godot/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/kernels/mpr.cl

312 lines
7.9 KiB
Common Lisp
Raw Normal View History

#include "Bullet3Collision/NarrowPhaseCollision/shared/b3MprPenetration.h"
#include "Bullet3Collision/NarrowPhaseCollision/shared/b3Contact4Data.h"
#define AppendInc(x, out) out = atomic_inc(x)
#define GET_NPOINTS(x) (x).m_worldNormalOnB.w
#ifdef cl_ext_atomic_counters_32
#pragma OPENCL EXTENSION cl_ext_atomic_counters_32 : enable
#else
#define counter32_t volatile __global int*
#endif
__kernel void mprPenetrationKernel( __global int4* pairs,
__global const b3RigidBodyData_t* rigidBodies,
__global const b3Collidable_t* collidables,
__global const b3ConvexPolyhedronData_t* convexShapes,
__global const float4* vertices,
__global float4* separatingNormals,
__global int* hasSeparatingAxis,
__global struct b3Contact4Data* restrict globalContactsOut,
counter32_t nGlobalContactsOut,
int contactCapacity,
int numPairs)
{
int i = get_global_id(0);
int pairIndex = i;
if (i<numPairs)
{
int bodyIndexA = pairs[i].x;
int bodyIndexB = pairs[i].y;
int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx;
int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx;
int shapeIndexA = collidables[collidableIndexA].m_shapeIndex;
int shapeIndexB = collidables[collidableIndexB].m_shapeIndex;
//once the broadphase avoids static-static pairs, we can remove this test
if ((rigidBodies[bodyIndexA].m_invMass==0) &&(rigidBodies[bodyIndexB].m_invMass==0))
{
return;
}
if ((collidables[collidableIndexA].m_shapeType!=SHAPE_CONVEX_HULL) ||(collidables[collidableIndexB].m_shapeType!=SHAPE_CONVEX_HULL))
{
return;
}
float depthOut;
b3Float4 dirOut;
b3Float4 posOut;
int res = b3MprPenetration(pairIndex, bodyIndexA, bodyIndexB,rigidBodies,convexShapes,collidables,vertices,separatingNormals,hasSeparatingAxis,&depthOut, &dirOut, &posOut);
if (res==0)
{
//add a contact
int dstIdx;
AppendInc( nGlobalContactsOut, dstIdx );
if (dstIdx<contactCapacity)
{
pairs[pairIndex].z = dstIdx;
__global struct b3Contact4Data* c = globalContactsOut + dstIdx;
c->m_worldNormalOnB = -dirOut;//normal;
c->m_restituitionCoeffCmp = (0.f*0xffff);c->m_frictionCoeffCmp = (0.7f*0xffff);
c->m_batchIdx = pairIndex;
int bodyA = pairs[pairIndex].x;
int bodyB = pairs[pairIndex].y;
c->m_bodyAPtrAndSignBit = rigidBodies[bodyA].m_invMass==0 ? -bodyA:bodyA;
c->m_bodyBPtrAndSignBit = rigidBodies[bodyB].m_invMass==0 ? -bodyB:bodyB;
c->m_childIndexA = -1;
c->m_childIndexB = -1;
//for (int i=0;i<nContacts;i++)
posOut.w = -depthOut;
c->m_worldPosB[0] = posOut;//localPoints[contactIdx[i]];
GET_NPOINTS(*c) = 1;//nContacts;
}
}
}
}
typedef float4 Quaternion;
#define make_float4 (float4)
__inline
float dot3F4(float4 a, float4 b)
{
float4 a1 = make_float4(a.xyz,0.f);
float4 b1 = make_float4(b.xyz,0.f);
return dot(a1, b1);
}
__inline
float4 cross3(float4 a, float4 b)
{
return cross(a,b);
}
__inline
Quaternion qtMul(Quaternion a, Quaternion b)
{
Quaternion ans;
ans = cross3( a, b );
ans += a.w*b+b.w*a;
// ans.w = a.w*b.w - (a.x*b.x+a.y*b.y+a.z*b.z);
ans.w = a.w*b.w - dot3F4(a, b);
return ans;
}
__inline
Quaternion qtInvert(Quaternion q)
{
return (Quaternion)(-q.xyz, q.w);
}
__inline
float4 qtRotate(Quaternion q, float4 vec)
{
Quaternion qInv = qtInvert( q );
float4 vcpy = vec;
vcpy.w = 0.f;
float4 out = qtMul(qtMul(q,vcpy),qInv);
return out;
}
__inline
float4 transform(const float4* p, const float4* translation, const Quaternion* orientation)
{
return qtRotate( *orientation, *p ) + (*translation);
}
__inline
float4 qtInvRotate(const Quaternion q, float4 vec)
{
return qtRotate( qtInvert( q ), vec );
}
inline void project(__global const b3ConvexPolyhedronData_t* hull, const float4 pos, const float4 orn,
const float4* dir, __global const float4* vertices, float* min, float* max)
{
min[0] = FLT_MAX;
max[0] = -FLT_MAX;
int numVerts = hull->m_numVertices;
const float4 localDir = qtInvRotate(orn,*dir);
float offset = dot(pos,*dir);
for(int i=0;i<numVerts;i++)
{
float dp = dot(vertices[hull->m_vertexOffset+i],localDir);
if(dp < min[0])
min[0] = dp;
if(dp > max[0])
max[0] = dp;
}
if(min[0]>max[0])
{
float tmp = min[0];
min[0] = max[0];
max[0] = tmp;
}
min[0] += offset;
max[0] += offset;
}
bool findSeparatingAxisUnitSphere( __global const b3ConvexPolyhedronData_t* hullA, __global const b3ConvexPolyhedronData_t* hullB,
const float4 posA1,
const float4 ornA,
const float4 posB1,
const float4 ornB,
const float4 DeltaC2,
__global const float4* vertices,
__global const float4* unitSphereDirections,
int numUnitSphereDirections,
float4* sep,
float* dmin)
{
float4 posA = posA1;
posA.w = 0.f;
float4 posB = posB1;
posB.w = 0.f;
int curPlaneTests=0;
int curEdgeEdge = 0;
// Test unit sphere directions
for (int i=0;i<numUnitSphereDirections;i++)
{
float4 crossje;
crossje = unitSphereDirections[i];
if (dot3F4(DeltaC2,crossje)>0)
crossje *= -1.f;
{
float dist;
bool result = true;
float Min0,Max0;
float Min1,Max1;
project(hullA,posA,ornA,&crossje,vertices, &Min0, &Max0);
project(hullB,posB,ornB,&crossje,vertices, &Min1, &Max1);
if(Max0<Min1 || Max1<Min0)
return false;
float d0 = Max0 - Min1;
float d1 = Max1 - Min0;
dist = d0<d1 ? d0:d1;
result = true;
if(dist<*dmin)
{
*dmin = dist;
*sep = crossje;
}
}
}
if((dot3F4(-DeltaC2,*sep))>0.0f)
{
*sep = -(*sep);
}
return true;
}
__kernel void findSeparatingAxisUnitSphereKernel( __global const int4* pairs,
__global const b3RigidBodyData_t* rigidBodies,
__global const b3Collidable_t* collidables,
__global const b3ConvexPolyhedronData_t* convexShapes,
__global const float4* vertices,
__global const float4* unitSphereDirections,
__global float4* separatingNormals,
__global int* hasSeparatingAxis,
__global float* dmins,
int numUnitSphereDirections,
int numPairs
)
{
int i = get_global_id(0);
if (i<numPairs)
{
if (hasSeparatingAxis[i])
{
int bodyIndexA = pairs[i].x;
int bodyIndexB = pairs[i].y;
int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx;
int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx;
int shapeIndexA = collidables[collidableIndexA].m_shapeIndex;
int shapeIndexB = collidables[collidableIndexB].m_shapeIndex;
int numFacesA = convexShapes[shapeIndexA].m_numFaces;
float dmin = dmins[i];
float4 posA = rigidBodies[bodyIndexA].m_pos;
posA.w = 0.f;
float4 posB = rigidBodies[bodyIndexB].m_pos;
posB.w = 0.f;
float4 c0local = convexShapes[shapeIndexA].m_localCenter;
float4 ornA = rigidBodies[bodyIndexA].m_quat;
float4 c0 = transform(&c0local, &posA, &ornA);
float4 c1local = convexShapes[shapeIndexB].m_localCenter;
float4 ornB =rigidBodies[bodyIndexB].m_quat;
float4 c1 = transform(&c1local,&posB,&ornB);
const float4 DeltaC2 = c0 - c1;
float4 sepNormal = separatingNormals[i];
int numEdgeEdgeDirections = convexShapes[shapeIndexA].m_numUniqueEdges*convexShapes[shapeIndexB].m_numUniqueEdges;
if (numEdgeEdgeDirections>numUnitSphereDirections)
{
bool sepEE = findSeparatingAxisUnitSphere( &convexShapes[shapeIndexA], &convexShapes[shapeIndexB],posA,ornA,
posB,ornB,
DeltaC2,
vertices,unitSphereDirections,numUnitSphereDirections,&sepNormal,&dmin);
if (!sepEE)
{
hasSeparatingAxis[i] = 0;
} else
{
hasSeparatingAxis[i] = 1;
separatingNormals[i] = sepNormal;
}
}
} //if (hasSeparatingAxis[i])
}//(i<numPairs)
}