godot/thirdparty/basis_universal/encoder/basisu_comp.h

645 lines
20 KiB
C++
Raw Normal View History

// basisu_comp.h
// Copyright (C) 2019-2021 Binomial LLC. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "basisu_frontend.h"
#include "basisu_backend.h"
#include "basisu_basis_file.h"
#include "../transcoder/basisu_transcoder.h"
#include "basisu_uastc_enc.h"
#define BASISU_LIB_VERSION 116
#define BASISU_LIB_VERSION_STRING "1.16"
#ifndef BASISD_SUPPORT_KTX2
#error BASISD_SUPPORT_KTX2 is undefined
#endif
#ifndef BASISD_SUPPORT_KTX2_ZSTD
#error BASISD_SUPPORT_KTX2_ZSTD is undefined
#endif
#if !BASISD_SUPPORT_KTX2
#error BASISD_SUPPORT_KTX2 must be enabled when building the encoder. To reduce code size if KTX2 support is not needed, set BASISD_SUPPORT_KTX2_ZSTD to 0
#endif
namespace basisu
{
struct opencl_context;
typedef opencl_context* opencl_context_ptr;
const uint32_t BASISU_MAX_SUPPORTED_TEXTURE_DIMENSION = 16384;
// Allow block's color distance to increase by 1.5 while searching for an alternative nearby endpoint.
const float BASISU_DEFAULT_ENDPOINT_RDO_THRESH = 1.5f;
// Allow block's color distance to increase by 1.25 while searching the selector history buffer for a close enough match.
const float BASISU_DEFAULT_SELECTOR_RDO_THRESH = 1.25f;
const int BASISU_DEFAULT_QUALITY = 128;
const float BASISU_DEFAULT_HYBRID_SEL_CB_QUALITY_THRESH = 2.0f;
const uint32_t BASISU_MAX_IMAGE_DIMENSION = 16384;
const uint32_t BASISU_QUALITY_MIN = 1;
const uint32_t BASISU_QUALITY_MAX = 255;
const uint32_t BASISU_MAX_ENDPOINT_CLUSTERS = basisu_frontend::cMaxEndpointClusters;
const uint32_t BASISU_MAX_SELECTOR_CLUSTERS = basisu_frontend::cMaxSelectorClusters;
const uint32_t BASISU_MAX_SLICES = 0xFFFFFF;
const int BASISU_RDO_UASTC_DICT_SIZE_DEFAULT = 4096; // 32768;
const int BASISU_RDO_UASTC_DICT_SIZE_MIN = 64;
const int BASISU_RDO_UASTC_DICT_SIZE_MAX = 65536;
struct image_stats
{
image_stats()
{
clear();
}
void clear()
{
m_filename.clear();
m_width = 0;
m_height = 0;
m_basis_rgb_avg_psnr = 0.0f;
m_basis_rgba_avg_psnr = 0.0f;
m_basis_a_avg_psnr = 0.0f;
m_basis_luma_709_psnr = 0.0f;
m_basis_luma_601_psnr = 0.0f;
m_basis_luma_709_ssim = 0.0f;
m_bc7_rgb_avg_psnr = 0.0f;
m_bc7_rgba_avg_psnr = 0.0f;
m_bc7_a_avg_psnr = 0.0f;
m_bc7_luma_709_psnr = 0.0f;
m_bc7_luma_601_psnr = 0.0f;
m_bc7_luma_709_ssim = 0.0f;
m_best_etc1s_rgb_avg_psnr = 0.0f;
m_best_etc1s_luma_709_psnr = 0.0f;
m_best_etc1s_luma_601_psnr = 0.0f;
m_best_etc1s_luma_709_ssim = 0.0f;
}
std::string m_filename;
uint32_t m_width;
uint32_t m_height;
// .basis compressed (ETC1S or UASTC statistics)
float m_basis_rgb_avg_psnr;
float m_basis_rgba_avg_psnr;
float m_basis_a_avg_psnr;
float m_basis_luma_709_psnr;
float m_basis_luma_601_psnr;
float m_basis_luma_709_ssim;
// BC7 statistics
float m_bc7_rgb_avg_psnr;
float m_bc7_rgba_avg_psnr;
float m_bc7_a_avg_psnr;
float m_bc7_luma_709_psnr;
float m_bc7_luma_601_psnr;
float m_bc7_luma_709_ssim;
// Highest achievable quality ETC1S statistics
float m_best_etc1s_rgb_avg_psnr;
float m_best_etc1s_luma_709_psnr;
float m_best_etc1s_luma_601_psnr;
float m_best_etc1s_luma_709_ssim;
};
template<bool def>
struct bool_param
{
bool_param() :
m_value(def),
m_changed(false)
{
}
void clear()
{
m_value = def;
m_changed = false;
}
operator bool() const
{
return m_value;
}
bool operator= (bool v)
{
m_value = v;
m_changed = true;
return m_value;
}
bool was_changed() const { return m_changed; }
void set_changed(bool flag) { m_changed = flag; }
bool m_value;
bool m_changed;
};
template<typename T>
struct param
{
param(T def, T min_v, T max_v) :
m_value(def),
m_def(def),
m_min(min_v),
m_max(max_v),
m_changed(false)
{
}
void clear()
{
m_value = m_def;
m_changed = false;
}
operator T() const
{
return m_value;
}
T operator= (T v)
{
m_value = clamp<T>(v, m_min, m_max);
m_changed = true;
return m_value;
}
T operator *= (T v)
{
m_value *= v;
m_changed = true;
return m_value;
}
bool was_changed() const { return m_changed; }
void set_changed(bool flag) { m_changed = flag; }
T m_value;
T m_def;
T m_min;
T m_max;
bool m_changed;
};
struct basis_compressor_params
{
basis_compressor_params() :
m_compression_level((int)BASISU_DEFAULT_COMPRESSION_LEVEL, 0, (int)BASISU_MAX_COMPRESSION_LEVEL),
m_selector_rdo_thresh(BASISU_DEFAULT_SELECTOR_RDO_THRESH, 0.0f, 1e+10f),
m_endpoint_rdo_thresh(BASISU_DEFAULT_ENDPOINT_RDO_THRESH, 0.0f, 1e+10f),
m_mip_scale(1.0f, .000125f, 4.0f),
m_mip_smallest_dimension(1, 1, 16384),
m_max_endpoint_clusters(512),
m_max_selector_clusters(512),
m_quality_level(-1),
m_pack_uastc_flags(cPackUASTCLevelDefault),
m_rdo_uastc_quality_scalar(1.0f, 0.001f, 50.0f),
m_rdo_uastc_dict_size(BASISU_RDO_UASTC_DICT_SIZE_DEFAULT, BASISU_RDO_UASTC_DICT_SIZE_MIN, BASISU_RDO_UASTC_DICT_SIZE_MAX),
m_rdo_uastc_max_smooth_block_error_scale(UASTC_RDO_DEFAULT_SMOOTH_BLOCK_MAX_ERROR_SCALE, 1.0f, 300.0f),
m_rdo_uastc_smooth_block_max_std_dev(UASTC_RDO_DEFAULT_MAX_SMOOTH_BLOCK_STD_DEV, .01f, 65536.0f),
m_rdo_uastc_max_allowed_rms_increase_ratio(UASTC_RDO_DEFAULT_MAX_ALLOWED_RMS_INCREASE_RATIO, .01f, 100.0f),
m_rdo_uastc_skip_block_rms_thresh(UASTC_RDO_DEFAULT_SKIP_BLOCK_RMS_THRESH, .01f, 100.0f),
m_resample_width(0, 1, 16384),
m_resample_height(0, 1, 16384),
m_resample_factor(0.0f, .00125f, 100.0f),
m_ktx2_uastc_supercompression(basist::KTX2_SS_NONE),
m_ktx2_zstd_supercompression_level(6, INT_MIN, INT_MAX),
m_pJob_pool(nullptr)
{
clear();
}
void clear()
{
m_uastc.clear();
m_use_opencl.clear();
m_status_output.clear();
m_source_filenames.clear();
m_source_alpha_filenames.clear();
m_source_images.clear();
m_source_mipmap_images.clear();
m_out_filename.clear();
m_y_flip.clear();
m_debug.clear();
m_validate_etc1s.clear();
m_debug_images.clear();
m_perceptual.clear();
m_no_selector_rdo.clear();
m_selector_rdo_thresh.clear();
m_read_source_images.clear();
m_write_output_basis_files.clear();
m_compression_level.clear();
m_compute_stats.clear();
m_check_for_alpha.clear();
m_force_alpha.clear();
m_multithreading.clear();
m_swizzle[0] = 0;
m_swizzle[1] = 1;
m_swizzle[2] = 2;
m_swizzle[3] = 3;
m_renormalize.clear();
m_disable_hierarchical_endpoint_codebooks.clear();
m_no_endpoint_rdo.clear();
m_endpoint_rdo_thresh.clear();
m_mip_gen.clear();
m_mip_scale.clear();
m_mip_filter = "kaiser";
m_mip_scale = 1.0f;
m_mip_srgb.clear();
m_mip_premultiplied.clear();
m_mip_renormalize.clear();
m_mip_wrapping.clear();
m_mip_fast.clear();
m_mip_smallest_dimension.clear();
m_max_endpoint_clusters = 0;
m_max_selector_clusters = 0;
m_quality_level = -1;
m_tex_type = basist::cBASISTexType2D;
m_userdata0 = 0;
m_userdata1 = 0;
m_us_per_frame = 0;
m_pack_uastc_flags = cPackUASTCLevelDefault;
m_rdo_uastc.clear();
m_rdo_uastc_quality_scalar.clear();
m_rdo_uastc_max_smooth_block_error_scale.clear();
m_rdo_uastc_smooth_block_max_std_dev.clear();
m_rdo_uastc_max_allowed_rms_increase_ratio.clear();
m_rdo_uastc_skip_block_rms_thresh.clear();
m_rdo_uastc_favor_simpler_modes_in_rdo_mode.clear();
m_rdo_uastc_multithreading.clear();
m_resample_width.clear();
m_resample_height.clear();
m_resample_factor.clear();
m_pGlobal_codebooks = nullptr;
m_create_ktx2_file.clear();
m_ktx2_uastc_supercompression = basist::KTX2_SS_NONE;
m_ktx2_key_values.clear();
m_ktx2_zstd_supercompression_level.clear();
m_ktx2_srgb_transfer_func.clear();
m_validate_output_data.clear();
m_pJob_pool = nullptr;
}
// True to generate UASTC .basis file data, otherwise ETC1S.
bool_param<false> m_uastc;
bool_param<false> m_use_opencl;
// If m_read_source_images is true, m_source_filenames (and optionally m_source_alpha_filenames) contains the filenames of PNG images to read.
// Otherwise, the compressor processes the images in m_source_images.
basisu::vector<std::string> m_source_filenames;
basisu::vector<std::string> m_source_alpha_filenames;
basisu::vector<image> m_source_images;
// Stores mipmaps starting from level 1. Level 0 is still stored in m_source_images, as usual.
// If m_source_mipmaps isn't empty, automatic mipmap generation isn't done. m_source_mipmaps.size() MUST equal m_source_images.size() or the compressor returns an error.
// The compressor applies the user-provided swizzling (in m_swizzle) to these images.
basisu::vector< basisu::vector<image> > m_source_mipmap_images;
// Filename of the output basis file
std::string m_out_filename;
// The params are done this way so we can detect when the user has explictly changed them.
// Flip images across Y axis
bool_param<false> m_y_flip;
// If true, the compressor will print basis status to stdout during compression.
bool_param<true> m_status_output;
// Output debug information during compression
bool_param<false> m_debug;
bool_param<false> m_validate_etc1s;
// m_debug_images is pretty slow
bool_param<false> m_debug_images;
// ETC1S compression level, from 0 to BASISU_MAX_COMPRESSION_LEVEL (higher is slower).
// This parameter controls numerous internal encoding speed vs. compression efficiency/performance tradeoffs.
// Note this is NOT the same as the ETC1S quality level, and most users shouldn't change this.
param<int> m_compression_level;
// Use perceptual sRGB colorspace metrics instead of linear
bool_param<true> m_perceptual;
// Disable selector RDO, for faster compression but larger files
bool_param<false> m_no_selector_rdo;
param<float> m_selector_rdo_thresh;
bool_param<false> m_no_endpoint_rdo;
param<float> m_endpoint_rdo_thresh;
// Read source images from m_source_filenames/m_source_alpha_filenames
bool_param<false> m_read_source_images;
// Write the output basis file to disk using m_out_filename
bool_param<false> m_write_output_basis_files;
// Compute and display image metrics
bool_param<false> m_compute_stats;
// Check to see if any input image has an alpha channel, if so then the output basis file will have alpha channels
bool_param<true> m_check_for_alpha;
// Always put alpha slices in the output basis file, even when the input doesn't have alpha
bool_param<false> m_force_alpha;
bool_param<true> m_multithreading;
// Split the R channel to RGB and the G channel to alpha, then write a basis file with alpha channels
char m_swizzle[4];
bool_param<false> m_renormalize;
// If true the front end will not use 2 level endpoint codebook searching, for slightly higher quality but much slower execution.
// Note some m_compression_level's disable this automatically.
bool_param<false> m_disable_hierarchical_endpoint_codebooks;
// mipmap generation parameters
bool_param<false> m_mip_gen;
param<float> m_mip_scale;
std::string m_mip_filter;
bool_param<false> m_mip_srgb;
bool_param<true> m_mip_premultiplied; // not currently supported
bool_param<false> m_mip_renormalize;
bool_param<true> m_mip_wrapping;
bool_param<true> m_mip_fast;
param<int> m_mip_smallest_dimension;
// Codebook size (quality) control.
// If m_quality_level != -1, it controls the quality level. It ranges from [1,255] or [BASISU_QUALITY_MIN, BASISU_QUALITY_MAX].
// Otherwise m_max_endpoint_clusters/m_max_selector_clusters controls the codebook sizes directly.
uint32_t m_max_endpoint_clusters;
uint32_t m_max_selector_clusters;
int m_quality_level;
// m_tex_type, m_userdata0, m_userdata1, m_framerate - These fields go directly into the Basis file header.
basist::basis_texture_type m_tex_type;
uint32_t m_userdata0;
uint32_t m_userdata1;
uint32_t m_us_per_frame;
// cPackUASTCLevelDefault, etc.
uint32_t m_pack_uastc_flags;
bool_param<false> m_rdo_uastc;
param<float> m_rdo_uastc_quality_scalar;
param<int> m_rdo_uastc_dict_size;
param<float> m_rdo_uastc_max_smooth_block_error_scale;
param<float> m_rdo_uastc_smooth_block_max_std_dev;
param<float> m_rdo_uastc_max_allowed_rms_increase_ratio;
param<float> m_rdo_uastc_skip_block_rms_thresh;
bool_param<true> m_rdo_uastc_favor_simpler_modes_in_rdo_mode;
bool_param<true> m_rdo_uastc_multithreading;
param<int> m_resample_width;
param<int> m_resample_height;
param<float> m_resample_factor;
const basist::basisu_lowlevel_etc1s_transcoder *m_pGlobal_codebooks;
// KTX2 specific parameters.
// Internally, the compressor always creates a .basis file then it converts that lossless to KTX2.
bool_param<false> m_create_ktx2_file;
basist::ktx2_supercompression m_ktx2_uastc_supercompression;
basist::ktx2_transcoder::key_value_vec m_ktx2_key_values;
param<int> m_ktx2_zstd_supercompression_level;
bool_param<false> m_ktx2_srgb_transfer_func;
bool_param<false> m_validate_output_data;
job_pool *m_pJob_pool;
};
// Important: basisu_encoder_init() MUST be called first before using this class.
class basis_compressor
{
BASISU_NO_EQUALS_OR_COPY_CONSTRUCT(basis_compressor);
public:
basis_compressor();
~basis_compressor();
// Note it *should* be possible to call init() multiple times with different inputs, but this scenario isn't well tested. Ideally, create 1 object, compress, then delete it.
bool init(const basis_compressor_params &params);
enum error_code
{
cECSuccess = 0,
cECFailedInitializing,
cECFailedReadingSourceImages,
cECFailedValidating,
cECFailedEncodeUASTC,
cECFailedFrontEnd,
cECFailedFontendExtract,
cECFailedBackend,
cECFailedCreateBasisFile,
cECFailedWritingOutput,
cECFailedUASTCRDOPostProcess,
cECFailedCreateKTX2File
};
error_code process();
// The output .basis file will always be valid of process() succeeded.
const uint8_vec &get_output_basis_file() const { return m_output_basis_file; }
// The output .ktx2 file will only be valid if m_create_ktx2_file was true and process() succeeded.
const uint8_vec& get_output_ktx2_file() const { return m_output_ktx2_file; }
const basisu::vector<image_stats> &get_stats() const { return m_stats; }
uint32_t get_basis_file_size() const { return m_basis_file_size; }
double get_basis_bits_per_texel() const { return m_basis_bits_per_texel; }
bool get_any_source_image_has_alpha() const { return m_any_source_image_has_alpha; }
bool get_opencl_failed() const { return m_opencl_failed; }
private:
basis_compressor_params m_params;
opencl_context_ptr m_pOpenCL_context;
basisu::vector<image> m_slice_images;
basisu::vector<image_stats> m_stats;
uint32_t m_basis_file_size;
double m_basis_bits_per_texel;
basisu_backend_slice_desc_vec m_slice_descs;
uint32_t m_total_blocks;
basisu_frontend m_frontend;
pixel_block_vec m_source_blocks;
basisu::vector<gpu_image> m_frontend_output_textures;
basisu::vector<gpu_image> m_best_etc1s_images;
basisu::vector<image> m_best_etc1s_images_unpacked;
basisu_backend m_backend;
basisu_file m_basis_file;
basisu::vector<gpu_image> m_decoded_output_textures;
basisu::vector<image> m_decoded_output_textures_unpacked;
basisu::vector<gpu_image> m_decoded_output_textures_bc7;
basisu::vector<image> m_decoded_output_textures_unpacked_bc7;
uint8_vec m_output_basis_file;
uint8_vec m_output_ktx2_file;
basisu::vector<gpu_image> m_uastc_slice_textures;
basisu_backend_output m_uastc_backend_output;
bool m_any_source_image_has_alpha;
bool m_opencl_failed;
bool read_source_images();
bool extract_source_blocks();
bool process_frontend();
bool extract_frontend_texture_data();
bool process_backend();
bool create_basis_file_and_transcode();
bool write_output_files_and_compute_stats();
error_code encode_slices_to_uastc();
bool generate_mipmaps(const image &img, basisu::vector<image> &mips, bool has_alpha);
bool validate_texture_type_constraints();
bool validate_ktx2_constraints();
void get_dfd(uint8_vec& dfd, const basist::ktx2_header& hdr);
bool create_ktx2_file();
};
// Alternative simple C-style wrapper API around the basis_compressor class.
// This doesn't expose every encoder feature, but it's enough to get going.
// Important: basisu_encoder_init() MUST be called first before calling these functions.
//
// Input parameters:
// source_images: Array of "image" objects, one per mipmap level, largest mipmap level first.
// OR
// pImageRGBA: pointer to a 32-bpp RGBx or RGBA raster image, R first in memory, A last. Top scanline first in memory.
// width/height/pitch_in_pixels: dimensions of pImageRGBA
//
// flags_and_quality: Combination of the above flags logically OR'd with the ETC1S or UASTC level, i.e. "cFlagSRGB | cFlagGenMipsClamp | cFlagThreaded | 128" or "cFlagSRGB | cFlagGenMipsClamp | cFlagUASTC | cFlagThreaded | cPackUASTCLevelDefault".
// In ETC1S mode, the lower 8-bits are the ETC1S quality level which ranges from [1,255] (higher=better quality/larger files)
// In UASTC mode, the lower 8-bits are the UASTC pack level (see cPackUASTCLevelFastest, etc.). Fastest/lowest quality is 0, so be sure to set it correctly.
//
// uastc_rdo_quality: Float UASTC RDO quality level (0=no change, higher values lower quality but increase compressibility, initially try .5-1.5)
//
// pSize: Returns the output data's compressed size in bytes
//
// Return value is the compressed .basis or .ktx2 file data, or nullptr on failure. Must call basis_free() to free it.
enum
{
cFlagUseOpenCL = 1 << 8, // use OpenCL if available
cFlagThreaded = 1 << 9, // use multiple threads for compression
cFlagDebug = 1 << 10, // enable debug output
cFlagKTX2 = 1 << 11, // generate a KTX2 file
cFlagKTX2UASTCSuperCompression = 1 << 12, // use KTX2 Zstd supercompression on UASTC files
cFlagSRGB = 1 << 13, // input texture is sRGB, use perceptual colorspace metrics, also use sRGB filtering during mipmap gen, and also sets KTX2 output transfer func to sRGB
cFlagGenMipsClamp = 1 << 14, // generate mipmaps with clamp addressing
cFlagGenMipsWrap = 1 << 15, // generate mipmaps with wrap addressing
cFlagYFlip = 1 << 16, // flip source image on Y axis before compression
cFlagUASTC = 1 << 17, // use UASTC compression vs. ETC1S
cFlagUASTCRDO = 1 << 18 // use RDO postprocessing when generating UASTC files (must set uastc_rdo_quality to the quality scalar)
};
// This function accepts an array of source images.
// If more than one image is provided, it's assumed the images form a mipmap pyramid and automatic mipmap generation is disabled.
void* basis_compress(
const basisu::vector<image> &source_images,
uint32_t flags_and_quality, float uastc_rdo_quality,
size_t* pSize,
image_stats* pStats = nullptr);
// This function only accepts a single source image.
void* basis_compress(
const uint8_t* pImageRGBA, uint32_t width, uint32_t height, uint32_t pitch_in_pixels,
uint32_t flags_and_quality, float uastc_rdo_quality,
size_t* pSize,
image_stats* pStats = nullptr);
// Frees the dynamically allocated file data returned by basis_compress().
void basis_free_data(void* p);
// Parallel compression API
struct parallel_results
{
double m_total_time;
basis_compressor::error_code m_error_code;
uint8_vec m_basis_file;
uint8_vec m_ktx2_file;
basisu::vector<image_stats> m_stats;
double m_basis_bits_per_texel;
bool m_any_source_image_has_alpha;
parallel_results()
{
clear();
}
void clear()
{
m_total_time = 0.0f;
m_error_code = basis_compressor::cECFailedInitializing;
m_basis_file.clear();
m_ktx2_file.clear();
m_stats.clear();
m_basis_bits_per_texel = 0.0f;
m_any_source_image_has_alpha = false;
}
};
// Compresses an array of input textures across total_threads threads using the basis_compressor class.
// Compressing multiple textures at a time is substantially more efficient than just compressing one at a time.
// total_threads must be >= 1.
bool basis_parallel_compress(
uint32_t total_threads,
const basisu::vector<basis_compressor_params> &params_vec,
basisu::vector< parallel_results > &results_vec);
} // namespace basisu