godot/thirdparty/basis_universal/encoder/basisu_comp.cpp

2526 lines
86 KiB
C++
Raw Normal View History

// basisu_comp.cpp
// Copyright (C) 2019-2021 Binomial LLC. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "basisu_comp.h"
#include "basisu_enc.h"
#include <unordered_set>
#include <atomic>
// basisu_transcoder.cpp is where basisu_miniz lives now, we just need the declarations here.
#define MINIZ_NO_ZLIB_COMPATIBLE_NAMES
#include "basisu_miniz.h"
#include "basisu_opencl.h"
#if !BASISD_SUPPORT_KTX2
#error BASISD_SUPPORT_KTX2 must be enabled (set to 1).
#endif
#if BASISD_SUPPORT_KTX2_ZSTD
#include <zstd.h>
#endif
// Set to 1 to disable the mipPadding alignment workaround (which only seems to be needed when no key-values are written at all)
#define BASISU_DISABLE_KTX2_ALIGNMENT_WORKAROUND (0)
// Set to 1 to disable writing all KTX2 key values, triggering the validator bug.
#define BASISU_DISABLE_KTX2_KEY_VALUES (0)
using namespace buminiz;
#define BASISU_USE_STB_IMAGE_RESIZE_FOR_MIPMAP_GEN 0
#define DEBUG_CROP_TEXTURE_TO_64x64 (0)
#define DEBUG_RESIZE_TEXTURE (0)
#define DEBUG_EXTRACT_SINGLE_BLOCK (0)
namespace basisu
{
basis_compressor::basis_compressor() :
m_pOpenCL_context(nullptr),
m_basis_file_size(0),
m_basis_bits_per_texel(0.0f),
m_total_blocks(0),
m_any_source_image_has_alpha(false),
m_opencl_failed(false)
{
debug_printf("basis_compressor::basis_compressor\n");
assert(g_library_initialized);
}
basis_compressor::~basis_compressor()
{
if (m_pOpenCL_context)
{
opencl_destroy_context(m_pOpenCL_context);
m_pOpenCL_context = nullptr;
}
}
bool basis_compressor::init(const basis_compressor_params &params)
{
debug_printf("basis_compressor::init\n");
if (!g_library_initialized)
{
error_printf("basis_compressor::init: basisu_encoder_init() MUST be called before using any encoder functionality!\n");
return false;
}
if (!params.m_pJob_pool)
{
error_printf("basis_compressor::init: A non-null job_pool pointer must be specified\n");
return false;
}
m_params = params;
if (m_params.m_debug)
{
debug_printf("basis_compressor::init:\n");
#define PRINT_BOOL_VALUE(v) debug_printf("%s: %u %u\n", BASISU_STRINGIZE2(v), static_cast<int>(m_params.v), m_params.v.was_changed());
#define PRINT_INT_VALUE(v) debug_printf("%s: %i %u\n", BASISU_STRINGIZE2(v), static_cast<int>(m_params.v), m_params.v.was_changed());
#define PRINT_UINT_VALUE(v) debug_printf("%s: %u %u\n", BASISU_STRINGIZE2(v), static_cast<uint32_t>(m_params.v), m_params.v.was_changed());
#define PRINT_FLOAT_VALUE(v) debug_printf("%s: %f %u\n", BASISU_STRINGIZE2(v), static_cast<float>(m_params.v), m_params.v.was_changed());
debug_printf("Source images: %u, source filenames: %u, source alpha filenames: %i, Source mipmap images: %u\n",
m_params.m_source_images.size(), m_params.m_source_filenames.size(), m_params.m_source_alpha_filenames.size(), m_params.m_source_mipmap_images.size());
if (m_params.m_source_mipmap_images.size())
{
debug_printf("m_source_mipmap_images array sizes:\n");
for (uint32_t i = 0; i < m_params.m_source_mipmap_images.size(); i++)
debug_printf("%u ", m_params.m_source_mipmap_images[i].size());
debug_printf("\n");
}
PRINT_BOOL_VALUE(m_uastc);
PRINT_BOOL_VALUE(m_use_opencl);
PRINT_BOOL_VALUE(m_y_flip);
PRINT_BOOL_VALUE(m_debug);
PRINT_BOOL_VALUE(m_validate_etc1s);
PRINT_BOOL_VALUE(m_debug_images);
PRINT_INT_VALUE(m_compression_level);
PRINT_BOOL_VALUE(m_perceptual);
PRINT_BOOL_VALUE(m_no_endpoint_rdo);
PRINT_BOOL_VALUE(m_no_selector_rdo);
PRINT_BOOL_VALUE(m_read_source_images);
PRINT_BOOL_VALUE(m_write_output_basis_files);
PRINT_BOOL_VALUE(m_compute_stats);
PRINT_BOOL_VALUE(m_check_for_alpha);
PRINT_BOOL_VALUE(m_force_alpha);
debug_printf("swizzle: %d,%d,%d,%d\n",
m_params.m_swizzle[0],
m_params.m_swizzle[1],
m_params.m_swizzle[2],
m_params.m_swizzle[3]);
PRINT_BOOL_VALUE(m_renormalize);
PRINT_BOOL_VALUE(m_multithreading);
PRINT_BOOL_VALUE(m_disable_hierarchical_endpoint_codebooks);
PRINT_FLOAT_VALUE(m_endpoint_rdo_thresh);
PRINT_FLOAT_VALUE(m_selector_rdo_thresh);
PRINT_BOOL_VALUE(m_mip_gen);
PRINT_BOOL_VALUE(m_mip_renormalize);
PRINT_BOOL_VALUE(m_mip_wrapping);
PRINT_BOOL_VALUE(m_mip_fast);
PRINT_BOOL_VALUE(m_mip_srgb);
PRINT_FLOAT_VALUE(m_mip_premultiplied);
PRINT_FLOAT_VALUE(m_mip_scale);
PRINT_INT_VALUE(m_mip_smallest_dimension);
debug_printf("m_mip_filter: %s\n", m_params.m_mip_filter.c_str());
debug_printf("m_max_endpoint_clusters: %u\n", m_params.m_max_endpoint_clusters);
debug_printf("m_max_selector_clusters: %u\n", m_params.m_max_selector_clusters);
debug_printf("m_quality_level: %i\n", m_params.m_quality_level);
debug_printf("m_tex_type: %u\n", m_params.m_tex_type);
debug_printf("m_userdata0: 0x%X, m_userdata1: 0x%X\n", m_params.m_userdata0, m_params.m_userdata1);
debug_printf("m_us_per_frame: %i (%f fps)\n", m_params.m_us_per_frame, m_params.m_us_per_frame ? 1.0f / (m_params.m_us_per_frame / 1000000.0f) : 0);
debug_printf("m_pack_uastc_flags: 0x%X\n", m_params.m_pack_uastc_flags);
PRINT_BOOL_VALUE(m_rdo_uastc);
PRINT_FLOAT_VALUE(m_rdo_uastc_quality_scalar);
PRINT_INT_VALUE(m_rdo_uastc_dict_size);
PRINT_FLOAT_VALUE(m_rdo_uastc_max_allowed_rms_increase_ratio);
PRINT_FLOAT_VALUE(m_rdo_uastc_skip_block_rms_thresh);
PRINT_FLOAT_VALUE(m_rdo_uastc_max_smooth_block_error_scale);
PRINT_FLOAT_VALUE(m_rdo_uastc_smooth_block_max_std_dev);
PRINT_BOOL_VALUE(m_rdo_uastc_favor_simpler_modes_in_rdo_mode)
PRINT_BOOL_VALUE(m_rdo_uastc_multithreading);
PRINT_INT_VALUE(m_resample_width);
PRINT_INT_VALUE(m_resample_height);
PRINT_FLOAT_VALUE(m_resample_factor);
debug_printf("Has global codebooks: %u\n", m_params.m_pGlobal_codebooks ? 1 : 0);
if (m_params.m_pGlobal_codebooks)
{
debug_printf("Global codebook endpoints: %u selectors: %u\n", m_params.m_pGlobal_codebooks->get_endpoints().size(), m_params.m_pGlobal_codebooks->get_selectors().size());
}
PRINT_BOOL_VALUE(m_create_ktx2_file);
debug_printf("KTX2 UASTC supercompression: %u\n", m_params.m_ktx2_uastc_supercompression);
debug_printf("KTX2 Zstd supercompression level: %i\n", (int)m_params.m_ktx2_zstd_supercompression_level);
debug_printf("KTX2 sRGB transfer func: %u\n", (int)m_params.m_ktx2_srgb_transfer_func);
debug_printf("Total KTX2 key values: %u\n", m_params.m_ktx2_key_values.size());
for (uint32_t i = 0; i < m_params.m_ktx2_key_values.size(); i++)
{
debug_printf("Key: \"%s\"\n", m_params.m_ktx2_key_values[i].m_key.data());
debug_printf("Value size: %u\n", m_params.m_ktx2_key_values[i].m_value.size());
}
PRINT_BOOL_VALUE(m_validate_output_data);
#undef PRINT_BOOL_VALUE
#undef PRINT_INT_VALUE
#undef PRINT_UINT_VALUE
#undef PRINT_FLOAT_VALUE
}
if ((m_params.m_read_source_images) && (!m_params.m_source_filenames.size()))
{
assert(0);
return false;
}
if ((m_params.m_compute_stats) && (!m_params.m_validate_output_data))
{
m_params.m_validate_output_data = true;
debug_printf("Note: m_compute_stats is true, so forcing m_validate_output_data to true as well\n");
}
if ((m_params.m_use_opencl) && opencl_is_available() && !m_pOpenCL_context && !m_opencl_failed)
{
m_pOpenCL_context = opencl_create_context();
if (!m_pOpenCL_context)
m_opencl_failed = true;
}
return true;
}
basis_compressor::error_code basis_compressor::process()
{
debug_printf("basis_compressor::process\n");
if (!read_source_images())
return cECFailedReadingSourceImages;
if (!validate_texture_type_constraints())
return cECFailedValidating;
if (m_params.m_create_ktx2_file)
{
if (!validate_ktx2_constraints())
return cECFailedValidating;
}
if (!extract_source_blocks())
return cECFailedFrontEnd;
if (m_params.m_uastc)
{
error_code ec = encode_slices_to_uastc();
if (ec != cECSuccess)
return ec;
}
else
{
if (!process_frontend())
return cECFailedFrontEnd;
if (!extract_frontend_texture_data())
return cECFailedFontendExtract;
if (!process_backend())
return cECFailedBackend;
}
if (!create_basis_file_and_transcode())
return cECFailedCreateBasisFile;
if (m_params.m_create_ktx2_file)
{
if (!create_ktx2_file())
return cECFailedCreateKTX2File;
}
if (!write_output_files_and_compute_stats())
return cECFailedWritingOutput;
return cECSuccess;
}
basis_compressor::error_code basis_compressor::encode_slices_to_uastc()
{
debug_printf("basis_compressor::encode_slices_to_uastc\n");
m_uastc_slice_textures.resize(m_slice_descs.size());
for (uint32_t slice_index = 0; slice_index < m_slice_descs.size(); slice_index++)
m_uastc_slice_textures[slice_index].init(texture_format::cUASTC4x4, m_slice_descs[slice_index].m_orig_width, m_slice_descs[slice_index].m_orig_height);
m_uastc_backend_output.m_tex_format = basist::basis_tex_format::cUASTC4x4;
m_uastc_backend_output.m_etc1s = false;
m_uastc_backend_output.m_slice_desc = m_slice_descs;
m_uastc_backend_output.m_slice_image_data.resize(m_slice_descs.size());
m_uastc_backend_output.m_slice_image_crcs.resize(m_slice_descs.size());
for (uint32_t slice_index = 0; slice_index < m_slice_descs.size(); slice_index++)
{
gpu_image& tex = m_uastc_slice_textures[slice_index];
basisu_backend_slice_desc& slice_desc = m_slice_descs[slice_index];
(void)slice_desc;
const uint32_t num_blocks_x = tex.get_blocks_x();
const uint32_t num_blocks_y = tex.get_blocks_y();
const uint32_t total_blocks = tex.get_total_blocks();
const image& source_image = m_slice_images[slice_index];
std::atomic<uint32_t> total_blocks_processed;
total_blocks_processed = 0;
const uint32_t N = 256;
for (uint32_t block_index_iter = 0; block_index_iter < total_blocks; block_index_iter += N)
{
const uint32_t first_index = block_index_iter;
const uint32_t last_index = minimum<uint32_t>(total_blocks, block_index_iter + N);
// FIXME: This sucks, but we're having a stack size related problem with std::function with emscripten.
#ifndef __EMSCRIPTEN__
m_params.m_pJob_pool->add_job([this, first_index, last_index, num_blocks_x, num_blocks_y, total_blocks, &source_image, &tex, &total_blocks_processed]
{
#endif
BASISU_NOTE_UNUSED(num_blocks_y);
uint32_t uastc_flags = m_params.m_pack_uastc_flags;
if ((m_params.m_rdo_uastc) && (m_params.m_rdo_uastc_favor_simpler_modes_in_rdo_mode))
uastc_flags |= cPackUASTCFavorSimplerModes;
for (uint32_t block_index = first_index; block_index < last_index; block_index++)
{
const uint32_t block_x = block_index % num_blocks_x;
const uint32_t block_y = block_index / num_blocks_x;
color_rgba block_pixels[4][4];
source_image.extract_block_clamped((color_rgba*)block_pixels, block_x * 4, block_y * 4, 4, 4);
basist::uastc_block& dest_block = *(basist::uastc_block*)tex.get_block_ptr(block_x, block_y);
encode_uastc(&block_pixels[0][0].r, dest_block, uastc_flags);
total_blocks_processed++;
uint32_t val = total_blocks_processed;
if ((val & 16383) == 16383)
{
debug_printf("basis_compressor::encode_slices_to_uastc: %3.1f%% done\n", static_cast<float>(val) * 100.0f / total_blocks);
}
}
#ifndef __EMSCRIPTEN__
});
#endif
} // block_index_iter
#ifndef __EMSCRIPTEN__
m_params.m_pJob_pool->wait_for_all();
#endif
if (m_params.m_rdo_uastc)
{
uastc_rdo_params rdo_params;
rdo_params.m_lambda = m_params.m_rdo_uastc_quality_scalar;
rdo_params.m_max_allowed_rms_increase_ratio = m_params.m_rdo_uastc_max_allowed_rms_increase_ratio;
rdo_params.m_skip_block_rms_thresh = m_params.m_rdo_uastc_skip_block_rms_thresh;
rdo_params.m_lz_dict_size = m_params.m_rdo_uastc_dict_size;
rdo_params.m_smooth_block_max_error_scale = m_params.m_rdo_uastc_max_smooth_block_error_scale;
rdo_params.m_max_smooth_block_std_dev = m_params.m_rdo_uastc_smooth_block_max_std_dev;
bool status = uastc_rdo(tex.get_total_blocks(), (basist::uastc_block*)tex.get_ptr(),
(const color_rgba *)m_source_blocks[slice_desc.m_first_block_index].m_pixels, rdo_params, m_params.m_pack_uastc_flags, m_params.m_rdo_uastc_multithreading ? m_params.m_pJob_pool : nullptr,
(m_params.m_rdo_uastc_multithreading && m_params.m_pJob_pool) ? basisu::minimum<uint32_t>(4, (uint32_t)m_params.m_pJob_pool->get_total_threads()) : 0);
if (!status)
{
return cECFailedUASTCRDOPostProcess;
}
}
m_uastc_backend_output.m_slice_image_data[slice_index].resize(tex.get_size_in_bytes());
memcpy(&m_uastc_backend_output.m_slice_image_data[slice_index][0], tex.get_ptr(), tex.get_size_in_bytes());
m_uastc_backend_output.m_slice_image_crcs[slice_index] = basist::crc16(tex.get_ptr(), tex.get_size_in_bytes(), 0);
} // slice_index
return cECSuccess;
}
bool basis_compressor::generate_mipmaps(const image &img, basisu::vector<image> &mips, bool has_alpha)
{
debug_printf("basis_compressor::generate_mipmaps\n");
interval_timer tm;
tm.start();
uint32_t total_levels = 1;
uint32_t w = img.get_width(), h = img.get_height();
while (maximum<uint32_t>(w, h) > (uint32_t)m_params.m_mip_smallest_dimension)
{
w = maximum(w >> 1U, 1U);
h = maximum(h >> 1U, 1U);
total_levels++;
}
#if BASISU_USE_STB_IMAGE_RESIZE_FOR_MIPMAP_GEN
// Requires stb_image_resize
stbir_filter filter = STBIR_FILTER_DEFAULT;
if (m_params.m_mip_filter == "box")
filter = STBIR_FILTER_BOX;
else if (m_params.m_mip_filter == "triangle")
filter = STBIR_FILTER_TRIANGLE;
else if (m_params.m_mip_filter == "cubic")
filter = STBIR_FILTER_CUBICBSPLINE;
else if (m_params.m_mip_filter == "catmull")
filter = STBIR_FILTER_CATMULLROM;
else if (m_params.m_mip_filter == "mitchell")
filter = STBIR_FILTER_MITCHELL;
for (uint32_t level = 1; level < total_levels; level++)
{
const uint32_t level_width = maximum<uint32_t>(1, img.get_width() >> level);
const uint32_t level_height = maximum<uint32_t>(1, img.get_height() >> level);
image &level_img = *enlarge_vector(mips, 1);
level_img.resize(level_width, level_height);
int result = stbir_resize_uint8_generic(
(const uint8_t *)img.get_ptr(), img.get_width(), img.get_height(), img.get_pitch() * sizeof(color_rgba),
(uint8_t *)level_img.get_ptr(), level_img.get_width(), level_img.get_height(), level_img.get_pitch() * sizeof(color_rgba),
has_alpha ? 4 : 3, has_alpha ? 3 : STBIR_ALPHA_CHANNEL_NONE, m_params.m_mip_premultiplied ? STBIR_FLAG_ALPHA_PREMULTIPLIED : 0,
m_params.m_mip_wrapping ? STBIR_EDGE_WRAP : STBIR_EDGE_CLAMP, filter, m_params.m_mip_srgb ? STBIR_COLORSPACE_SRGB : STBIR_COLORSPACE_LINEAR,
nullptr);
if (result == 0)
{
error_printf("basis_compressor::generate_mipmaps: stbir_resize_uint8_generic() failed!\n");
return false;
}
if (m_params.m_mip_renormalize)
level_img.renormalize_normal_map();
}
#else
for (uint32_t level = 1; level < total_levels; level++)
{
const uint32_t level_width = maximum<uint32_t>(1, img.get_width() >> level);
const uint32_t level_height = maximum<uint32_t>(1, img.get_height() >> level);
image& level_img = *enlarge_vector(mips, 1);
level_img.resize(level_width, level_height);
const image* pSource_image = &img;
if (m_params.m_mip_fast)
{
if (level > 1)
pSource_image = &mips[level - 1];
}
bool status = image_resample(*pSource_image, level_img, m_params.m_mip_srgb, m_params.m_mip_filter.c_str(), m_params.m_mip_scale, m_params.m_mip_wrapping, 0, has_alpha ? 4 : 3);
if (!status)
{
error_printf("basis_compressor::generate_mipmaps: image_resample() failed!\n");
return false;
}
if (m_params.m_mip_renormalize)
level_img.renormalize_normal_map();
}
#endif
if (m_params.m_debug)
debug_printf("Total mipmap generation time: %3.3f secs\n", tm.get_elapsed_secs());
return true;
}
bool basis_compressor::read_source_images()
{
debug_printf("basis_compressor::read_source_images\n");
const uint32_t total_source_files = m_params.m_read_source_images ? (uint32_t)m_params.m_source_filenames.size() : (uint32_t)m_params.m_source_images.size();
if (!total_source_files)
return false;
m_stats.resize(0);
m_slice_descs.resize(0);
m_slice_images.resize(0);
m_total_blocks = 0;
uint32_t total_macroblocks = 0;
m_any_source_image_has_alpha = false;
basisu::vector<image> source_images;
basisu::vector<std::string> source_filenames;
// First load all source images, and determine if any have an alpha channel.
for (uint32_t source_file_index = 0; source_file_index < total_source_files; source_file_index++)
{
const char *pSource_filename = "";
image file_image;
if (m_params.m_read_source_images)
{
pSource_filename = m_params.m_source_filenames[source_file_index].c_str();
// Load the source image
if (!load_image(pSource_filename, file_image))
{
error_printf("Failed reading source image: %s\n", pSource_filename);
return false;
}
if (m_params.m_status_output)
{
printf("Read source image \"%s\", %ux%u\n", pSource_filename, file_image.get_width(), file_image.get_height());
}
// Optionally load another image and put a grayscale version of it into the alpha channel.
if ((source_file_index < m_params.m_source_alpha_filenames.size()) && (m_params.m_source_alpha_filenames[source_file_index].size()))
{
const char *pSource_alpha_image = m_params.m_source_alpha_filenames[source_file_index].c_str();
image alpha_data;
if (!load_image(pSource_alpha_image, alpha_data))
{
error_printf("Failed reading source image: %s\n", pSource_alpha_image);
return false;
}
printf("Read source alpha image \"%s\", %ux%u\n", pSource_alpha_image, alpha_data.get_width(), alpha_data.get_height());
alpha_data.crop(file_image.get_width(), file_image.get_height());
for (uint32_t y = 0; y < file_image.get_height(); y++)
for (uint32_t x = 0; x < file_image.get_width(); x++)
file_image(x, y).a = (uint8_t)alpha_data(x, y).get_709_luma();
}
}
else
{
file_image = m_params.m_source_images[source_file_index];
}
if (m_params.m_renormalize)
file_image.renormalize_normal_map();
bool alpha_swizzled = false;
if (m_params.m_swizzle[0] != 0 ||
m_params.m_swizzle[1] != 1 ||
m_params.m_swizzle[2] != 2 ||
m_params.m_swizzle[3] != 3)
{
// Used for XY normal maps in RG - puts X in color, Y in alpha
for (uint32_t y = 0; y < file_image.get_height(); y++)
for (uint32_t x = 0; x < file_image.get_width(); x++)
{
const color_rgba &c = file_image(x, y);
file_image(x, y).set_noclamp_rgba(c[m_params.m_swizzle[0]], c[m_params.m_swizzle[1]], c[m_params.m_swizzle[2]], c[m_params.m_swizzle[3]]);
}
alpha_swizzled = m_params.m_swizzle[3] != 3;
}
bool has_alpha = false;
if (m_params.m_force_alpha || alpha_swizzled)
has_alpha = true;
else if (!m_params.m_check_for_alpha)
file_image.set_alpha(255);
else if (file_image.has_alpha())
has_alpha = true;
if (has_alpha)
m_any_source_image_has_alpha = true;
debug_printf("Source image index %u filename %s %ux%u has alpha: %u\n", source_file_index, pSource_filename, file_image.get_width(), file_image.get_height(), has_alpha);
if (m_params.m_y_flip)
file_image.flip_y();
#if DEBUG_EXTRACT_SINGLE_BLOCK
image block_image(4, 4);
const uint32_t block_x = 0;
const uint32_t block_y = 0;
block_image.blit(block_x * 4, block_y * 4, 4, 4, 0, 0, file_image, 0);
file_image = block_image;
#endif
#if DEBUG_CROP_TEXTURE_TO_64x64
file_image.resize(64, 64);
#endif
if (m_params.m_resample_width > 0 && m_params.m_resample_height > 0)
{
int new_width = basisu::minimum<int>(m_params.m_resample_width, BASISU_MAX_SUPPORTED_TEXTURE_DIMENSION);
int new_height = basisu::minimum<int>(m_params.m_resample_height, BASISU_MAX_SUPPORTED_TEXTURE_DIMENSION);
debug_printf("Resampling to %ix%i\n", new_width, new_height);
// TODO: A box filter - kaiser looks too sharp on video. Let the caller control this.
image temp_img(new_width, new_height);
image_resample(file_image, temp_img, m_params.m_perceptual, "box"); // "kaiser");
temp_img.swap(file_image);
}
else if (m_params.m_resample_factor > 0.0f)
{
int new_width = basisu::minimum<int>(basisu::maximum(1, (int)ceilf(file_image.get_width() * m_params.m_resample_factor)), BASISU_MAX_SUPPORTED_TEXTURE_DIMENSION);
int new_height = basisu::minimum<int>(basisu::maximum(1, (int)ceilf(file_image.get_height() * m_params.m_resample_factor)), BASISU_MAX_SUPPORTED_TEXTURE_DIMENSION);
debug_printf("Resampling to %ix%i\n", new_width, new_height);
// TODO: A box filter - kaiser looks too sharp on video. Let the caller control this.
image temp_img(new_width, new_height);
image_resample(file_image, temp_img, m_params.m_perceptual, "box"); // "kaiser");
temp_img.swap(file_image);
}
if ((!file_image.get_width()) || (!file_image.get_height()))
{
error_printf("basis_compressor::read_source_images: Source image has a zero width and/or height!\n");
return false;
}
if ((file_image.get_width() > BASISU_MAX_SUPPORTED_TEXTURE_DIMENSION) || (file_image.get_height() > BASISU_MAX_SUPPORTED_TEXTURE_DIMENSION))
{
error_printf("basis_compressor::read_source_images: Source image \"%s\" is too large!\n", pSource_filename);
return false;
}
source_images.enlarge(1)->swap(file_image);
source_filenames.push_back(pSource_filename);
}
// Check if the caller has generated their own mipmaps.
if (m_params.m_source_mipmap_images.size())
{
// Make sure they've passed us enough mipmap chains.
if ((m_params.m_source_images.size() != m_params.m_source_mipmap_images.size()) || (total_source_files != m_params.m_source_images.size()))
{
error_printf("basis_compressor::read_source_images(): m_params.m_source_mipmap_images.size() must equal m_params.m_source_images.size()!\n");
return false;
}
// Check if any of the user-supplied mipmap levels has alpha.
// We're assuming the user has already preswizzled their mipmap source images.
if (!m_any_source_image_has_alpha)
{
for (uint32_t source_file_index = 0; source_file_index < total_source_files; source_file_index++)
{
for (uint32_t mip_index = 0; mip_index < m_params.m_source_mipmap_images[source_file_index].size(); mip_index++)
{
const image& mip_img = m_params.m_source_mipmap_images[source_file_index][mip_index];
if (mip_img.has_alpha())
{
m_any_source_image_has_alpha = true;
break;
}
}
if (m_any_source_image_has_alpha)
break;
}
}
}
debug_printf("Any source image has alpha: %u\n", m_any_source_image_has_alpha);
for (uint32_t source_file_index = 0; source_file_index < total_source_files; source_file_index++)
{
const std::string &source_filename = source_filenames[source_file_index];
// Now, for each source image, create the slices corresponding to that image.
basisu::vector<image> slices;
slices.reserve(32);
// The first (largest) mipmap level.
image& file_image = source_images[source_file_index];
// Reserve a slot for mip0.
slices.resize(1);
if (m_params.m_source_mipmap_images.size())
{
// User-provided mipmaps for each layer or image in the texture array.
for (uint32_t mip_index = 0; mip_index < m_params.m_source_mipmap_images[source_file_index].size(); mip_index++)
{
image& mip_img = m_params.m_source_mipmap_images[source_file_index][mip_index];
if (m_params.m_swizzle[0] != 0 ||
m_params.m_swizzle[1] != 1 ||
m_params.m_swizzle[2] != 2 ||
m_params.m_swizzle[3] != 3)
{
// Used for XY normal maps in RG - puts X in color, Y in alpha
for (uint32_t y = 0; y < mip_img.get_height(); y++)
for (uint32_t x = 0; x < mip_img.get_width(); x++)
{
const color_rgba &c = mip_img(x, y);
mip_img(x, y).set_noclamp_rgba(c[m_params.m_swizzle[0]], c[m_params.m_swizzle[1]], c[m_params.m_swizzle[2]], c[m_params.m_swizzle[3]]);
}
}
slices.push_back(mip_img);
}
}
else if (m_params.m_mip_gen)
{
// Automatically generate mipmaps.
if (!generate_mipmaps(file_image, slices, m_any_source_image_has_alpha))
return false;
}
// Swap in the largest mipmap level here to avoid copying it, because generate_mips() will change the array.
// NOTE: file_image is now blank.
slices[0].swap(file_image);
uint_vec mip_indices(slices.size());
for (uint32_t i = 0; i < slices.size(); i++)
mip_indices[i] = i;
if ((m_any_source_image_has_alpha) && (!m_params.m_uastc))
{
// For ETC1S, if source has alpha, then even mips will have RGB, and odd mips will have alpha in RGB.
basisu::vector<image> alpha_slices;
uint_vec new_mip_indices;
alpha_slices.reserve(slices.size() * 2);
for (uint32_t i = 0; i < slices.size(); i++)
{
image lvl_rgb(slices[i]);
image lvl_a(lvl_rgb);
for (uint32_t y = 0; y < lvl_a.get_height(); y++)
{
for (uint32_t x = 0; x < lvl_a.get_width(); x++)
{
uint8_t a = lvl_a(x, y).a;
lvl_a(x, y).set_noclamp_rgba(a, a, a, 255);
}
}
lvl_rgb.set_alpha(255);
alpha_slices.push_back(lvl_rgb);
new_mip_indices.push_back(i);
alpha_slices.push_back(lvl_a);
new_mip_indices.push_back(i);
}
slices.swap(alpha_slices);
mip_indices.swap(new_mip_indices);
}
assert(slices.size() == mip_indices.size());
for (uint32_t slice_index = 0; slice_index < slices.size(); slice_index++)
{
image& slice_image = slices[slice_index];
const uint32_t orig_width = slice_image.get_width();
const uint32_t orig_height = slice_image.get_height();
bool is_alpha_slice = false;
if (m_any_source_image_has_alpha)
{
if (m_params.m_uastc)
{
is_alpha_slice = slice_image.has_alpha();
}
else
{
is_alpha_slice = (slice_index & 1) != 0;
}
}
// Enlarge the source image to 4x4 block boundaries, duplicating edge pixels if necessary to avoid introducing extra colors into blocks.
slice_image.crop_dup_borders(slice_image.get_block_width(4) * 4, slice_image.get_block_height(4) * 4);
if (m_params.m_debug_images)
{
save_png(string_format("basis_debug_source_image_%u_slice_%u.png", source_file_index, slice_index).c_str(), slice_image);
}
const uint32_t dest_image_index = m_slice_images.size();
enlarge_vector(m_stats, 1);
enlarge_vector(m_slice_images, 1);
enlarge_vector(m_slice_descs, 1);
m_stats[dest_image_index].m_filename = source_filename.c_str();
m_stats[dest_image_index].m_width = orig_width;
m_stats[dest_image_index].m_height = orig_height;
debug_printf("****** Slice %u: mip %u, alpha_slice: %u, filename: \"%s\", original: %ux%u actual: %ux%u\n", m_slice_descs.size() - 1, mip_indices[slice_index], is_alpha_slice, source_filename.c_str(), orig_width, orig_height, slice_image.get_width(), slice_image.get_height());
basisu_backend_slice_desc &slice_desc = m_slice_descs[dest_image_index];
slice_desc.m_first_block_index = m_total_blocks;
slice_desc.m_orig_width = orig_width;
slice_desc.m_orig_height = orig_height;
slice_desc.m_width = slice_image.get_width();
slice_desc.m_height = slice_image.get_height();
slice_desc.m_num_blocks_x = slice_image.get_block_width(4);
slice_desc.m_num_blocks_y = slice_image.get_block_height(4);
slice_desc.m_num_macroblocks_x = (slice_desc.m_num_blocks_x + 1) >> 1;
slice_desc.m_num_macroblocks_y = (slice_desc.m_num_blocks_y + 1) >> 1;
slice_desc.m_source_file_index = source_file_index;
slice_desc.m_mip_index = mip_indices[slice_index];
slice_desc.m_alpha = is_alpha_slice;
slice_desc.m_iframe = false;
if (m_params.m_tex_type == basist::cBASISTexTypeVideoFrames)
{
slice_desc.m_iframe = (source_file_index == 0);
}
m_total_blocks += slice_desc.m_num_blocks_x * slice_desc.m_num_blocks_y;
total_macroblocks += slice_desc.m_num_macroblocks_x * slice_desc.m_num_macroblocks_y;
// Finally, swap in the slice's image to avoid copying it.
// NOTE: slice_image is now blank.
m_slice_images[dest_image_index].swap(slice_image);
} // slice_index
} // source_file_index
debug_printf("Total blocks: %u, Total macroblocks: %u\n", m_total_blocks, total_macroblocks);
// Make sure we don't have too many slices
if (m_slice_descs.size() > BASISU_MAX_SLICES)
{
error_printf("Too many slices!\n");
return false;
}
// Basic sanity check on the slices
for (uint32_t i = 1; i < m_slice_descs.size(); i++)
{
const basisu_backend_slice_desc &prev_slice_desc = m_slice_descs[i - 1];
const basisu_backend_slice_desc &slice_desc = m_slice_descs[i];
// Make sure images are in order
int image_delta = (int)slice_desc.m_source_file_index - (int)prev_slice_desc.m_source_file_index;
if (image_delta > 1)
return false;
// Make sure mipmap levels are in order
if (!image_delta)
{
int level_delta = (int)slice_desc.m_mip_index - (int)prev_slice_desc.m_mip_index;
if (level_delta > 1)
return false;
}
}
if (m_params.m_status_output)
{
printf("Total basis file slices: %u\n", (uint32_t)m_slice_descs.size());
}
for (uint32_t i = 0; i < m_slice_descs.size(); i++)
{
const basisu_backend_slice_desc &slice_desc = m_slice_descs[i];
if (m_params.m_status_output)
{
printf("Slice: %u, alpha: %u, orig width/height: %ux%u, width/height: %ux%u, first_block: %u, image_index: %u, mip_level: %u, iframe: %u\n",
i, slice_desc.m_alpha, slice_desc.m_orig_width, slice_desc.m_orig_height, slice_desc.m_width, slice_desc.m_height, slice_desc.m_first_block_index, slice_desc.m_source_file_index, slice_desc.m_mip_index, slice_desc.m_iframe);
}
if (m_any_source_image_has_alpha)
{
if (!m_params.m_uastc)
{
// For ETC1S, alpha slices must be at odd slice indices.
if (slice_desc.m_alpha)
{
if ((i & 1) == 0)
return false;
const basisu_backend_slice_desc& prev_slice_desc = m_slice_descs[i - 1];
// Make sure previous slice has this image's color data
if (prev_slice_desc.m_source_file_index != slice_desc.m_source_file_index)
return false;
if (prev_slice_desc.m_alpha)
return false;
if (prev_slice_desc.m_mip_index != slice_desc.m_mip_index)
return false;
if (prev_slice_desc.m_num_blocks_x != slice_desc.m_num_blocks_x)
return false;
if (prev_slice_desc.m_num_blocks_y != slice_desc.m_num_blocks_y)
return false;
}
else if (i & 1)
return false;
}
}
else if (slice_desc.m_alpha)
{
return false;
}
if ((slice_desc.m_orig_width > slice_desc.m_width) || (slice_desc.m_orig_height > slice_desc.m_height))
return false;
if ((slice_desc.m_source_file_index == 0) && (m_params.m_tex_type == basist::cBASISTexTypeVideoFrames))
{
if (!slice_desc.m_iframe)
return false;
}
}
return true;
}
// Do some basic validation for 2D arrays, cubemaps, video, and volumes.
bool basis_compressor::validate_texture_type_constraints()
{
debug_printf("basis_compressor::validate_texture_type_constraints\n");
// In 2D mode anything goes (each image may have a different resolution and # of mipmap levels).
if (m_params.m_tex_type == basist::cBASISTexType2D)
return true;
uint32_t total_basis_images = 0;
for (uint32_t slice_index = 0; slice_index < m_slice_images.size(); slice_index++)
{
const basisu_backend_slice_desc &slice_desc = m_slice_descs[slice_index];
total_basis_images = maximum<uint32_t>(total_basis_images, slice_desc.m_source_file_index + 1);
}
if (m_params.m_tex_type == basist::cBASISTexTypeCubemapArray)
{
// For cubemaps, validate that the total # of Basis images is a multiple of 6.
if ((total_basis_images % 6) != 0)
{
error_printf("basis_compressor::validate_texture_type_constraints: For cubemaps the total number of input images is not a multiple of 6!\n");
return false;
}
}
// Now validate that all the mip0's have the same dimensions, and that each image has the same # of mipmap levels.
uint_vec image_mipmap_levels(total_basis_images);
int width = -1, height = -1;
for (uint32_t slice_index = 0; slice_index < m_slice_images.size(); slice_index++)
{
const basisu_backend_slice_desc &slice_desc = m_slice_descs[slice_index];
image_mipmap_levels[slice_desc.m_source_file_index] = maximum(image_mipmap_levels[slice_desc.m_source_file_index], slice_desc.m_mip_index + 1);
if (slice_desc.m_mip_index != 0)
continue;
if (width < 0)
{
width = slice_desc.m_orig_width;
height = slice_desc.m_orig_height;
}
else if ((width != (int)slice_desc.m_orig_width) || (height != (int)slice_desc.m_orig_height))
{
error_printf("basis_compressor::validate_texture_type_constraints: The source image resolutions are not all equal!\n");
return false;
}
}
for (size_t i = 1; i < image_mipmap_levels.size(); i++)
{
if (image_mipmap_levels[0] != image_mipmap_levels[i])
{
error_printf("basis_compressor::validate_texture_type_constraints: Each image must have the same number of mipmap levels!\n");
return false;
}
}
return true;
}
bool basis_compressor::extract_source_blocks()
{
debug_printf("basis_compressor::extract_source_blocks\n");
m_source_blocks.resize(m_total_blocks);
for (uint32_t slice_index = 0; slice_index < m_slice_images.size(); slice_index++)
{
const basisu_backend_slice_desc& slice_desc = m_slice_descs[slice_index];
const uint32_t num_blocks_x = slice_desc.m_num_blocks_x;
const uint32_t num_blocks_y = slice_desc.m_num_blocks_y;
const image& source_image = m_slice_images[slice_index];
for (uint32_t block_y = 0; block_y < num_blocks_y; block_y++)
for (uint32_t block_x = 0; block_x < num_blocks_x; block_x++)
source_image.extract_block_clamped(m_source_blocks[slice_desc.m_first_block_index + block_x + block_y * num_blocks_x].get_ptr(), block_x * 4, block_y * 4, 4, 4);
}
return true;
}
bool basis_compressor::process_frontend()
{
debug_printf("basis_compressor::process_frontend\n");
#if 0
// TODO
basis_etc1_pack_params pack_params;
pack_params.m_quality = cETCQualityMedium;
pack_params.m_perceptual = m_params.m_perceptual;
pack_params.m_use_color4 = false;
pack_etc1_block_context pack_context;
std::unordered_set<uint64_t> endpoint_hash;
std::unordered_set<uint32_t> selector_hash;
for (uint32_t i = 0; i < m_source_blocks.size(); i++)
{
etc_block blk;
pack_etc1_block(blk, m_source_blocks[i].get_ptr(), pack_params, pack_context);
const color_rgba c0(blk.get_block_color(0, false));
endpoint_hash.insert((c0.r | (c0.g << 5) | (c0.b << 10)) | (blk.get_inten_table(0) << 16));
const color_rgba c1(blk.get_block_color(1, false));
endpoint_hash.insert((c1.r | (c1.g << 5) | (c1.b << 10)) | (blk.get_inten_table(1) << 16));
selector_hash.insert(blk.get_raw_selector_bits());
}
const uint32_t total_unique_endpoints = (uint32_t)endpoint_hash.size();
const uint32_t total_unique_selectors = (uint32_t)selector_hash.size();
if (m_params.m_debug)
{
debug_printf("Unique endpoints: %u, unique selectors: %u\n", total_unique_endpoints, total_unique_selectors);
}
#endif
const double total_texels = m_total_blocks * 16.0f;
int endpoint_clusters = m_params.m_max_endpoint_clusters;
int selector_clusters = m_params.m_max_selector_clusters;
if (endpoint_clusters > basisu_frontend::cMaxEndpointClusters)
{
error_printf("Too many endpoint clusters! (%u but max is %u)\n", endpoint_clusters, basisu_frontend::cMaxEndpointClusters);
return false;
}
if (selector_clusters > basisu_frontend::cMaxSelectorClusters)
{
error_printf("Too many selector clusters! (%u but max is %u)\n", selector_clusters, basisu_frontend::cMaxSelectorClusters);
return false;
}
if (m_params.m_quality_level != -1)
{
const float quality = saturate(m_params.m_quality_level / 255.0f);
const float bits_per_endpoint_cluster = 14.0f;
const float max_desired_endpoint_cluster_bits_per_texel = 1.0f; // .15f
int max_endpoints = static_cast<int>((max_desired_endpoint_cluster_bits_per_texel * total_texels) / bits_per_endpoint_cluster);
const float mid = 128.0f / 255.0f;
float color_endpoint_quality = quality;
const float endpoint_split_point = 0.5f;
// In v1.2 and in previous versions, the endpoint codebook size at quality 128 was 3072. This wasn't quite large enough.
const int ENDPOINT_CODEBOOK_MID_QUALITY_CODEBOOK_SIZE = 4800;
const int MAX_ENDPOINT_CODEBOOK_SIZE = 8192;
if (color_endpoint_quality <= mid)
{
color_endpoint_quality = lerp(0.0f, endpoint_split_point, powf(color_endpoint_quality / mid, .65f));
max_endpoints = clamp<int>(max_endpoints, 256, ENDPOINT_CODEBOOK_MID_QUALITY_CODEBOOK_SIZE);
max_endpoints = minimum<uint32_t>(max_endpoints, m_total_blocks);
if (max_endpoints < 64)
max_endpoints = 64;
endpoint_clusters = clamp<uint32_t>((uint32_t)(.5f + lerp<float>(32, static_cast<float>(max_endpoints), color_endpoint_quality)), 32, basisu_frontend::cMaxEndpointClusters);
}
else
{
color_endpoint_quality = powf((color_endpoint_quality - mid) / (1.0f - mid), 1.6f);
max_endpoints = clamp<int>(max_endpoints, 256, MAX_ENDPOINT_CODEBOOK_SIZE);
max_endpoints = minimum<uint32_t>(max_endpoints, m_total_blocks);
if (max_endpoints < ENDPOINT_CODEBOOK_MID_QUALITY_CODEBOOK_SIZE)
max_endpoints = ENDPOINT_CODEBOOK_MID_QUALITY_CODEBOOK_SIZE;
endpoint_clusters = clamp<uint32_t>((uint32_t)(.5f + lerp<float>(ENDPOINT_CODEBOOK_MID_QUALITY_CODEBOOK_SIZE, static_cast<float>(max_endpoints), color_endpoint_quality)), 32, basisu_frontend::cMaxEndpointClusters);
}
float bits_per_selector_cluster = 14.0f;
const float max_desired_selector_cluster_bits_per_texel = 1.0f; // .15f
int max_selectors = static_cast<int>((max_desired_selector_cluster_bits_per_texel * total_texels) / bits_per_selector_cluster);
max_selectors = clamp<int>(max_selectors, 256, basisu_frontend::cMaxSelectorClusters);
max_selectors = minimum<uint32_t>(max_selectors, m_total_blocks);
float color_selector_quality = quality;
//color_selector_quality = powf(color_selector_quality, 1.65f);
color_selector_quality = powf(color_selector_quality, 2.62f);
if (max_selectors < 96)
max_selectors = 96;
selector_clusters = clamp<uint32_t>((uint32_t)(.5f + lerp<float>(96, static_cast<float>(max_selectors), color_selector_quality)), 8, basisu_frontend::cMaxSelectorClusters);
debug_printf("Max endpoints: %u, max selectors: %u\n", endpoint_clusters, selector_clusters);
if (m_params.m_quality_level >= 223)
{
if (!m_params.m_selector_rdo_thresh.was_changed())
{
if (!m_params.m_endpoint_rdo_thresh.was_changed())
m_params.m_endpoint_rdo_thresh *= .25f;
if (!m_params.m_selector_rdo_thresh.was_changed())
m_params.m_selector_rdo_thresh *= .25f;
}
}
else if (m_params.m_quality_level >= 192)
{
if (!m_params.m_endpoint_rdo_thresh.was_changed())
m_params.m_endpoint_rdo_thresh *= .5f;
if (!m_params.m_selector_rdo_thresh.was_changed())
m_params.m_selector_rdo_thresh *= .5f;
}
else if (m_params.m_quality_level >= 160)
{
if (!m_params.m_endpoint_rdo_thresh.was_changed())
m_params.m_endpoint_rdo_thresh *= .75f;
if (!m_params.m_selector_rdo_thresh.was_changed())
m_params.m_selector_rdo_thresh *= .75f;
}
else if (m_params.m_quality_level >= 129)
{
float l = (quality - 129 / 255.0f) / ((160 - 129) / 255.0f);
if (!m_params.m_endpoint_rdo_thresh.was_changed())
m_params.m_endpoint_rdo_thresh *= lerp<float>(1.0f, .75f, l);
if (!m_params.m_selector_rdo_thresh.was_changed())
m_params.m_selector_rdo_thresh *= lerp<float>(1.0f, .75f, l);
}
}
basisu_frontend::params p;
p.m_num_source_blocks = m_total_blocks;
p.m_pSource_blocks = &m_source_blocks[0];
p.m_max_endpoint_clusters = endpoint_clusters;
p.m_max_selector_clusters = selector_clusters;
p.m_perceptual = m_params.m_perceptual;
p.m_debug_stats = m_params.m_debug;
p.m_debug_images = m_params.m_debug_images;
p.m_compression_level = m_params.m_compression_level;
p.m_tex_type = m_params.m_tex_type;
p.m_multithreaded = m_params.m_multithreading;
p.m_disable_hierarchical_endpoint_codebooks = m_params.m_disable_hierarchical_endpoint_codebooks;
p.m_validate = m_params.m_validate_etc1s;
p.m_pJob_pool = m_params.m_pJob_pool;
p.m_pGlobal_codebooks = m_params.m_pGlobal_codebooks;
// Don't keep trying to use OpenCL if it ever fails.
p.m_pOpenCL_context = !m_opencl_failed ? m_pOpenCL_context : nullptr;
if (!m_frontend.init(p))
{
error_printf("basisu_frontend::init() failed!\n");
return false;
}
m_frontend.compress();
if (m_frontend.get_opencl_failed())
m_opencl_failed = true;
if (m_params.m_debug_images)
{
for (uint32_t i = 0; i < m_slice_descs.size(); i++)
{
char filename[1024];
#ifdef _WIN32
sprintf_s(filename, sizeof(filename), "rdo_frontend_output_output_blocks_%u.png", i);
#else
snprintf(filename, sizeof(filename), "rdo_frontend_output_output_blocks_%u.png", i);
#endif
m_frontend.dump_debug_image(filename, m_slice_descs[i].m_first_block_index, m_slice_descs[i].m_num_blocks_x, m_slice_descs[i].m_num_blocks_y, true);
#ifdef _WIN32
sprintf_s(filename, sizeof(filename), "rdo_frontend_output_api_%u.png", i);
#else
snprintf(filename, sizeof(filename), "rdo_frontend_output_api_%u.png", i);
#endif
m_frontend.dump_debug_image(filename, m_slice_descs[i].m_first_block_index, m_slice_descs[i].m_num_blocks_x, m_slice_descs[i].m_num_blocks_y, false);
}
}
return true;
}
bool basis_compressor::extract_frontend_texture_data()
{
if (!m_params.m_compute_stats)
return true;
debug_printf("basis_compressor::extract_frontend_texture_data\n");
m_frontend_output_textures.resize(m_slice_descs.size());
m_best_etc1s_images.resize(m_slice_descs.size());
m_best_etc1s_images_unpacked.resize(m_slice_descs.size());
for (uint32_t i = 0; i < m_slice_descs.size(); i++)
{
const basisu_backend_slice_desc &slice_desc = m_slice_descs[i];
const uint32_t num_blocks_x = slice_desc.m_num_blocks_x;
const uint32_t num_blocks_y = slice_desc.m_num_blocks_y;
const uint32_t width = num_blocks_x * 4;
const uint32_t height = num_blocks_y * 4;
m_frontend_output_textures[i].init(texture_format::cETC1, width, height);
for (uint32_t block_y = 0; block_y < num_blocks_y; block_y++)
for (uint32_t block_x = 0; block_x < num_blocks_x; block_x++)
memcpy(m_frontend_output_textures[i].get_block_ptr(block_x, block_y, 0), &m_frontend.get_output_block(slice_desc.m_first_block_index + block_x + block_y * num_blocks_x), sizeof(etc_block));
#if 0
if (m_params.m_debug_images)
{
char filename[1024];
sprintf_s(filename, sizeof(filename), "rdo_etc_frontend_%u_", i);
write_etc1_vis_images(m_frontend_output_textures[i], filename);
}
#endif
m_best_etc1s_images[i].init(texture_format::cETC1, width, height);
for (uint32_t block_y = 0; block_y < num_blocks_y; block_y++)
for (uint32_t block_x = 0; block_x < num_blocks_x; block_x++)
memcpy(m_best_etc1s_images[i].get_block_ptr(block_x, block_y, 0), &m_frontend.get_etc1s_block(slice_desc.m_first_block_index + block_x + block_y * num_blocks_x), sizeof(etc_block));
m_best_etc1s_images[i].unpack(m_best_etc1s_images_unpacked[i]);
}
return true;
}
bool basis_compressor::process_backend()
{
debug_printf("basis_compressor::process_backend\n");
basisu_backend_params backend_params;
backend_params.m_debug = m_params.m_debug;
backend_params.m_debug_images = m_params.m_debug_images;
backend_params.m_etc1s = true;
backend_params.m_compression_level = m_params.m_compression_level;
if (!m_params.m_no_endpoint_rdo)
backend_params.m_endpoint_rdo_quality_thresh = m_params.m_endpoint_rdo_thresh;
if (!m_params.m_no_selector_rdo)
backend_params.m_selector_rdo_quality_thresh = m_params.m_selector_rdo_thresh;
backend_params.m_used_global_codebooks = m_frontend.get_params().m_pGlobal_codebooks != nullptr;
backend_params.m_validate = m_params.m_validate_output_data;
m_backend.init(&m_frontend, backend_params, m_slice_descs);
uint32_t total_packed_bytes = m_backend.encode();
if (!total_packed_bytes)
{
error_printf("basis_compressor::encode() failed!\n");
return false;
}
debug_printf("Total packed bytes (estimated): %u\n", total_packed_bytes);
return true;
}
bool basis_compressor::create_basis_file_and_transcode()
{
debug_printf("basis_compressor::create_basis_file_and_transcode\n");
const basisu_backend_output& encoded_output = m_params.m_uastc ? m_uastc_backend_output : m_backend.get_output();
if (!m_basis_file.init(encoded_output, m_params.m_tex_type, m_params.m_userdata0, m_params.m_userdata1, m_params.m_y_flip, m_params.m_us_per_frame))
{
error_printf("basis_compressor::create_basis_file_and_transcode: basisu_backend:init() failed!\n");
return false;
}
const uint8_vec &comp_data = m_basis_file.get_compressed_data();
m_output_basis_file = comp_data;
uint32_t total_orig_pixels = 0, total_texels = 0, total_orig_texels = 0;
for (uint32_t i = 0; i < m_slice_descs.size(); i++)
{
const basisu_backend_slice_desc& slice_desc = m_slice_descs[i];
total_orig_pixels += slice_desc.m_orig_width * slice_desc.m_orig_height;
total_texels += slice_desc.m_width * slice_desc.m_height;
}
m_basis_file_size = (uint32_t)comp_data.size();
m_basis_bits_per_texel = total_orig_texels ? (comp_data.size() * 8.0f) / total_orig_texels : 0;
debug_printf("Total .basis output file size: %u, %3.3f bits/texel\n", comp_data.size(), comp_data.size() * 8.0f / total_orig_pixels);
if (m_params.m_validate_output_data)
{
interval_timer tm;
tm.start();
basist::basisu_transcoder_init();
debug_printf("basist::basisu_transcoder_init: Took %f ms\n", tm.get_elapsed_ms());
// Verify the compressed data by transcoding it to ASTC (or ETC1)/BC7 and validating the CRC's.
basist::basisu_transcoder decoder;
if (!decoder.validate_file_checksums(&comp_data[0], (uint32_t)comp_data.size(), true))
{
error_printf("decoder.validate_file_checksums() failed!\n");
return false;
}
m_decoded_output_textures.resize(m_slice_descs.size());
m_decoded_output_textures_unpacked.resize(m_slice_descs.size());
m_decoded_output_textures_bc7.resize(m_slice_descs.size());
m_decoded_output_textures_unpacked_bc7.resize(m_slice_descs.size());
tm.start();
if (m_params.m_pGlobal_codebooks)
{
decoder.set_global_codebooks(m_params.m_pGlobal_codebooks);
}
if (!decoder.start_transcoding(&comp_data[0], (uint32_t)comp_data.size()))
{
error_printf("decoder.start_transcoding() failed!\n");
return false;
}
double start_transcoding_time = tm.get_elapsed_secs();
debug_printf("basisu_compressor::start_transcoding() took %3.3fms\n", start_transcoding_time * 1000.0f);
double total_time_etc1s_or_astc = 0;
for (uint32_t i = 0; i < m_slice_descs.size(); i++)
{
gpu_image decoded_texture;
decoded_texture.init(m_params.m_uastc ? texture_format::cUASTC4x4 : texture_format::cETC1, m_slice_descs[i].m_width, m_slice_descs[i].m_height);
tm.start();
basist::block_format format = m_params.m_uastc ? basist::block_format::cUASTC_4x4 : basist::block_format::cETC1;
uint32_t bytes_per_block = m_params.m_uastc ? 16 : 8;
if (!decoder.transcode_slice(&comp_data[0], (uint32_t)comp_data.size(), i,
reinterpret_cast<etc_block*>(decoded_texture.get_ptr()), m_slice_descs[i].m_num_blocks_x * m_slice_descs[i].m_num_blocks_y, format, bytes_per_block))
{
error_printf("Transcoding failed on slice %u!\n", i);
return false;
}
total_time_etc1s_or_astc += tm.get_elapsed_secs();
if (encoded_output.m_tex_format == basist::basis_tex_format::cETC1S)
{
uint32_t image_crc16 = basist::crc16(decoded_texture.get_ptr(), decoded_texture.get_size_in_bytes(), 0);
if (image_crc16 != encoded_output.m_slice_image_crcs[i])
{
error_printf("Decoded image data CRC check failed on slice %u!\n", i);
return false;
}
debug_printf("Decoded image data CRC check succeeded on slice %i\n", i);
}
m_decoded_output_textures[i] = decoded_texture;
}
double total_time_bc7 = 0;
if (basist::basis_is_format_supported(basist::transcoder_texture_format::cTFBC7_RGBA, basist::basis_tex_format::cUASTC4x4) &&
basist::basis_is_format_supported(basist::transcoder_texture_format::cTFBC7_RGBA, basist::basis_tex_format::cETC1S))
{
for (uint32_t i = 0; i < m_slice_descs.size(); i++)
{
gpu_image decoded_texture;
decoded_texture.init(texture_format::cBC7, m_slice_descs[i].m_width, m_slice_descs[i].m_height);
tm.start();
if (!decoder.transcode_slice(&comp_data[0], (uint32_t)comp_data.size(), i,
reinterpret_cast<etc_block*>(decoded_texture.get_ptr()), m_slice_descs[i].m_num_blocks_x * m_slice_descs[i].m_num_blocks_y, basist::block_format::cBC7, 16))
{
error_printf("Transcoding failed to BC7 on slice %u!\n", i);
return false;
}
total_time_bc7 += tm.get_elapsed_secs();
m_decoded_output_textures_bc7[i] = decoded_texture;
}
}
for (uint32_t i = 0; i < m_slice_descs.size(); i++)
{
m_decoded_output_textures[i].unpack(m_decoded_output_textures_unpacked[i]);
if (m_decoded_output_textures_bc7[i].get_pixel_width())
m_decoded_output_textures_bc7[i].unpack(m_decoded_output_textures_unpacked_bc7[i]);
}
debug_printf("Transcoded to %s in %3.3fms, %f texels/sec\n", m_params.m_uastc ? "ASTC" : "ETC1", total_time_etc1s_or_astc * 1000.0f, total_orig_pixels / total_time_etc1s_or_astc);
if (total_time_bc7 != 0)
debug_printf("Transcoded to BC7 in %3.3fms, %f texels/sec\n", total_time_bc7 * 1000.0f, total_orig_pixels / total_time_bc7);
for (uint32_t slice_index = 0; slice_index < m_slice_descs.size(); slice_index++)
{
const basisu_backend_slice_desc& slice_desc = m_slice_descs[slice_index];
const uint32_t total_blocks = slice_desc.m_num_blocks_x * slice_desc.m_num_blocks_y;
BASISU_NOTE_UNUSED(total_blocks);
assert(m_decoded_output_textures[slice_index].get_total_blocks() == total_blocks);
}
} // if (m_params.m_validate_output_data)
return true;
}
bool basis_compressor::write_output_files_and_compute_stats()
{
debug_printf("basis_compressor::write_output_files_and_compute_stats\n");
const uint8_vec& comp_data = m_params.m_create_ktx2_file ? m_output_ktx2_file : m_basis_file.get_compressed_data();
if (m_params.m_write_output_basis_files)
{
const std::string& output_filename = m_params.m_out_filename;
if (!write_vec_to_file(output_filename.c_str(), comp_data))
{
error_printf("Failed writing output data to file \"%s\"\n", output_filename.c_str());
return false;
}
if (m_params.m_status_output)
{
printf("Wrote output .basis/.ktx2 file \"%s\"\n", output_filename.c_str());
}
}
size_t comp_size = 0;
if ((m_params.m_compute_stats) && (m_params.m_uastc) && (comp_data.size()))
{
void* pComp_data = tdefl_compress_mem_to_heap(&comp_data[0], comp_data.size(), &comp_size, TDEFL_MAX_PROBES_MASK);// TDEFL_DEFAULT_MAX_PROBES);
size_t decomp_size = 0;
void* pDecomp_data = tinfl_decompress_mem_to_heap(pComp_data, comp_size, &decomp_size, 0);
if ((decomp_size != comp_data.size()) || (memcmp(pDecomp_data, &comp_data[0], decomp_size) != 0))
{
printf("basis_compressor::create_basis_file_and_transcode:: miniz compression or decompression failed!\n");
return false;
}
mz_free(pComp_data);
mz_free(pDecomp_data);
uint32_t total_texels = 0;
for (uint32_t i = 0; i < m_slice_descs.size(); i++)
total_texels += (m_slice_descs[i].m_num_blocks_x * m_slice_descs[i].m_num_blocks_y) * 16;
m_basis_bits_per_texel = comp_size * 8.0f / total_texels;
debug_printf(".basis file size: %u, LZ compressed file size: %u, %3.2f bits/texel\n",
(uint32_t)comp_data.size(),
(uint32_t)comp_size,
m_basis_bits_per_texel);
}
m_stats.resize(m_slice_descs.size());
if (m_params.m_validate_output_data)
{
for (uint32_t slice_index = 0; slice_index < m_slice_descs.size(); slice_index++)
{
const basisu_backend_slice_desc& slice_desc = m_slice_descs[slice_index];
if (m_params.m_compute_stats)
{
if (m_params.m_print_stats)
printf("Slice: %u\n", slice_index);
image_stats& s = m_stats[slice_index];
// TODO: We used to output SSIM (during heavy encoder development), but this slowed down compression too much. We'll be adding it back.
image_metrics em;
// ---- .basis stats
em.calc(m_slice_images[slice_index], m_decoded_output_textures_unpacked[slice_index], 0, 3);
if (m_params.m_print_stats)
em.print(".basis RGB Avg: ");
s.m_basis_rgb_avg_psnr = em.m_psnr;
em.calc(m_slice_images[slice_index], m_decoded_output_textures_unpacked[slice_index], 0, 4);
if (m_params.m_print_stats)
em.print(".basis RGBA Avg: ");
s.m_basis_rgba_avg_psnr = em.m_psnr;
em.calc(m_slice_images[slice_index], m_decoded_output_textures_unpacked[slice_index], 0, 1);
if (m_params.m_print_stats)
em.print(".basis R Avg: ");
em.calc(m_slice_images[slice_index], m_decoded_output_textures_unpacked[slice_index], 1, 1);
if (m_params.m_print_stats)
em.print(".basis G Avg: ");
em.calc(m_slice_images[slice_index], m_decoded_output_textures_unpacked[slice_index], 2, 1);
if (m_params.m_print_stats)
em.print(".basis B Avg: ");
if (m_params.m_uastc)
{
em.calc(m_slice_images[slice_index], m_decoded_output_textures_unpacked[slice_index], 3, 1);
if (m_params.m_print_stats)
em.print(".basis A Avg: ");
s.m_basis_a_avg_psnr = em.m_psnr;
}
em.calc(m_slice_images[slice_index], m_decoded_output_textures_unpacked[slice_index], 0, 0);
if (m_params.m_print_stats)
em.print(".basis 709 Luma: ");
s.m_basis_luma_709_psnr = static_cast<float>(em.m_psnr);
s.m_basis_luma_709_ssim = static_cast<float>(em.m_ssim);
em.calc(m_slice_images[slice_index], m_decoded_output_textures_unpacked[slice_index], 0, 0, true, true);
if (m_params.m_print_stats)
em.print(".basis 601 Luma: ");
s.m_basis_luma_601_psnr = static_cast<float>(em.m_psnr);
if (m_slice_descs.size() == 1)
{
const uint32_t output_size = comp_size ? (uint32_t)comp_size : (uint32_t)comp_data.size();
if (m_params.m_print_stats)
{
debug_printf(".basis RGB PSNR per bit/texel*10000: %3.3f\n", 10000.0f * s.m_basis_rgb_avg_psnr / ((output_size * 8.0f) / (slice_desc.m_orig_width * slice_desc.m_orig_height)));
debug_printf(".basis Luma 709 PSNR per bit/texel*10000: %3.3f\n", 10000.0f * s.m_basis_luma_709_psnr / ((output_size * 8.0f) / (slice_desc.m_orig_width * slice_desc.m_orig_height)));
}
}
if (m_decoded_output_textures_unpacked_bc7[slice_index].get_width())
{
// ---- BC7 stats
em.calc(m_slice_images[slice_index], m_decoded_output_textures_unpacked_bc7[slice_index], 0, 3);
if (m_params.m_print_stats)
em.print("BC7 RGB Avg: ");
s.m_bc7_rgb_avg_psnr = em.m_psnr;
em.calc(m_slice_images[slice_index], m_decoded_output_textures_unpacked_bc7[slice_index], 0, 4);
if (m_params.m_print_stats)
em.print("BC7 RGBA Avg: ");
s.m_bc7_rgba_avg_psnr = em.m_psnr;
em.calc(m_slice_images[slice_index], m_decoded_output_textures_unpacked_bc7[slice_index], 0, 1);
if (m_params.m_print_stats)
em.print("BC7 R Avg: ");
em.calc(m_slice_images[slice_index], m_decoded_output_textures_unpacked_bc7[slice_index], 1, 1);
if (m_params.m_print_stats)
em.print("BC7 G Avg: ");
em.calc(m_slice_images[slice_index], m_decoded_output_textures_unpacked_bc7[slice_index], 2, 1);
if (m_params.m_print_stats)
em.print("BC7 B Avg: ");
if (m_params.m_uastc)
{
em.calc(m_slice_images[slice_index], m_decoded_output_textures_unpacked_bc7[slice_index], 3, 1);
if (m_params.m_print_stats)
em.print("BC7 A Avg: ");
s.m_bc7_a_avg_psnr = em.m_psnr;
}
em.calc(m_slice_images[slice_index], m_decoded_output_textures_unpacked_bc7[slice_index], 0, 0);
if (m_params.m_print_stats)
em.print("BC7 709 Luma: ");
s.m_bc7_luma_709_psnr = static_cast<float>(em.m_psnr);
s.m_bc7_luma_709_ssim = static_cast<float>(em.m_ssim);
em.calc(m_slice_images[slice_index], m_decoded_output_textures_unpacked_bc7[slice_index], 0, 0, true, true);
if (m_params.m_print_stats)
em.print("BC7 601 Luma: ");
s.m_bc7_luma_601_psnr = static_cast<float>(em.m_psnr);
}
if (!m_params.m_uastc)
{
// ---- Nearly best possible ETC1S stats
em.calc(m_slice_images[slice_index], m_best_etc1s_images_unpacked[slice_index], 0, 3);
if (m_params.m_print_stats)
em.print("Unquantized ETC1S RGB Avg: ");
s.m_best_etc1s_rgb_avg_psnr = static_cast<float>(em.m_psnr);
em.calc(m_slice_images[slice_index], m_best_etc1s_images_unpacked[slice_index], 0, 0);
if (m_params.m_print_stats)
em.print("Unquantized ETC1S 709 Luma: ");
s.m_best_etc1s_luma_709_psnr = static_cast<float>(em.m_psnr);
s.m_best_etc1s_luma_709_ssim = static_cast<float>(em.m_ssim);
em.calc(m_slice_images[slice_index], m_best_etc1s_images_unpacked[slice_index], 0, 0, true, true);
if (m_params.m_print_stats)
em.print("Unquantized ETC1S 601 Luma: ");
s.m_best_etc1s_luma_601_psnr = static_cast<float>(em.m_psnr);
}
}
std::string out_basename;
if (m_params.m_out_filename.size())
string_get_filename(m_params.m_out_filename.c_str(), out_basename);
else if (m_params.m_source_filenames.size())
string_get_filename(m_params.m_source_filenames[slice_desc.m_source_file_index].c_str(), out_basename);
string_remove_extension(out_basename);
out_basename = "basis_debug_" + out_basename + string_format("_slice_%u", slice_index);
if ((!m_params.m_uastc) && (m_frontend.get_params().m_debug_images))
{
// Write "best" ETC1S debug images
if (!m_params.m_uastc)
{
gpu_image best_etc1s_gpu_image(m_best_etc1s_images[slice_index]);
best_etc1s_gpu_image.override_dimensions(slice_desc.m_orig_width, slice_desc.m_orig_height);
write_compressed_texture_file((out_basename + "_best_etc1s.ktx").c_str(), best_etc1s_gpu_image);
image best_etc1s_unpacked;
best_etc1s_gpu_image.unpack(best_etc1s_unpacked);
save_png(out_basename + "_best_etc1s.png", best_etc1s_unpacked);
}
}
if (m_params.m_debug_images)
{
// Write decoded ETC1S/ASTC debug images
{
gpu_image decoded_etc1s_or_astc(m_decoded_output_textures[slice_index]);
decoded_etc1s_or_astc.override_dimensions(slice_desc.m_orig_width, slice_desc.m_orig_height);
write_compressed_texture_file((out_basename + "_transcoded_etc1s_or_astc.ktx").c_str(), decoded_etc1s_or_astc);
image temp(m_decoded_output_textures_unpacked[slice_index]);
temp.crop(slice_desc.m_orig_width, slice_desc.m_orig_height);
save_png(out_basename + "_transcoded_etc1s_or_astc.png", temp);
}
// Write decoded BC7 debug images
if (m_decoded_output_textures_bc7[slice_index].get_pixel_width())
{
gpu_image decoded_bc7(m_decoded_output_textures_bc7[slice_index]);
decoded_bc7.override_dimensions(slice_desc.m_orig_width, slice_desc.m_orig_height);
write_compressed_texture_file((out_basename + "_transcoded_bc7.ktx").c_str(), decoded_bc7);
image temp(m_decoded_output_textures_unpacked_bc7[slice_index]);
temp.crop(slice_desc.m_orig_width, slice_desc.m_orig_height);
save_png(out_basename + "_transcoded_bc7.png", temp);
}
}
}
} // if (m_params.m_validate_output_data)
return true;
}
// Make sure all the mip 0's have the same dimensions and number of mipmap levels, or we can't encode the KTX2 file.
bool basis_compressor::validate_ktx2_constraints()
{
uint32_t base_width = 0, base_height = 0;
uint32_t total_layers = 0;
for (uint32_t i = 0; i < m_slice_descs.size(); i++)
{
if (m_slice_descs[i].m_mip_index == 0)
{
if (!base_width)
{
base_width = m_slice_descs[i].m_orig_width;
base_height = m_slice_descs[i].m_orig_height;
}
else
{
if ((m_slice_descs[i].m_orig_width != base_width) || (m_slice_descs[i].m_orig_height != base_height))
{
return false;
}
}
total_layers = maximum<uint32_t>(total_layers, m_slice_descs[i].m_source_file_index + 1);
}
}
basisu::vector<uint32_t> total_mips(total_layers);
for (uint32_t i = 0; i < m_slice_descs.size(); i++)
total_mips[m_slice_descs[i].m_source_file_index] = maximum<uint32_t>(total_mips[m_slice_descs[i].m_source_file_index], m_slice_descs[i].m_mip_index + 1);
for (uint32_t i = 1; i < total_layers; i++)
{
if (total_mips[0] != total_mips[i])
{
return false;
}
}
return true;
}
static uint8_t g_ktx2_etc1s_nonalpha_dfd[44] = { 0x2C,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x2,0x0,0x28,0x0,0xA3,0x1,0x2,0x0,0x3,0x3,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x3F,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0xFF,0xFF,0xFF,0xFF };
static uint8_t g_ktx2_etc1s_alpha_dfd[60] = { 0x3C,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x2,0x0,0x38,0x0,0xA3,0x1,0x2,0x0,0x3,0x3,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x3F,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0xFF,0xFF,0xFF,0xFF,0x40,0x0,0x3F,0xF,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0xFF,0xFF,0xFF,0xFF };
static uint8_t g_ktx2_uastc_nonalpha_dfd[44] = { 0x2C,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x2,0x0,0x28,0x0,0xA6,0x1,0x2,0x0,0x3,0x3,0x0,0x0,0x10,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x7F,0x4,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0xFF,0xFF,0xFF,0xFF };
static uint8_t g_ktx2_uastc_alpha_dfd[44] = { 0x2C,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x2,0x0,0x28,0x0,0xA6,0x1,0x2,0x0,0x3,0x3,0x0,0x0,0x10,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x7F,0x3,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0xFF,0xFF,0xFF,0xFF };
void basis_compressor::get_dfd(uint8_vec &dfd, const basist::ktx2_header &header)
{
const uint8_t* pDFD;
uint32_t dfd_len;
if (m_params.m_uastc)
{
if (m_any_source_image_has_alpha)
{
pDFD = g_ktx2_uastc_alpha_dfd;
dfd_len = sizeof(g_ktx2_uastc_alpha_dfd);
}
else
{
pDFD = g_ktx2_uastc_nonalpha_dfd;
dfd_len = sizeof(g_ktx2_uastc_nonalpha_dfd);
}
}
else
{
if (m_any_source_image_has_alpha)
{
pDFD = g_ktx2_etc1s_alpha_dfd;
dfd_len = sizeof(g_ktx2_etc1s_alpha_dfd);
}
else
{
pDFD = g_ktx2_etc1s_nonalpha_dfd;
dfd_len = sizeof(g_ktx2_etc1s_nonalpha_dfd);
}
}
assert(dfd_len >= 44);
dfd.resize(dfd_len);
memcpy(dfd.data(), pDFD, dfd_len);
uint32_t dfd_bits = basisu::read_le_dword(dfd.data() + 3 * sizeof(uint32_t));
dfd_bits &= ~(0xFF << 16);
if (m_params.m_ktx2_srgb_transfer_func)
dfd_bits |= (basist::KTX2_KHR_DF_TRANSFER_SRGB << 16);
else
dfd_bits |= (basist::KTX2_KHR_DF_TRANSFER_LINEAR << 16);
basisu::write_le_dword(dfd.data() + 3 * sizeof(uint32_t), dfd_bits);
if (header.m_supercompression_scheme != basist::KTX2_SS_NONE)
{
uint32_t plane_bits = basisu::read_le_dword(dfd.data() + 5 * sizeof(uint32_t));
plane_bits &= ~0xFF;
basisu::write_le_dword(dfd.data() + 5 * sizeof(uint32_t), plane_bits);
}
// Fix up the DFD channel(s)
uint32_t dfd_chan0 = basisu::read_le_dword(dfd.data() + 7 * sizeof(uint32_t));
if (m_params.m_uastc)
{
dfd_chan0 &= ~(0xF << 24);
// TODO: Allow the caller to override this
if (m_any_source_image_has_alpha)
dfd_chan0 |= (basist::KTX2_DF_CHANNEL_UASTC_RGBA << 24);
else
dfd_chan0 |= (basist::KTX2_DF_CHANNEL_UASTC_RGB << 24);
}
basisu::write_le_dword(dfd.data() + 7 * sizeof(uint32_t), dfd_chan0);
}
bool basis_compressor::create_ktx2_file()
{
if (m_params.m_uastc)
{
if ((m_params.m_ktx2_uastc_supercompression != basist::KTX2_SS_NONE) && (m_params.m_ktx2_uastc_supercompression != basist::KTX2_SS_ZSTANDARD))
return false;
}
const basisu_backend_output& backend_output = m_backend.get_output();
// Determine the width/height, number of array layers, mipmap levels, and the number of faces (1 for 2D, 6 for cubemap).
// This does not support 1D or 3D.
uint32_t base_width = 0, base_height = 0, total_layers = 0, total_levels = 0, total_faces = 1;
for (uint32_t i = 0; i < m_slice_descs.size(); i++)
{
if ((m_slice_descs[i].m_mip_index == 0) && (!base_width))
{
base_width = m_slice_descs[i].m_orig_width;
base_height = m_slice_descs[i].m_orig_height;
}
total_layers = maximum<uint32_t>(total_layers, m_slice_descs[i].m_source_file_index + 1);
if (!m_slice_descs[i].m_source_file_index)
total_levels = maximum<uint32_t>(total_levels, m_slice_descs[i].m_mip_index + 1);
}
if (m_params.m_tex_type == basist::cBASISTexTypeCubemapArray)
{
assert((total_layers % 6) == 0);
total_layers /= 6;
assert(total_layers >= 1);
total_faces = 6;
}
basist::ktx2_header header;
memset(&header, 0, sizeof(header));
memcpy(header.m_identifier, basist::g_ktx2_file_identifier, sizeof(basist::g_ktx2_file_identifier));
header.m_pixel_width = base_width;
header.m_pixel_height = base_height;
header.m_face_count = total_faces;
header.m_vk_format = basist::KTX2_VK_FORMAT_UNDEFINED;
header.m_type_size = 1;
header.m_level_count = total_levels;
header.m_layer_count = (total_layers > 1) ? total_layers : 0;
if (m_params.m_uastc)
{
switch (m_params.m_ktx2_uastc_supercompression)
{
case basist::KTX2_SS_NONE:
{
header.m_supercompression_scheme = basist::KTX2_SS_NONE;
break;
}
case basist::KTX2_SS_ZSTANDARD:
{
#if BASISD_SUPPORT_KTX2_ZSTD
header.m_supercompression_scheme = basist::KTX2_SS_ZSTANDARD;
#else
header.m_supercompression_scheme = basist::KTX2_SS_NONE;
#endif
break;
}
default: assert(0); return false;
}
}
basisu::vector<uint8_vec> level_data_bytes(total_levels);
basisu::vector<uint8_vec> compressed_level_data_bytes(total_levels);
uint_vec slice_level_offsets(m_slice_descs.size());
// This will append the texture data in the correct order (for each level: layer, then face).
for (uint32_t slice_index = 0; slice_index < m_slice_descs.size(); slice_index++)
{
const basisu_backend_slice_desc& slice_desc = m_slice_descs[slice_index];
slice_level_offsets[slice_index] = level_data_bytes[slice_desc.m_mip_index].size();
if (m_params.m_uastc)
append_vector(level_data_bytes[slice_desc.m_mip_index], m_uastc_backend_output.m_slice_image_data[slice_index]);
else
append_vector(level_data_bytes[slice_desc.m_mip_index], backend_output.m_slice_image_data[slice_index]);
}
// UASTC supercompression
if ((m_params.m_uastc) && (header.m_supercompression_scheme == basist::KTX2_SS_ZSTANDARD))
{
#if BASISD_SUPPORT_KTX2_ZSTD
for (uint32_t level_index = 0; level_index < total_levels; level_index++)
{
compressed_level_data_bytes[level_index].resize(ZSTD_compressBound(level_data_bytes[level_index].size()));
size_t result = ZSTD_compress(compressed_level_data_bytes[level_index].data(), compressed_level_data_bytes[level_index].size(),
level_data_bytes[level_index].data(), level_data_bytes[level_index].size(),
m_params.m_ktx2_zstd_supercompression_level);
if (ZSTD_isError(result))
return false;
compressed_level_data_bytes[level_index].resize(result);
}
#else
// Can't get here
assert(0);
return false;
#endif
}
else
{
// No supercompression
compressed_level_data_bytes = level_data_bytes;
}
uint8_vec etc1s_global_data;
// Create ETC1S global supercompressed data
if (!m_params.m_uastc)
{
basist::ktx2_etc1s_global_data_header etc1s_global_data_header;
clear_obj(etc1s_global_data_header);
etc1s_global_data_header.m_endpoint_count = backend_output.m_num_endpoints;
etc1s_global_data_header.m_selector_count = backend_output.m_num_selectors;
etc1s_global_data_header.m_endpoints_byte_length = backend_output.m_endpoint_palette.size();
etc1s_global_data_header.m_selectors_byte_length = backend_output.m_selector_palette.size();
etc1s_global_data_header.m_tables_byte_length = backend_output.m_slice_image_tables.size();
basisu::vector<basist::ktx2_etc1s_image_desc> etc1s_image_descs(total_levels * total_layers * total_faces);
memset(etc1s_image_descs.data(), 0, etc1s_image_descs.size_in_bytes());
for (uint32_t slice_index = 0; slice_index < m_slice_descs.size(); slice_index++)
{
const basisu_backend_slice_desc& slice_desc = m_slice_descs[slice_index];
const uint32_t level_index = slice_desc.m_mip_index;
uint32_t layer_index = slice_desc.m_source_file_index;
uint32_t face_index = 0;
if (m_params.m_tex_type == basist::cBASISTexTypeCubemapArray)
{
face_index = layer_index % 6;
layer_index /= 6;
}
const uint32_t etc1s_image_index = level_index * (total_layers * total_faces) + layer_index * total_faces + face_index;
if (slice_desc.m_alpha)
{
etc1s_image_descs[etc1s_image_index].m_alpha_slice_byte_length = backend_output.m_slice_image_data[slice_index].size();
etc1s_image_descs[etc1s_image_index].m_alpha_slice_byte_offset = slice_level_offsets[slice_index];
}
else
{
if (m_params.m_tex_type == basist::cBASISTexTypeVideoFrames)
etc1s_image_descs[etc1s_image_index].m_image_flags = !slice_desc.m_iframe ? basist::KTX2_IMAGE_IS_P_FRAME : 0;
etc1s_image_descs[etc1s_image_index].m_rgb_slice_byte_length = backend_output.m_slice_image_data[slice_index].size();
etc1s_image_descs[etc1s_image_index].m_rgb_slice_byte_offset = slice_level_offsets[slice_index];
}
} // slice_index
append_vector(etc1s_global_data, (const uint8_t*)&etc1s_global_data_header, sizeof(etc1s_global_data_header));
append_vector(etc1s_global_data, (const uint8_t*)etc1s_image_descs.data(), etc1s_image_descs.size_in_bytes());
append_vector(etc1s_global_data, backend_output.m_endpoint_palette);
append_vector(etc1s_global_data, backend_output.m_selector_palette);
append_vector(etc1s_global_data, backend_output.m_slice_image_tables);
header.m_supercompression_scheme = basist::KTX2_SS_BASISLZ;
}
// Key values
basist::ktx2_transcoder::key_value_vec key_values(m_params.m_ktx2_key_values);
key_values.enlarge(1);
const char* pKTXwriter = "KTXwriter";
key_values.back().m_key.resize(strlen(pKTXwriter) + 1);
memcpy(key_values.back().m_key.data(), pKTXwriter, strlen(pKTXwriter) + 1);
char writer_id[128];
#ifdef _MSC_VER
sprintf_s(writer_id, sizeof(writer_id), "Basis Universal %s", BASISU_LIB_VERSION_STRING);
#else
snprintf(writer_id, sizeof(writer_id), "Basis Universal %s", BASISU_LIB_VERSION_STRING);
#endif
key_values.back().m_value.resize(strlen(writer_id) + 1);
memcpy(key_values.back().m_value.data(), writer_id, strlen(writer_id) + 1);
key_values.sort();
#if BASISU_DISABLE_KTX2_KEY_VALUES
// HACK HACK - Clear the key values array, which causes no key values to be written (triggering the ktx2check validator bug).
key_values.clear();
#endif
uint8_vec key_value_data;
// DFD
uint8_vec dfd;
get_dfd(dfd, header);
const uint32_t kvd_file_offset = sizeof(header) + sizeof(basist::ktx2_level_index) * total_levels + dfd.size();
for (uint32_t pass = 0; pass < 2; pass++)
{
for (uint32_t i = 0; i < key_values.size(); i++)
{
if (key_values[i].m_key.size() < 2)
return false;
if (key_values[i].m_key.back() != 0)
return false;
const uint64_t total_len = (uint64_t)key_values[i].m_key.size() + (uint64_t)key_values[i].m_value.size();
if (total_len >= UINT32_MAX)
return false;
packed_uint<4> le_len((uint32_t)total_len);
append_vector(key_value_data, (const uint8_t*)&le_len, sizeof(le_len));
append_vector(key_value_data, key_values[i].m_key);
append_vector(key_value_data, key_values[i].m_value);
const uint32_t ofs = key_value_data.size() & 3;
const uint32_t padding = (4 - ofs) & 3;
for (uint32_t p = 0; p < padding; p++)
key_value_data.push_back(0);
}
if (header.m_supercompression_scheme != basist::KTX2_SS_NONE)
break;
#if BASISU_DISABLE_KTX2_ALIGNMENT_WORKAROUND
break;
#endif
// Hack to ensure the KVD block ends on a 16 byte boundary, because we have no other official way of aligning the data.
uint32_t kvd_end_file_offset = kvd_file_offset + key_value_data.size();
uint32_t bytes_needed_to_pad = (16 - (kvd_end_file_offset & 15)) & 15;
if (!bytes_needed_to_pad)
{
// We're good. No need to add a dummy key.
break;
}
assert(!pass);
if (pass)
return false;
if (bytes_needed_to_pad < 6)
bytes_needed_to_pad += 16;
printf("WARNING: Due to a KTX2 validator bug related to mipPadding, we must insert a dummy key into the KTX2 file of %u bytes\n", bytes_needed_to_pad);
// We're not good - need to add a dummy key large enough to force file alignment so the mip level array gets aligned.
// We can't just add some bytes before the mip level array because ktx2check will see that as extra data in the file that shouldn't be there in ktxValidator::validateDataSize().
key_values.enlarge(1);
for (uint32_t i = 0; i < (bytes_needed_to_pad - 4 - 1 - 1); i++)
key_values.back().m_key.push_back(127);
key_values.back().m_key.push_back(0);
key_values.back().m_value.push_back(0);
key_values.sort();
key_value_data.resize(0);
// Try again
}
basisu::vector<basist::ktx2_level_index> level_index_array(total_levels);
memset(level_index_array.data(), 0, level_index_array.size_in_bytes());
m_output_ktx2_file.clear();
m_output_ktx2_file.reserve(m_output_basis_file.size());
// Dummy header
m_output_ktx2_file.resize(sizeof(header));
// Level index array
append_vector(m_output_ktx2_file, (const uint8_t*)level_index_array.data(), level_index_array.size_in_bytes());
// DFD
const uint8_t* pDFD = dfd.data();
uint32_t dfd_len = dfd.size();
header.m_dfd_byte_offset = m_output_ktx2_file.size();
header.m_dfd_byte_length = dfd_len;
append_vector(m_output_ktx2_file, pDFD, dfd_len);
// Key value data
if (key_value_data.size())
{
assert(kvd_file_offset == m_output_ktx2_file.size());
header.m_kvd_byte_offset = m_output_ktx2_file.size();
header.m_kvd_byte_length = key_value_data.size();
append_vector(m_output_ktx2_file, key_value_data);
}
// Global Supercompressed Data
if (etc1s_global_data.size())
{
uint32_t ofs = m_output_ktx2_file.size() & 7;
uint32_t padding = (8 - ofs) & 7;
for (uint32_t i = 0; i < padding; i++)
m_output_ktx2_file.push_back(0);
header.m_sgd_byte_length = etc1s_global_data.size();
header.m_sgd_byte_offset = m_output_ktx2_file.size();
append_vector(m_output_ktx2_file, etc1s_global_data);
}
// mipPadding
if (header.m_supercompression_scheme == basist::KTX2_SS_NONE)
{
// We currently can't do this or the validator will incorrectly give an error.
uint32_t ofs = m_output_ktx2_file.size() & 15;
uint32_t padding = (16 - ofs) & 15;
// Make sure we're always aligned here (due to a validator bug).
if (padding)
{
printf("Warning: KTX2 mip level data is not 16-byte aligned. This may trigger a ktx2check validation bug. Writing %u bytes of mipPadding.\n", padding);
}
for (uint32_t i = 0; i < padding; i++)
m_output_ktx2_file.push_back(0);
}
// Level data - write the smallest mipmap first.
for (int level = total_levels - 1; level >= 0; level--)
{
level_index_array[level].m_byte_length = compressed_level_data_bytes[level].size();
if (m_params.m_uastc)
level_index_array[level].m_uncompressed_byte_length = level_data_bytes[level].size();
level_index_array[level].m_byte_offset = m_output_ktx2_file.size();
append_vector(m_output_ktx2_file, compressed_level_data_bytes[level]);
}
// Write final header
memcpy(m_output_ktx2_file.data(), &header, sizeof(header));
// Write final level index array
memcpy(m_output_ktx2_file.data() + sizeof(header), level_index_array.data(), level_index_array.size_in_bytes());
debug_printf("Total .ktx2 output file size: %u\n", m_output_ktx2_file.size());
return true;
}
bool basis_parallel_compress(
uint32_t total_threads,
const basisu::vector<basis_compressor_params>& params_vec,
basisu::vector< parallel_results >& results_vec)
{
assert(g_library_initialized);
if (!g_library_initialized)
{
error_printf("basis_parallel_compress: basisu_encoder_init() MUST be called before using any encoder functionality!\n");
return false;
}
assert(total_threads >= 1);
total_threads = basisu::maximum<uint32_t>(total_threads, 1);
job_pool jpool(total_threads);
results_vec.resize(0);
results_vec.resize(params_vec.size());
std::atomic<bool> result;
result = true;
std::atomic<bool> opencl_failed;
opencl_failed = false;
for (uint32_t pindex = 0; pindex < params_vec.size(); pindex++)
{
jpool.add_job([pindex, &params_vec, &results_vec, &result, &opencl_failed] {
basis_compressor_params params = params_vec[pindex];
parallel_results& results = results_vec[pindex];
interval_timer tm;
tm.start();
basis_compressor c;
// Dummy job pool
job_pool task_jpool(1);
params.m_pJob_pool = &task_jpool;
// TODO: Remove this flag entirely
params.m_multithreading = true;
// Stop using OpenCL if a failure ever occurs.
if (opencl_failed)
params.m_use_opencl = false;
bool status = c.init(params);
if (c.get_opencl_failed())
opencl_failed = true;
if (status)
{
basis_compressor::error_code ec = c.process();
if (c.get_opencl_failed())
opencl_failed = true;
results.m_error_code = ec;
if (ec == basis_compressor::cECSuccess)
{
results.m_basis_file = c.get_output_basis_file();
results.m_ktx2_file = c.get_output_ktx2_file();
results.m_stats = c.get_stats();
results.m_basis_bits_per_texel = c.get_basis_bits_per_texel();
results.m_any_source_image_has_alpha = c.get_any_source_image_has_alpha();
}
else
{
result = false;
}
}
else
{
results.m_error_code = basis_compressor::cECFailedInitializing;
result = false;
}
results.m_total_time = tm.get_elapsed_secs();
} );
} // pindex
jpool.wait_for_all();
if (opencl_failed)
error_printf("An OpenCL error occured sometime during compression. The compressor fell back to CPU processing after the failure.\n");
return result;
}
void* basis_compress(
const basisu::vector<image>& source_images,
uint32_t flags_and_quality, float uastc_rdo_quality,
size_t* pSize,
image_stats* pStats)
{
// Check input parameters
if ((!source_images.size()) || (!pSize))
{
error_printf("basis_compress: Invalid parameter\n");
assert(0);
return nullptr;
}
*pSize = 0;
// Initialize a job pool
uint32_t num_threads = 1;
if (flags_and_quality & cFlagThreaded)
num_threads = basisu::maximum<uint32_t>(1, std::thread::hardware_concurrency());
job_pool jp(num_threads);
// Initialize the compressor parameter struct
basis_compressor_params comp_params;
comp_params.m_pJob_pool = &jp;
comp_params.m_y_flip = (flags_and_quality & cFlagYFlip) != 0;
comp_params.m_debug = (flags_and_quality & cFlagDebug) != 0;
// Copy the largest mipmap level
comp_params.m_source_images.resize(1);
comp_params.m_source_images[0] = source_images[0];
// Copy the smaller mipmap levels, if any
if (source_images.size() > 1)
{
comp_params.m_source_mipmap_images.resize(1);
comp_params.m_source_mipmap_images[0].resize(source_images.size() - 1);
for (uint32_t i = 1; i < source_images.size(); i++)
comp_params.m_source_mipmap_images[0][i - 1] = source_images[i];
}
comp_params.m_multithreading = (flags_and_quality & cFlagThreaded) != 0;
comp_params.m_use_opencl = (flags_and_quality & cFlagUseOpenCL) != 0;
comp_params.m_write_output_basis_files = false;
comp_params.m_perceptual = (flags_and_quality & cFlagSRGB) != 0;
comp_params.m_mip_srgb = comp_params.m_perceptual;
comp_params.m_mip_gen = (flags_and_quality & (cFlagGenMipsWrap | cFlagGenMipsClamp)) != 0;
comp_params.m_mip_wrapping = (flags_and_quality & cFlagGenMipsWrap) != 0;
comp_params.m_uastc = (flags_and_quality & cFlagUASTC) != 0;
if (comp_params.m_uastc)
{
comp_params.m_pack_uastc_flags = flags_and_quality & cPackUASTCLevelMask;
comp_params.m_rdo_uastc = (flags_and_quality & cFlagUASTCRDO) != 0;
comp_params.m_rdo_uastc_quality_scalar = uastc_rdo_quality;
}
else
comp_params.m_quality_level = basisu::maximum<uint32_t>(1, flags_and_quality & 255);
comp_params.m_create_ktx2_file = (flags_and_quality & cFlagKTX2) != 0;
if (comp_params.m_create_ktx2_file)
{
// Set KTX2 specific parameters.
if ((flags_and_quality & cFlagKTX2UASTCSuperCompression) && (comp_params.m_uastc))
comp_params.m_ktx2_uastc_supercompression = basist::KTX2_SS_ZSTANDARD;
comp_params.m_ktx2_srgb_transfer_func = comp_params.m_perceptual;
}
comp_params.m_compute_stats = (pStats != nullptr);
comp_params.m_print_stats = (flags_and_quality & cFlagPrintStats) != 0;
comp_params.m_status_output = (flags_and_quality & cFlagPrintStatus) != 0;
// Create the compressor, initialize it, and process the input
basis_compressor comp;
if (!comp.init(comp_params))
{
error_printf("basis_compress: basis_compressor::init() failed!\n");
return nullptr;
}
basis_compressor::error_code ec = comp.process();
if (ec != basis_compressor::cECSuccess)
{
error_printf("basis_compress: basis_compressor::process() failed with error code %u\n", (uint32_t)ec);
return nullptr;
}
if ((pStats) && (comp.get_opencl_failed()))
{
pStats->m_opencl_failed = true;
}
// Get the output file data and return it to the caller
void* pFile_data = nullptr;
const uint8_vec* pFile_data_vec = comp_params.m_create_ktx2_file ? &comp.get_output_ktx2_file() : &comp.get_output_basis_file();
pFile_data = malloc(pFile_data_vec->size());
if (!pFile_data)
{
error_printf("basis_compress: Out of memory\n");
return nullptr;
}
memcpy(pFile_data, pFile_data_vec->get_ptr(), pFile_data_vec->size());
*pSize = pFile_data_vec->size();
if ((pStats) && (comp.get_stats().size()))
{
*pStats = comp.get_stats()[0];
}
return pFile_data;
}
void* basis_compress(
const uint8_t* pImageRGBA, uint32_t width, uint32_t height, uint32_t pitch_in_pixels,
uint32_t flags_and_quality, float uastc_rdo_quality,
size_t* pSize,
image_stats* pStats)
{
if (!pitch_in_pixels)
pitch_in_pixels = width;
if ((!pImageRGBA) || (!width) || (!height) || (pitch_in_pixels < width) || (!pSize))
{
error_printf("basis_compress: Invalid parameter\n");
assert(0);
return nullptr;
}
*pSize = 0;
if ((width > BASISU_MAX_SUPPORTED_TEXTURE_DIMENSION) || (height > BASISU_MAX_SUPPORTED_TEXTURE_DIMENSION))
{
error_printf("basis_compress: Image too large\n");
return nullptr;
}
// Copy the source image
basisu::vector<image> source_image(1);
source_image[0].crop(width, height, width, g_black_color, false);
for (uint32_t y = 0; y < height; y++)
memcpy(source_image[0].get_ptr() + y * width, (const color_rgba*)pImageRGBA + y * pitch_in_pixels, width * sizeof(color_rgba));
return basis_compress(source_image, flags_and_quality, uastc_rdo_quality, pSize, pStats);
}
void basis_free_data(void* p)
{
free(p);
}
bool basis_benchmark_etc1s_opencl(bool* pOpenCL_failed)
{
if (pOpenCL_failed)
*pOpenCL_failed = false;
if (!opencl_is_available())
{
error_printf("basis_benchmark_etc1s_opencl: OpenCL support must be enabled first!\n");
return false;
}
const uint32_t W = 1024, H = 1024;
basisu::vector<image> images;
image& img = images.enlarge(1)->resize(W, H);
const uint32_t NUM_RAND_LETTERS = 6000;// 40000;
rand r;
r.seed(200);
for (uint32_t i = 0; i < NUM_RAND_LETTERS; i++)
{
uint32_t x = r.irand(0, W - 1), y = r.irand(0, H - 1);
uint32_t sx = r.irand(1, 4), sy = r.irand(1, 4);
color_rgba c(r.byte(), r.byte(), r.byte(), 255);
img.debug_text(x, y, sx, sy, c, nullptr, false, "%c", static_cast<char>(r.irand(32, 127)));
}
//save_png("test.png", img);
image_stats stats;
uint32_t flags_and_quality = cFlagSRGB | cFlagThreaded | 255;
size_t comp_size = 0;
double best_cpu_time = 1e+9f, best_gpu_time = 1e+9f;
const uint32_t TIMES_TO_ENCODE = 2;
interval_timer tm;
for (uint32_t i = 0; i < TIMES_TO_ENCODE; i++)
{
tm.start();
void* pComp_data = basis_compress(
images,
flags_and_quality, 1.0f,
&comp_size,
&stats);
double cpu_time = tm.get_elapsed_secs();
if (!pComp_data)
{
error_printf("basis_benchmark_etc1s_opencl: basis_compress() failed (CPU)!\n");
return false;
}
best_cpu_time = minimum(best_cpu_time, cpu_time);
basis_free_data(pComp_data);
}
printf("Best CPU time: %3.3f\n", best_cpu_time);
for (uint32_t i = 0; i < TIMES_TO_ENCODE; i++)
{
tm.start();
void* pComp_data = basis_compress(
images,
flags_and_quality | cFlagUseOpenCL, 1.0f,
&comp_size,
&stats);
if (stats.m_opencl_failed)
{
error_printf("basis_benchmark_etc1s_opencl: OpenCL failed!\n");
basis_free_data(pComp_data);
if (pOpenCL_failed)
*pOpenCL_failed = true;
return false;
}
double gpu_time = tm.get_elapsed_secs();
if (!pComp_data)
{
error_printf("basis_benchmark_etc1s_opencl: basis_compress() failed (GPU)!\n");
return false;
}
best_gpu_time = minimum(best_gpu_time, gpu_time);
basis_free_data(pComp_data);
}
printf("Best GPU time: %3.3f\n", best_gpu_time);
return best_gpu_time < best_cpu_time;
}
} // namespace basisu