2017-09-12 20:42:36 +00:00
<?xml version="1.0" encoding="UTF-8" ?>
2018-01-13 10:43:06 +00:00
<class name= "Transform" category= "Built-In Types" version= "3.0-rc1" >
2017-09-12 20:42:36 +00:00
<brief_description >
3D Transformation. 3x4 matrix.
</brief_description>
<description >
Represents one or many transformations in 3D space such as translation, rotation, or scaling. It consists of a [Basis] "basis" and an [Vector3] "origin". It is similar to a 3x4 matrix.
</description>
<tutorials >
2018-01-17 09:43:23 +00:00
http://docs.godotengine.org/en/3.0/learning/features/math/index.html
2017-09-12 20:42:36 +00:00
</tutorials>
<demos >
</demos>
<methods >
<method name= "Transform" >
<return type= "Transform" >
</return>
<argument index= "0" name= "x_axis" type= "Vector3" >
</argument>
<argument index= "1" name= "y_axis" type= "Vector3" >
</argument>
<argument index= "2" name= "z_axis" type= "Vector3" >
</argument>
<argument index= "3" name= "origin" type= "Vector3" >
</argument>
<description >
2017-09-14 05:42:21 +00:00
Constructs the Transform from four [Vector3]. Each axis corresponds to local basis vectors (some of which may be scaled).
2017-09-12 20:42:36 +00:00
</description>
</method>
<method name= "Transform" >
<return type= "Transform" >
</return>
<argument index= "0" name= "basis" type= "Basis" >
</argument>
<argument index= "1" name= "origin" type= "Vector3" >
</argument>
<description >
2017-09-14 05:42:21 +00:00
Constructs the Transform from a [Basis] and [Vector3].
2017-09-12 20:42:36 +00:00
</description>
</method>
<method name= "Transform" >
<return type= "Transform" >
</return>
<argument index= "0" name= "from" type= "Transform2D" >
</argument>
<description >
2017-09-14 05:42:21 +00:00
Constructs the Transform from a [Transform2D].
2017-09-12 20:42:36 +00:00
</description>
</method>
<method name= "Transform" >
<return type= "Transform" >
</return>
<argument index= "0" name= "from" type= "Quat" >
</argument>
<description >
2017-09-14 05:42:21 +00:00
Constructs the Transform from a [Quat]. The origin will be Vector3(0, 0, 0).
2017-09-12 20:42:36 +00:00
</description>
</method>
<method name= "Transform" >
<return type= "Transform" >
</return>
<argument index= "0" name= "from" type= "Basis" >
</argument>
<description >
2017-09-14 05:42:21 +00:00
Constructs the Transform from a [Basis]. The origin will be Vector3(0, 0, 0).
2017-09-12 20:42:36 +00:00
</description>
</method>
<method name= "affine_inverse" >
<return type= "Transform" >
</return>
<description >
2017-10-14 10:45:26 +00:00
Returns the inverse of the transform, under the assumption that the transformation is composed of rotation, scaling and translation.
2017-09-12 20:42:36 +00:00
</description>
</method>
<method name= "interpolate_with" >
<return type= "Transform" >
</return>
<argument index= "0" name= "transform" type= "Transform" >
</argument>
<argument index= "1" name= "weight" type= "float" >
</argument>
<description >
2017-09-14 05:42:21 +00:00
Interpolates the transform to other Transform by weight amount (0-1).
2017-09-12 20:42:36 +00:00
</description>
</method>
<method name= "inverse" >
<return type= "Transform" >
</return>
<description >
Returns the inverse of the transform, under the assumption that the transformation is composed of rotation and translation (no scaling, use affine_inverse for transforms with scaling).
</description>
</method>
<method name= "looking_at" >
<return type= "Transform" >
</return>
<argument index= "0" name= "target" type= "Vector3" >
</argument>
<argument index= "1" name= "up" type= "Vector3" >
</argument>
<description >
Rotate the transform around the up vector to face the target.
</description>
</method>
<method name= "orthonormalized" >
<return type= "Transform" >
</return>
<description >
2017-10-14 10:45:26 +00:00
Returns the transform with the basis orthogonal (90 degrees), and normalized axis vectors.
2017-09-12 20:42:36 +00:00
</description>
</method>
<method name= "rotated" >
<return type= "Transform" >
</return>
<argument index= "0" name= "axis" type= "Vector3" >
</argument>
<argument index= "1" name= "phi" type= "float" >
</argument>
<description >
2017-09-14 05:42:21 +00:00
Rotates the transform around given axis by phi. The axis must be a normalized vector.
2017-09-12 20:42:36 +00:00
</description>
</method>
<method name= "scaled" >
<return type= "Transform" >
</return>
<argument index= "0" name= "scale" type= "Vector3" >
</argument>
<description >
2017-09-14 05:42:21 +00:00
Scales the transform by the specified 3D scaling factors.
2017-09-12 20:42:36 +00:00
</description>
</method>
<method name= "translated" >
<return type= "Transform" >
</return>
<argument index= "0" name= "ofs" type= "Vector3" >
</argument>
<description >
2017-09-14 05:42:21 +00:00
Translates the transform by the specified offset.
2017-09-12 20:42:36 +00:00
</description>
</method>
<method name= "xform" >
<return type= "var" >
</return>
<argument index= "0" name= "v" type= "var" >
</argument>
<description >
Transforms the given vector "v" by this transform.
</description>
</method>
<method name= "xform_inv" >
<return type= "var" >
</return>
<argument index= "0" name= "v" type= "var" >
</argument>
<description >
2017-09-14 05:42:21 +00:00
Inverse-transforms the given vector "v" by this transform.
2017-09-12 20:42:36 +00:00
</description>
</method>
</methods>
<members >
2017-09-13 06:49:40 +00:00
<member name= "basis" type= "Basis" setter= "" getter= "" >
2017-09-12 20:42:36 +00:00
The basis is a matrix containing 3 [Vector3] as its columns: X axis, Y axis, and Z axis. These vectors can be interpreted as the basis vectors of local coordinate system traveling with the object.
</member>
2017-09-13 06:49:40 +00:00
<member name= "origin" type= "Vector3" setter= "" getter= "" >
2017-09-12 20:42:36 +00:00
The translation offset of the transform.
</member>
</members>
<constants >
</constants>
</class>