godot/thirdparty/vhacd/inc/vhacdVector.inl

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

362 lines
10 KiB
Plaintext
Raw Normal View History

#pragma once
#ifndef VHACD_VECTOR_INL
#define VHACD_VECTOR_INL
namespace VHACD
{
template <typename T>
inline Vec3<T> operator*(T lhs, const Vec3<T> & rhs)
{
return Vec3<T>(lhs * rhs.X(), lhs * rhs.Y(), lhs * rhs.Z());
}
template <typename T>
inline T & Vec3<T>::X()
{
return m_data[0];
}
template <typename T>
inline T & Vec3<T>::Y()
{
return m_data[1];
}
template <typename T>
inline T & Vec3<T>::Z()
{
return m_data[2];
}
template <typename T>
inline const T & Vec3<T>::X() const
{
return m_data[0];
}
template <typename T>
inline const T & Vec3<T>::Y() const
{
return m_data[1];
}
template <typename T>
inline const T & Vec3<T>::Z() const
{
return m_data[2];
}
template <typename T>
inline void Vec3<T>::Normalize()
{
T n = sqrt(m_data[0]*m_data[0]+m_data[1]*m_data[1]+m_data[2]*m_data[2]);
if (n != 0.0) (*this) /= n;
}
template <typename T>
inline T Vec3<T>::GetNorm() const
{
return sqrt(m_data[0]*m_data[0]+m_data[1]*m_data[1]+m_data[2]*m_data[2]);
}
template <typename T>
inline void Vec3<T>::operator= (const Vec3 & rhs)
{
this->m_data[0] = rhs.m_data[0];
this->m_data[1] = rhs.m_data[1];
this->m_data[2] = rhs.m_data[2];
}
template <typename T>
inline void Vec3<T>::operator+=(const Vec3 & rhs)
{
this->m_data[0] += rhs.m_data[0];
this->m_data[1] += rhs.m_data[1];
this->m_data[2] += rhs.m_data[2];
}
template <typename T>
inline void Vec3<T>::operator-=(const Vec3 & rhs)
{
this->m_data[0] -= rhs.m_data[0];
this->m_data[1] -= rhs.m_data[1];
this->m_data[2] -= rhs.m_data[2];
}
template <typename T>
inline void Vec3<T>::operator-=(T a)
{
this->m_data[0] -= a;
this->m_data[1] -= a;
this->m_data[2] -= a;
}
template <typename T>
inline void Vec3<T>::operator+=(T a)
{
this->m_data[0] += a;
this->m_data[1] += a;
this->m_data[2] += a;
}
template <typename T>
inline void Vec3<T>::operator/=(T a)
{
this->m_data[0] /= a;
this->m_data[1] /= a;
this->m_data[2] /= a;
}
template <typename T>
inline void Vec3<T>::operator*=(T a)
{
this->m_data[0] *= a;
this->m_data[1] *= a;
this->m_data[2] *= a;
}
template <typename T>
inline Vec3<T> Vec3<T>::operator^ (const Vec3<T> & rhs) const
{
return Vec3<T>(m_data[1] * rhs.m_data[2] - m_data[2] * rhs.m_data[1],
m_data[2] * rhs.m_data[0] - m_data[0] * rhs.m_data[2],
m_data[0] * rhs.m_data[1] - m_data[1] * rhs.m_data[0]);
}
template <typename T>
inline T Vec3<T>::operator*(const Vec3<T> & rhs) const
{
return (m_data[0] * rhs.m_data[0] + m_data[1] * rhs.m_data[1] + m_data[2] * rhs.m_data[2]);
}
template <typename T>
inline Vec3<T> Vec3<T>::operator+(const Vec3<T> & rhs) const
{
return Vec3<T>(m_data[0] + rhs.m_data[0],m_data[1] + rhs.m_data[1],m_data[2] + rhs.m_data[2]);
}
template <typename T>
inline Vec3<T> Vec3<T>::operator-(const Vec3<T> & rhs) const
{
return Vec3<T>(m_data[0] - rhs.m_data[0],m_data[1] - rhs.m_data[1],m_data[2] - rhs.m_data[2]) ;
}
template <typename T>
inline Vec3<T> Vec3<T>::operator-() const
{
return Vec3<T>(-m_data[0],-m_data[1],-m_data[2]) ;
}
template <typename T>
inline Vec3<T> Vec3<T>::operator*(T rhs) const
{
return Vec3<T>(rhs * this->m_data[0], rhs * this->m_data[1], rhs * this->m_data[2]);
}
template <typename T>
inline Vec3<T> Vec3<T>::operator/ (T rhs) const
{
return Vec3<T>(m_data[0] / rhs, m_data[1] / rhs, m_data[2] / rhs);
}
template <typename T>
inline Vec3<T>::Vec3(T a)
{
m_data[0] = m_data[1] = m_data[2] = a;
}
template <typename T>
inline Vec3<T>::Vec3(T x, T y, T z)
{
m_data[0] = x;
m_data[1] = y;
m_data[2] = z;
}
template <typename T>
inline Vec3<T>::Vec3(const Vec3 & rhs)
{
m_data[0] = rhs.m_data[0];
m_data[1] = rhs.m_data[1];
m_data[2] = rhs.m_data[2];
}
template <typename T>
inline Vec3<T>::~Vec3(void){};
template <typename T>
inline Vec3<T>::Vec3() {}
template<typename T>
inline const bool Colinear(const Vec3<T> & a, const Vec3<T> & b, const Vec3<T> & c)
{
return ((c.Z() - a.Z()) * (b.Y() - a.Y()) - (b.Z() - a.Z()) * (c.Y() - a.Y()) == 0.0 /*EPS*/) &&
((b.Z() - a.Z()) * (c.X() - a.X()) - (b.X() - a.X()) * (c.Z() - a.Z()) == 0.0 /*EPS*/) &&
((b.X() - a.X()) * (c.Y() - a.Y()) - (b.Y() - a.Y()) * (c.X() - a.X()) == 0.0 /*EPS*/);
}
template<typename T>
inline const T ComputeVolume4(const Vec3<T> & a, const Vec3<T> & b, const Vec3<T> & c, const Vec3<T> & d)
{
return (a-d) * ((b-d) ^ (c-d));
}
template <typename T>
inline bool Vec3<T>::operator<(const Vec3 & rhs) const
{
if (X() == rhs[0])
{
if (Y() == rhs[1])
{
return (Z()<rhs[2]);
}
return (Y()<rhs[1]);
}
return (X()<rhs[0]);
}
template <typename T>
inline bool Vec3<T>::operator>(const Vec3 & rhs) const
{
if (X() == rhs[0])
{
if (Y() == rhs[1])
{
return (Z()>rhs[2]);
}
return (Y()>rhs[1]);
}
return (X()>rhs[0]);
}
template <typename T>
inline Vec2<T> operator*(T lhs, const Vec2<T> & rhs)
{
return Vec2<T>(lhs * rhs.X(), lhs * rhs.Y());
}
template <typename T>
inline T & Vec2<T>::X()
{
return m_data[0];
}
template <typename T>
inline T & Vec2<T>::Y()
{
return m_data[1];
}
template <typename T>
inline const T & Vec2<T>::X() const
{
return m_data[0];
}
template <typename T>
inline const T & Vec2<T>::Y() const
{
return m_data[1];
}
template <typename T>
inline void Vec2<T>::Normalize()
{
T n = sqrt(m_data[0]*m_data[0]+m_data[1]*m_data[1]);
if (n != 0.0) (*this) /= n;
}
template <typename T>
inline T Vec2<T>::GetNorm() const
{
return sqrt(m_data[0]*m_data[0]+m_data[1]*m_data[1]);
}
template <typename T>
inline void Vec2<T>::operator= (const Vec2 & rhs)
{
this->m_data[0] = rhs.m_data[0];
this->m_data[1] = rhs.m_data[1];
}
template <typename T>
inline void Vec2<T>::operator+=(const Vec2 & rhs)
{
this->m_data[0] += rhs.m_data[0];
this->m_data[1] += rhs.m_data[1];
}
template <typename T>
inline void Vec2<T>::operator-=(const Vec2 & rhs)
{
this->m_data[0] -= rhs.m_data[0];
this->m_data[1] -= rhs.m_data[1];
}
template <typename T>
inline void Vec2<T>::operator-=(T a)
{
this->m_data[0] -= a;
this->m_data[1] -= a;
}
template <typename T>
inline void Vec2<T>::operator+=(T a)
{
this->m_data[0] += a;
this->m_data[1] += a;
}
template <typename T>
inline void Vec2<T>::operator/=(T a)
{
this->m_data[0] /= a;
this->m_data[1] /= a;
}
template <typename T>
inline void Vec2<T>::operator*=(T a)
{
this->m_data[0] *= a;
this->m_data[1] *= a;
}
template <typename T>
inline T Vec2<T>::operator^ (const Vec2<T> & rhs) const
{
return m_data[0] * rhs.m_data[1] - m_data[1] * rhs.m_data[0];
}
template <typename T>
inline T Vec2<T>::operator*(const Vec2<T> & rhs) const
{
return (m_data[0] * rhs.m_data[0] + m_data[1] * rhs.m_data[1]);
}
template <typename T>
inline Vec2<T> Vec2<T>::operator+(const Vec2<T> & rhs) const
{
return Vec2<T>(m_data[0] + rhs.m_data[0],m_data[1] + rhs.m_data[1]);
}
template <typename T>
inline Vec2<T> Vec2<T>::operator-(const Vec2<T> & rhs) const
{
return Vec2<T>(m_data[0] - rhs.m_data[0],m_data[1] - rhs.m_data[1]);
}
template <typename T>
inline Vec2<T> Vec2<T>::operator-() const
{
return Vec2<T>(-m_data[0],-m_data[1]) ;
}
template <typename T>
inline Vec2<T> Vec2<T>::operator*(T rhs) const
{
return Vec2<T>(rhs * this->m_data[0], rhs * this->m_data[1]);
}
template <typename T>
inline Vec2<T> Vec2<T>::operator/ (T rhs) const
{
return Vec2<T>(m_data[0] / rhs, m_data[1] / rhs);
}
template <typename T>
inline Vec2<T>::Vec2(T a)
{
m_data[0] = m_data[1] = a;
}
template <typename T>
inline Vec2<T>::Vec2(T x, T y)
{
m_data[0] = x;
m_data[1] = y;
}
template <typename T>
inline Vec2<T>::Vec2(const Vec2 & rhs)
{
m_data[0] = rhs.m_data[0];
m_data[1] = rhs.m_data[1];
}
template <typename T>
inline Vec2<T>::~Vec2(void){};
template <typename T>
inline Vec2<T>::Vec2() {}
/*
InsideTriangle decides if a point P is Inside of the triangle
defined by A, B, C.
*/
template<typename T>
inline const bool InsideTriangle(const Vec2<T> & a, const Vec2<T> & b, const Vec2<T> & c, const Vec2<T> & p)
{
T ax, ay, bx, by, cx, cy, apx, apy, bpx, bpy, cpx, cpy;
T cCROSSap, bCROSScp, aCROSSbp;
ax = c.X() - b.X(); ay = c.Y() - b.Y();
bx = a.X() - c.X(); by = a.Y() - c.Y();
cx = b.X() - a.X(); cy = b.Y() - a.Y();
apx= p.X() - a.X(); apy= p.Y() - a.Y();
bpx= p.X() - b.X(); bpy= p.Y() - b.Y();
cpx= p.X() - c.X(); cpy= p.Y() - c.Y();
aCROSSbp = ax*bpy - ay*bpx;
cCROSSap = cx*apy - cy*apx;
bCROSScp = bx*cpy - by*cpx;
return ((aCROSSbp >= 0.0) && (bCROSScp >= 0.0) && (cCROSSap >= 0.0));
}
}
#endif //VHACD_VECTOR_INL