) || (p_quality > 1));
MMInterpolator *mmi = _multimesh_get_interpolator(p_multimesh);
if (mmi) {
mmi->quality = (int)p_quality;
}
}
void RasterizerStorage::multimesh_instance_reset_physics_interpolation(RID p_multimesh, int p_index) {
MMInterpolator *mmi = _multimesh_get_interpolator(p_multimesh);
if (mmi) {
ERR_FAIL_INDEX(p_index, mmi->_num_instances);
PoolVector<float>::Write w = mmi->_data_prev.write();
PoolVector<float>::Read r = mmi->_data_curr.read();
int start = p_index * mmi->_stride;
for (int n = 0; n < mmi->_stride; n++) {
w[start + n] = r[start + n];
}
}
}
void RasterizerStorage::_multimesh_add_to_interpolation_lists(RID p_multimesh, MMInterpolator &r_mmi) {
if (!r_mmi.on_interpolate_update_list) {
r_mmi.on_interpolate_update_list = true;
_interpolation_data.multimesh_interpolate_update_list.push_back(p_multimesh);
}
if (!r_mmi.on_transform_update_list) {
r_mmi.on_transform_update_list = true;
_interpolation_data.multimesh_transform_update_list_curr->push_back(p_multimesh);
}
}
void RasterizerStorage::multimesh_set_as_bulk_array_interpolated(RID p_multimesh, const PoolVector<float> &p_array, const PoolVector<float> &p_array_prev) {
MMInterpolator *mmi = _multimesh_get_interpolator(p_multimesh);
if (mmi) {
ERR_FAIL_COND_MSG(p_array.size() != mmi->_data_curr.size(), vformat("Array for current frame should have %d elements, got %d instead.", mmi->_data_curr.size(), p_array.size()));
ERR_FAIL_COND_MSG(p_array_prev.size() != mmi->_data_prev.size(), vformat("Array for previous frame should have %d elements, got %d instead.", mmi->_data_prev.size(), p_array_prev.size()));
// We are assuming that mmi->interpolated is the case,
// (can possibly assert this?)
// even if this flag hasn't been set - just calling this function suggests
// interpolation is desired.
mmi->_data_prev = p_array_prev;
mmi->_data_curr = p_array;
_multimesh_add_to_interpolation_lists(p_multimesh, *mmi);
#if defined(DEBUG_ENABLED) && defined(TOOLS_ENABLED)
if (!Engine::get_singleton()->is_in_physics_frame()) {
static int32_t warn_count = 0;
warn_count++;
if (((warn_count % 2048) == 0) && GLOBAL_GET("debug/settings/physics_interpolation/enable_warnings")) {
WARN_PRINT("[Physics interpolation] MultiMesh interpolation is being triggered from outside physics process, this might lead to issues (possibly benign).");
}
}
#endif
}
}
void RasterizerStorage::multimesh_set_as_bulk_array(RID p_multimesh, const PoolVector<float> &p_array) {
MMInterpolator *mmi = _multimesh_get_interpolator(p_multimesh);
if (mmi) {
if (mmi->interpolated) {
ERR_FAIL_COND_MSG(p_array.size() != mmi->_data_curr.size(), vformat("Array should have %d elements, got %d instead.", mmi->_data_curr.size(), p_array.size()));
mmi->_data_curr = p_array;
_multimesh_add_to_interpolation_lists(p_multimesh, *mmi);
#if defined(DEBUG_ENABLED) && defined(TOOLS_ENABLED)
if (!Engine::get_singleton()->is_in_physics_frame()) {
static int32_t warn_count = 0;
warn_count++;
if (((warn_count % 2048) == 0) && GLOBAL_GET("debug/settings/physics_interpolation/enable_warnings")) {
WARN_PRINT("[Physics interpolation] MultiMesh interpolation is being triggered from outside physics process, this might lead to issues (possibly benign).");
}
}
#endif
return;
}
}
_multimesh_set_as_bulk_array(p_multimesh, p_array);
}
void RasterizerStorage::multimesh_set_visible_instances(RID p_multimesh, int p_visible) {
_multimesh_set_visible_instances(p_multimesh, p_visible);
}
int RasterizerStorage::multimesh_get_visible_instances(RID p_multimesh) const {
return _multimesh_get_visible_instances(p_multimesh);
}
AABB RasterizerStorage::multimesh_get_aabb(RID p_multimesh) const {
return _multimesh_get_aabb(p_multimesh);
}
// The bone bounds are determined by rigging,
// as such they can be calculated as a one off operation,
// rather than each call to get_rect().
void RasterizerCanvas::Item::precalculate_polygon_bone_bounds(const Item::CommandPolygon &p_polygon) const {
p_polygon.skinning_data->dirty = false;
p_polygon.skinning_data->untransformed_bound = Rect2(Vector2(), Vector2(-1, -1)); // negative means unused.
int num_points = p_polygon.points.size();
const Point2 *pp = &p_polygon.points[0];
// Calculate bone AABBs.
int bone_count = RasterizerStorage::base_singleton->skeleton_get_bone_count(skeleton);
// Get some local aliases
LocalVector<Rect2> &active_bounds = p_polygon.skinning_data->active_bounds;
LocalVector<uint16_t> &active_bone_ids = p_polygon.skinning_data->active_bone_ids;
active_bounds.clear();
active_bone_ids.clear();
// Uses dynamic allocation, but shouldn't happen very often.
// If happens more often, use alloca.
LocalVector<int32_t> bone_to_active_bone_mapping;
bone_to_active_bone_mapping.resize(bone_count);
for (int n = 0; n < bone_count; n++) {
bone_to_active_bone_mapping[n] = -1;
}
const Transform2D &item_transform = skinning_data->skeleton_relative_xform;
bool some_were_untransformed = false;
for (int n = 0; n < num_points; n++) {
Point2 p = pp[n];
bool bone_space = false;
float total_weight = 0;
for (int k = 0; k < 4; k++) {
int bone_id = p_polygon.bones[n * 4 + k];
float w = p_polygon.weights[n * 4 + k];
if (w == 0) {
continue;
}
total_weight += w;
// Ensure the point is in "bone space" / rigged space.
if (!bone_space) {
bone_space = true;
p = item_transform.xform(p);
}
// get the active bone, or create a new active bone
DEV_ASSERT(bone_id < bone_count);
int32_t &active_bone = bone_to_active_bone_mapping[bone_id];
if (active_bone != -1) {
active_bounds[active_bone].expand_to(p);
} else {
// Increment the number of active bones stored.
active_bone = active_bounds.size();
active_bounds.resize(active_bone + 1);
active_bone_ids.resize(active_bone + 1);
// First point for the bone
DEV_ASSERT(bone_id <= UINT16_MAX);
active_bone_ids[active_bone] = bone_id;
active_bounds[active_bone] = Rect2(p, Vector2(0.00001, 0.00001));
}
}
// If some points were not rigged,
// we want to add them directly to an "untransformed bound",
// and merge this with the skinned bound later.
// Also do this if a point is not FULLY weighted,
// because the untransformed position is still having an influence.
if (!bone_space || (total_weight < 0.99f)) {
if (some_were_untransformed) {
p_polygon.skinning_data->untransformed_bound.expand_to(pp[n]);
} else {
// First point
some_were_untransformed = true;
p_polygon.skinning_data->untransformed_bound = Rect2(pp[n], Vector2());
}
}
}
}
Rect2 RasterizerCanvas::Item::calculate_polygon_bounds(const Item::CommandPolygon &p_polygon) const {
int num_points = p_polygon.points.size();
// If there is no skeleton, or the bones data is invalid...
// Note : Can we check the second more efficiently? by checking if polygon.skinning_data is set perhaps?
if (skeleton == RID() || !(num_points && p_polygon.bones.size() == num_points * 4 && p_polygon.weights.size() == p_polygon.bones.size())) {
// With no skeleton, all points are untransformed.
Rect2 r;
const Point2 *pp = &p_polygon.points[0];
r.position = pp[0];
for (int n = 1; n < num_points; n++) {
r.expand_to(pp[n]);
}
return r;
}
// Skinned skeleton is present.
ERR_FAIL_COND_V_MSG(!skinning_data, Rect2(), "Skinned Polygon2D must have skeleton_relative_xform set for correct culling.");
// Ensure the polygon skinning data is created...
// (This isn't stored on every polygon to save memory).
if (!p_polygon.skinning_data) {
p_polygon.skinning_data = memnew(Item::CommandPolygon::SkinningData);
}
Item::CommandPolygon::SkinningData &pdata = *p_polygon.skinning_data;
// This should only occur when rigging has changed.
// Usually a one off in games.
if (pdata.dirty) {
precalculate_polygon_bone_bounds(p_polygon);
}
// We only deal with the precalculated ACTIVE bone AABBs using the skeleton.
// (No need to bother with bones that are unused for this poly.)
int num_active_bones = pdata.active_bounds.size();
if (!num_active_bones) {
return pdata.untransformed_bound;
}
// No need to make a dynamic allocation here in 99% of cases.
Rect2 *bptr = nullptr;
LocalVector<Rect2> bone_aabbs;
if (num_active_bones <= 1024) {
bptr = (Rect2 *)alloca(sizeof(Rect2) * num_active_bones);
} else {
bone_aabbs.resize(num_active_bones);
bptr = bone_aabbs.ptr();
}
// Copy across the precalculated bone bounds.
memcpy(bptr, pdata.active_bounds.ptr(), sizeof(Rect2) * num_active_bones);
const Transform2D &item_transform_inv = skinning_data->skeleton_relative_xform_inv;
Rect2 aabb;
bool first_bone = true;
for (int n = 0; n < num_active_bones; n++) {
int bone_id = pdata.active_bone_ids[n];
const Transform2D &mtx = RasterizerStorage::base_singleton->skeleton_bone_get_transform_2d(skeleton, bone_id);
Rect2 baabb = mtx.xform(bptr[n]);
if (first_bone) {
aabb = baabb;
first_bone = false;
} else {
aabb = aabb.merge(baabb);
}
}
// Transform the polygon AABB back into local space from bone space.
aabb = item_transform_inv.xform(aabb);
// If some were untransformed...
if (pdata.untransformed_bound.size.x >= 0) {
return pdata.untransformed_bound.merge(aabb);
}
return aabb;
}