godot/thirdparty/icu4c/common/ucnvmbcs.cpp

5724 lines
213 KiB
C++
Raw Normal View History

// © 2016 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html
/*
******************************************************************************
*
* Copyright (C) 2000-2016, International Business Machines
* Corporation and others. All Rights Reserved.
*
******************************************************************************
* file name: ucnvmbcs.cpp
* encoding: UTF-8
* tab size: 8 (not used)
* indentation:4
*
* created on: 2000jul03
* created by: Markus W. Scherer
*
* The current code in this file replaces the previous implementation
* of conversion code from multi-byte codepages to Unicode and back.
* This implementation supports the following:
* - legacy variable-length codepages with up to 4 bytes per character
* - all Unicode code points (up to 0x10ffff)
* - efficient distinction of unassigned vs. illegal byte sequences
* - it is possible in fromUnicode() to directly deal with simple
* stateful encodings (used for EBCDIC_STATEFUL)
* - it is possible to convert Unicode code points
* to a single zero byte (but not as a fallback except for SBCS)
*
* Remaining limitations in fromUnicode:
* - byte sequences must not have leading zero bytes
* - except for SBCS codepages: no fallback mapping from Unicode to a zero byte
* - limitation to up to 4 bytes per character
*
* ICU 2.8 (late 2003) adds a secondary data structure which lifts some of these
* limitations and adds m:n character mappings and other features.
* See ucnv_ext.h for details.
*
* Change history:
*
* 5/6/2001 Ram Moved MBCS_SINGLE_RESULT_FROM_U,MBCS_STAGE_2_FROM_U,
* MBCS_VALUE_2_FROM_STAGE_2, MBCS_VALUE_4_FROM_STAGE_2
* macros to ucnvmbcs.h file
*/
#include "unicode/utypes.h"
#if !UCONFIG_NO_CONVERSION && !UCONFIG_NO_LEGACY_CONVERSION
#include "unicode/ucnv.h"
#include "unicode/ucnv_cb.h"
#include "unicode/udata.h"
#include "unicode/uset.h"
#include "unicode/utf8.h"
#include "unicode/utf16.h"
#include "ucnv_bld.h"
#include "ucnvmbcs.h"
#include "ucnv_ext.h"
#include "ucnv_cnv.h"
#include "cmemory.h"
#include "cstring.h"
#include "umutex.h"
#include "ustr_imp.h"
/* control optimizations according to the platform */
#define MBCS_UNROLL_SINGLE_TO_BMP 1
#define MBCS_UNROLL_SINGLE_FROM_BMP 0
/*
* _MBCSHeader versions 5.3 & 4.3
* (Note that the _MBCSHeader version is in addition to the converter formatVersion.)
*
* This version is optional. Version 5 is used for incompatible data format changes.
* makeconv will continue to generate version 4 files if possible.
*
* Changes from version 4:
*
* The main difference is an additional _MBCSHeader field with
* - the length (number of uint32_t) of the _MBCSHeader
* - flags for further incompatible data format changes
* - flags for further, backward compatible data format changes
*
* The MBCS_OPT_FROM_U flag indicates that most of the fromUnicode data is omitted from
* the file and needs to be reconstituted at load time.
* This requires a utf8Friendly format with an additional mbcsIndex table for fast
* (and UTF-8-friendly) fromUnicode conversion for Unicode code points up to maxFastUChar.
* (For details about these structures see below, and see ucnvmbcs.h.)
*
* utf8Friendly also implies that the fromUnicode mappings are stored in ascending order
* of the Unicode code points. (This requires that the .ucm file has the |0 etc.
* precision markers for all mappings.)
*
* All fallbacks have been moved to the extension table, leaving only roundtrips in the
* omitted data that can be reconstituted from the toUnicode data.
*
* Of the stage 2 table, the part corresponding to maxFastUChar and below is omitted.
* With only roundtrip mappings in the base fromUnicode data, this part is fully
* redundant with the mbcsIndex and will be reconstituted from that (also using the
* stage 1 table which contains the information about how stage 2 was compacted).
*
* The rest of the stage 2 table, the part for code points above maxFastUChar,
* is stored in the file and will be appended to the reconstituted part.
*
* The entire fromUBytes array is omitted from the file and will be reconstitued.
* This is done by enumerating all toUnicode roundtrip mappings, performing
* each mapping (using the stage 1 and reconstituted stage 2 tables) and
* writing instead of reading the byte values.
*
* _MBCSHeader version 4.3
*
* Change from version 4.2:
* - Optional utf8Friendly data structures, with 64-entry stage 3 block
* allocation for parts of the BMP, and an additional mbcsIndex in non-SBCS
* files which can be used instead of stages 1 & 2.
* Faster lookups for roundtrips from most commonly used characters,
* and lookups from UTF-8 byte sequences with a natural bit distribution.
* See ucnvmbcs.h for more details.
*
* Change from version 4.1:
* - Added an optional extension table structure at the end of the .cnv file.
* It is present if the upper bits of the header flags field contains a non-zero
* byte offset to it.
* Files that contain only a conversion table and no base table
* use the special outputType MBCS_OUTPUT_EXT_ONLY.
* These contain the base table name between the MBCS header and the extension
* data.
*
* Change from version 4.0:
* - Replace header.reserved with header.fromUBytesLength so that all
* fields in the data have length.
*
* Changes from version 3 (for performance improvements):
* - new bit distribution for state table entries
* - reordered action codes
* - new data structure for single-byte fromUnicode
* + stage 2 only contains indexes
* + stage 3 stores 16 bits per character with classification bits 15..8
* - no multiplier for stage 1 entries
* - stage 2 for non-single-byte codepages contains the index and the flags in
* one 32-bit value
* - 2-byte and 4-byte fromUnicode results are stored directly as 16/32-bit integers
*
* For more details about old versions of the MBCS data structure, see
* the corresponding versions of this file.
*
* Converting stateless codepage data ---------------------------------------***
* (or codepage data with simple states) to Unicode.
*
* Data structure and algorithm for converting from complex legacy codepages
* to Unicode. (Designed before 2000-may-22.)
*
* The basic idea is that the structure of legacy codepages can be described
* with state tables.
* When reading a byte stream, each input byte causes a state transition.
* Some transitions result in the output of a code point, some result in
* "unassigned" or "illegal" output.
* This is used here for character conversion.
*
* The data structure begins with a state table consisting of a row
* per state, with 256 entries (columns) per row for each possible input
* byte value.
* Each entry is 32 bits wide, with two formats distinguished by
* the sign bit (bit 31):
*
* One format for transitional entries (bit 31 not set) for non-final bytes, and
* one format for final entries (bit 31 set).
* Both formats contain the number of the next state in the same bit
* positions.
* State 0 is the initial state.
*
* Most of the time, the offset values of subsequent states are added
* up to a scalar value. This value will eventually be the index of
* the Unicode code point in a table that follows the state table.
* The effect is that the code points for final state table rows
* are contiguous. The code points of final state rows follow each other
* in the order of the references to those final states by previous
* states, etc.
*
* For some terminal states, the offset is itself the output Unicode
* code point (16 bits for a BMP code point or 20 bits for a supplementary
* code point (stored as code point minus 0x10000 so that 20 bits are enough).
* For others, the code point in the Unicode table is stored with either
* one or two code units: one for BMP code points, two for a pair of
* surrogates.
* All code points for a final state entry take up the same number of code
* units, regardless of whether they all actually _use_ the same number
* of code units. This is necessary for simple array access.
*
* An additional feature comes in with what in ICU is called "fallback"
* mappings:
*
* In addition to round-trippable, precise, 1:1 mappings, there are often
* mappings defined between similar, though not the same, characters.
* Typically, such mappings occur only in fromUnicode mapping tables because
* Unicode has a superset repertoire of most other codepages. However, it
* is possible to provide such mappings in the toUnicode tables, too.
* In this case, the fallback mappings are partly integrated into the
* general state tables because the structure of the encoding includes their
* byte sequences.
* For final entries in an initial state, fallback mappings are stored in
* the entry itself like with roundtrip mappings.
* For other final entries, they are stored in the code units table if
* the entry is for a pair of code units.
* For single-unit results in the code units table, there is no space to
* alternatively hold a fallback mapping; in this case, the code unit
* is stored as U+fffe (unassigned), and the fallback mapping needs to
* be looked up by the scalar offset value in a separate table.
*
* "Unassigned" state entries really mean "structurally unassigned",
* i.e., such a byte sequence will never have a mapping result.
*
* The interpretation of the bits in each entry is as follows:
*
* Bit 31 not set, not a terminal entry ("transitional"):
* 30..24 next state
* 23..0 offset delta, to be added up
*
* Bit 31 set, terminal ("final") entry:
* 30..24 next state (regardless of action code)
* 23..20 action code:
* action codes 0 and 1 result in precise-mapping Unicode code points
* 0 valid byte sequence
* 19..16 not used, 0
* 15..0 16-bit Unicode BMP code point
* never U+fffe or U+ffff
* 1 valid byte sequence
* 19..0 20-bit Unicode supplementary code point
* never U+fffe or U+ffff
*
* action codes 2 and 3 result in fallback (unidirectional-mapping) Unicode code points
* 2 valid byte sequence (fallback)
* 19..16 not used, 0
* 15..0 16-bit Unicode BMP code point as fallback result
* 3 valid byte sequence (fallback)
* 19..0 20-bit Unicode supplementary code point as fallback result
*
* action codes 4 and 5 may result in roundtrip/fallback/unassigned/illegal results
* depending on the code units they result in
* 4 valid byte sequence
* 19..9 not used, 0
* 8..0 final offset delta
* pointing to one 16-bit code unit which may be
* fffe unassigned -- look for a fallback for this offset
* ffff illegal
* 5 valid byte sequence
* 19..9 not used, 0
* 8..0 final offset delta
* pointing to two 16-bit code units
* (typically UTF-16 surrogates)
* the result depends on the first code unit as follows:
* 0000..d7ff roundtrip BMP code point (1st alone)
* d800..dbff roundtrip surrogate pair (1st, 2nd)
* dc00..dfff fallback surrogate pair (1st-400, 2nd)
* e000 roundtrip BMP code point (2nd alone)
* e001 fallback BMP code point (2nd alone)
* fffe unassigned
* ffff illegal
* (the final offset deltas are at most 255 * 2,
* times 2 because of storing code unit pairs)
*
* 6 unassigned byte sequence
* 19..16 not used, 0
* 15..0 16-bit Unicode BMP code point U+fffe (new with version 2)
* this does not contain a final offset delta because the main
* purpose of this action code is to save scalar offset values;
* therefore, fallback values cannot be assigned to byte
* sequences that result in this action code
* 7 illegal byte sequence
* 19..16 not used, 0
* 15..0 16-bit Unicode BMP code point U+ffff (new with version 2)
* 8 state change only
* 19..0 not used, 0
* useful for state changes in simple stateful encodings,
* at Shift-In/Shift-Out codes
*
*
* 9..15 reserved for future use
* current implementations will only perform a state change
* and ignore bits 19..0
*
* An encoding with contiguous ranges of unassigned byte sequences, like
* Shift-JIS and especially EUC-TW, can be stored efficiently by having
* at least two states for the trail bytes:
* One trail byte state that results in code points, and one that only
* has "unassigned" and "illegal" terminal states.
*
* Note: partly by accident, this data structure supports simple stateful
* encodings without any additional logic.
* Currently, only simple Shift-In/Shift-Out schemes are handled with
* appropriate state tables (especially EBCDIC_STATEFUL!).
*
* MBCS version 2 added:
* unassigned and illegal action codes have U+fffe and U+ffff
* instead of unused bits; this is useful for _MBCS_SINGLE_SIMPLE_GET_NEXT_BMP()
*
* Converting from Unicode to codepage bytes --------------------------------***
*
* The conversion data structure for fromUnicode is designed for the known
* structure of Unicode. It maps from 21-bit code points (0..0x10ffff) to
* a sequence of 1..4 bytes, in addition to a flag that indicates if there is
* a roundtrip mapping.
*
* The lookup is done with a 3-stage trie, using 11/6/4 bits for stage 1/2/3
* like in the character properties table.
* The beginning of the trie is at offsetFromUTable, the beginning of stage 3
* with the resulting bytes is at offsetFromUBytes.
*
* Beginning with version 4, single-byte codepages have a significantly different
* trie compared to other codepages.
* In all cases, the entry in stage 1 is directly the index of the block of
* 64 entries in stage 2.
*
* Single-byte lookup:
*
* Stage 2 only contains 16-bit indexes directly to the 16-blocks in stage 3.
* Stage 3 contains one 16-bit word per result:
* Bits 15..8 indicate the kind of result:
* f roundtrip result
* c fallback result from private-use code point
* 8 fallback result from other code points
* 0 unassigned
* Bits 7..0 contain the codepage byte. A zero byte is always possible.
*
* In version 4.3, the runtime code can build an sbcsIndex for a utf8Friendly
* file. For 2-byte UTF-8 byte sequences and some 3-byte sequences the lookup
* becomes a 2-stage (single-index) trie lookup with 6 bits for stage 3.
* ASCII code points can be looked up with a linear array access into stage 3.
* See maxFastUChar and other details in ucnvmbcs.h.
*
* Multi-byte lookup:
*
* Stage 2 contains a 32-bit word for each 16-block in stage 3:
* Bits 31..16 contain flags for which stage 3 entries contain roundtrip results
* test: MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c)
* If this test is false, then a non-zero result will be interpreted as
* a fallback mapping.
* Bits 15..0 contain the index to stage 3, which must be multiplied by 16*(bytes per char)
*
* Stage 3 contains 2, 3, or 4 bytes per result.
* 2 or 4 bytes are stored as uint16_t/uint32_t in platform endianness,
* while 3 bytes are stored as bytes in big-endian order.
* Leading zero bytes are ignored, and the number of bytes is counted.
* A zero byte mapping result is possible as a roundtrip result.
* For some output types, the actual result is processed from this;
* see ucnv_MBCSFromUnicodeWithOffsets().
*
* Note that stage 1 always contains 0x440=1088 entries (0x440==0x110000>>10),
* or (version 3 and up) for BMP-only codepages, it contains 64 entries.
*
* In version 4.3, a utf8Friendly file contains an mbcsIndex table.
* For 2-byte UTF-8 byte sequences and most 3-byte sequences the lookup
* becomes a 2-stage (single-index) trie lookup with 6 bits for stage 3.
* ASCII code points can be looked up with a linear array access into stage 3.
* See maxFastUChar, mbcsIndex and other details in ucnvmbcs.h.
*
* In version 3, stage 2 blocks may overlap by multiples of the multiplier
* for compaction.
* In version 4, stage 2 blocks (and for single-byte codepages, stage 3 blocks)
* may overlap by any number of entries.
*
* MBCS version 2 added:
* the converter checks for known output types, which allows
* adding new ones without crashing an unaware converter
*/
/**
* Callback from ucnv_MBCSEnumToUnicode(), takes 32 mappings from
* consecutive sequences of bytes, starting from the one encoded in value,
* to Unicode code points. (Multiple mappings to reduce per-function call overhead.)
* Does not currently support m:n mappings or reverse fallbacks.
* This function will not be called for sequences of bytes with leading zeros.
*
* @param context an opaque pointer, as passed into ucnv_MBCSEnumToUnicode()
* @param value contains 1..4 bytes of the first byte sequence, right-aligned
* @param codePoints resulting Unicode code points, or negative if a byte sequence does
* not map to anything
2022-10-28 06:11:55 +00:00
* @return true to continue enumeration, false to stop
*/
typedef UBool U_CALLCONV
UConverterEnumToUCallback(const void *context, uint32_t value, UChar32 codePoints[32]);
static void U_CALLCONV
ucnv_MBCSLoad(UConverterSharedData *sharedData,
UConverterLoadArgs *pArgs,
const uint8_t *raw,
UErrorCode *pErrorCode);
static void U_CALLCONV
ucnv_MBCSUnload(UConverterSharedData *sharedData);
static void U_CALLCONV
ucnv_MBCSOpen(UConverter *cnv,
UConverterLoadArgs *pArgs,
UErrorCode *pErrorCode);
static UChar32 U_CALLCONV
ucnv_MBCSGetNextUChar(UConverterToUnicodeArgs *pArgs,
UErrorCode *pErrorCode);
static void U_CALLCONV
ucnv_MBCSGetStarters(const UConverter* cnv,
UBool starters[256],
UErrorCode *pErrorCode);
U_CDECL_BEGIN
static const char* U_CALLCONV
ucnv_MBCSGetName(const UConverter *cnv);
U_CDECL_END
static void U_CALLCONV
ucnv_MBCSWriteSub(UConverterFromUnicodeArgs *pArgs,
int32_t offsetIndex,
UErrorCode *pErrorCode);
static UChar32 U_CALLCONV
ucnv_MBCSGetNextUChar(UConverterToUnicodeArgs *pArgs,
UErrorCode *pErrorCode);
static void U_CALLCONV
ucnv_SBCSFromUTF8(UConverterFromUnicodeArgs *pFromUArgs,
UConverterToUnicodeArgs *pToUArgs,
UErrorCode *pErrorCode);
static void U_CALLCONV
ucnv_MBCSGetUnicodeSet(const UConverter *cnv,
const USetAdder *sa,
UConverterUnicodeSet which,
UErrorCode *pErrorCode);
static void U_CALLCONV
ucnv_DBCSFromUTF8(UConverterFromUnicodeArgs *pFromUArgs,
UConverterToUnicodeArgs *pToUArgs,
UErrorCode *pErrorCode);
static const UConverterImpl _SBCSUTF8Impl={
UCNV_MBCS,
ucnv_MBCSLoad,
ucnv_MBCSUnload,
ucnv_MBCSOpen,
NULL,
NULL,
ucnv_MBCSToUnicodeWithOffsets,
ucnv_MBCSToUnicodeWithOffsets,
ucnv_MBCSFromUnicodeWithOffsets,
ucnv_MBCSFromUnicodeWithOffsets,
ucnv_MBCSGetNextUChar,
ucnv_MBCSGetStarters,
ucnv_MBCSGetName,
ucnv_MBCSWriteSub,
NULL,
ucnv_MBCSGetUnicodeSet,
NULL,
ucnv_SBCSFromUTF8
};
static const UConverterImpl _DBCSUTF8Impl={
UCNV_MBCS,
ucnv_MBCSLoad,
ucnv_MBCSUnload,
ucnv_MBCSOpen,
NULL,
NULL,
ucnv_MBCSToUnicodeWithOffsets,
ucnv_MBCSToUnicodeWithOffsets,
ucnv_MBCSFromUnicodeWithOffsets,
ucnv_MBCSFromUnicodeWithOffsets,
ucnv_MBCSGetNextUChar,
ucnv_MBCSGetStarters,
ucnv_MBCSGetName,
ucnv_MBCSWriteSub,
NULL,
ucnv_MBCSGetUnicodeSet,
NULL,
ucnv_DBCSFromUTF8
};
static const UConverterImpl _MBCSImpl={
UCNV_MBCS,
ucnv_MBCSLoad,
ucnv_MBCSUnload,
ucnv_MBCSOpen,
NULL,
NULL,
ucnv_MBCSToUnicodeWithOffsets,
ucnv_MBCSToUnicodeWithOffsets,
ucnv_MBCSFromUnicodeWithOffsets,
ucnv_MBCSFromUnicodeWithOffsets,
ucnv_MBCSGetNextUChar,
ucnv_MBCSGetStarters,
ucnv_MBCSGetName,
ucnv_MBCSWriteSub,
NULL,
ucnv_MBCSGetUnicodeSet,
NULL,
NULL
};
/* Static data is in tools/makeconv/ucnvstat.c for data-based
* converters. Be sure to update it as well.
*/
const UConverterSharedData _MBCSData={
sizeof(UConverterSharedData), 1,
2022-10-28 06:11:55 +00:00
NULL, NULL, false, true, &_MBCSImpl,
0, UCNV_MBCS_TABLE_INITIALIZER
};
/* GB 18030 data ------------------------------------------------------------ */
/* helper macros for linear values for GB 18030 four-byte sequences */
#define LINEAR_18030(a, b, c, d) ((((a)*10+(b))*126L+(c))*10L+(d))
#define LINEAR_18030_BASE LINEAR_18030(0x81, 0x30, 0x81, 0x30)
#define LINEAR(x) LINEAR_18030(x>>24, (x>>16)&0xff, (x>>8)&0xff, x&0xff)
/*
* Some ranges of GB 18030 where both the Unicode code points and the
* GB four-byte sequences are contiguous and are handled algorithmically by
* the special callback functions below.
* The values are start & end of Unicode & GB codes.
*
* Note that single surrogates are not mapped by GB 18030
* as of the re-released mapping tables from 2000-nov-30.
*/
static const uint32_t
gb18030Ranges[14][4]={
{0x10000, 0x10FFFF, LINEAR(0x90308130), LINEAR(0xE3329A35)},
{0x9FA6, 0xD7FF, LINEAR(0x82358F33), LINEAR(0x8336C738)},
{0x0452, 0x1E3E, LINEAR(0x8130D330), LINEAR(0x8135F436)},
{0x1E40, 0x200F, LINEAR(0x8135F438), LINEAR(0x8136A531)},
{0xE865, 0xF92B, LINEAR(0x8336D030), LINEAR(0x84308534)},
{0x2643, 0x2E80, LINEAR(0x8137A839), LINEAR(0x8138FD38)},
{0xFA2A, 0xFE2F, LINEAR(0x84309C38), LINEAR(0x84318537)},
{0x3CE1, 0x4055, LINEAR(0x8231D438), LINEAR(0x8232AF32)},
{0x361B, 0x3917, LINEAR(0x8230A633), LINEAR(0x8230F237)},
{0x49B8, 0x4C76, LINEAR(0x8234A131), LINEAR(0x8234E733)},
{0x4160, 0x4336, LINEAR(0x8232C937), LINEAR(0x8232F837)},
{0x478E, 0x4946, LINEAR(0x8233E838), LINEAR(0x82349638)},
{0x44D7, 0x464B, LINEAR(0x8233A339), LINEAR(0x8233C931)},
{0xFFE6, 0xFFFF, LINEAR(0x8431A234), LINEAR(0x8431A439)}
};
/* bit flag for UConverter.options indicating GB 18030 special handling */
#define _MBCS_OPTION_GB18030 0x8000
/* bit flag for UConverter.options indicating KEIS,JEF,JIF special handling */
#define _MBCS_OPTION_KEIS 0x01000
#define _MBCS_OPTION_JEF 0x02000
#define _MBCS_OPTION_JIPS 0x04000
#define KEIS_SO_CHAR_1 0x0A
#define KEIS_SO_CHAR_2 0x42
#define KEIS_SI_CHAR_1 0x0A
#define KEIS_SI_CHAR_2 0x41
#define JEF_SO_CHAR 0x28
#define JEF_SI_CHAR 0x29
#define JIPS_SO_CHAR_1 0x1A
#define JIPS_SO_CHAR_2 0x70
#define JIPS_SI_CHAR_1 0x1A
#define JIPS_SI_CHAR_2 0x71
enum SISO_Option {
SI,
SO
};
typedef enum SISO_Option SISO_Option;
static int32_t getSISOBytes(SISO_Option option, uint32_t cnvOption, uint8_t *value) {
int32_t SISOLength = 0;
switch (option) {
case SI:
if ((cnvOption&_MBCS_OPTION_KEIS)!=0) {
value[0] = KEIS_SI_CHAR_1;
value[1] = KEIS_SI_CHAR_2;
SISOLength = 2;
} else if ((cnvOption&_MBCS_OPTION_JEF)!=0) {
value[0] = JEF_SI_CHAR;
SISOLength = 1;
} else if ((cnvOption&_MBCS_OPTION_JIPS)!=0) {
value[0] = JIPS_SI_CHAR_1;
value[1] = JIPS_SI_CHAR_2;
SISOLength = 2;
} else {
value[0] = UCNV_SI;
SISOLength = 1;
}
break;
case SO:
if ((cnvOption&_MBCS_OPTION_KEIS)!=0) {
value[0] = KEIS_SO_CHAR_1;
value[1] = KEIS_SO_CHAR_2;
SISOLength = 2;
} else if ((cnvOption&_MBCS_OPTION_JEF)!=0) {
value[0] = JEF_SO_CHAR;
SISOLength = 1;
} else if ((cnvOption&_MBCS_OPTION_JIPS)!=0) {
value[0] = JIPS_SO_CHAR_1;
value[1] = JIPS_SO_CHAR_2;
SISOLength = 2;
} else {
value[0] = UCNV_SO;
SISOLength = 1;
}
break;
default:
/* Should never happen. */
break;
}
return SISOLength;
}
/* Miscellaneous ------------------------------------------------------------ */
/* similar to ucnv_MBCSGetNextUChar() but recursive */
static UBool
enumToU(UConverterMBCSTable *mbcsTable, int8_t stateProps[],
int32_t state, uint32_t offset,
uint32_t value,
UConverterEnumToUCallback *callback, const void *context,
UErrorCode *pErrorCode) {
UChar32 codePoints[32];
const int32_t *row;
const uint16_t *unicodeCodeUnits;
UChar32 anyCodePoints;
int32_t b, limit;
row=mbcsTable->stateTable[state];
unicodeCodeUnits=mbcsTable->unicodeCodeUnits;
value<<=8;
anyCodePoints=-1; /* becomes non-negative if there is a mapping */
b=(stateProps[state]&0x38)<<2;
if(b==0 && stateProps[state]>=0x40) {
/* skip byte sequences with leading zeros because they are not stored in the fromUnicode table */
codePoints[0]=U_SENTINEL;
b=1;
}
limit=((stateProps[state]&7)+1)<<5;
while(b<limit) {
int32_t entry=row[b];
if(MBCS_ENTRY_IS_TRANSITION(entry)) {
int32_t nextState=MBCS_ENTRY_TRANSITION_STATE(entry);
if(stateProps[nextState]>=0) {
/* recurse to a state with non-ignorable actions */
if(!enumToU(
mbcsTable, stateProps, nextState,
offset+MBCS_ENTRY_TRANSITION_OFFSET(entry),
value|(uint32_t)b,
callback, context,
pErrorCode)) {
2022-10-28 06:11:55 +00:00
return false;
}
}
codePoints[b&0x1f]=U_SENTINEL;
} else {
UChar32 c;
int32_t action;
/*
* An if-else-if chain provides more reliable performance for
* the most common cases compared to a switch.
*/
action=MBCS_ENTRY_FINAL_ACTION(entry);
if(action==MBCS_STATE_VALID_DIRECT_16) {
/* output BMP code point */
c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
} else if(action==MBCS_STATE_VALID_16) {
int32_t finalOffset=offset+MBCS_ENTRY_FINAL_VALUE_16(entry);
c=unicodeCodeUnits[finalOffset];
if(c<0xfffe) {
/* output BMP code point */
} else {
c=U_SENTINEL;
}
} else if(action==MBCS_STATE_VALID_16_PAIR) {
int32_t finalOffset=offset+MBCS_ENTRY_FINAL_VALUE_16(entry);
c=unicodeCodeUnits[finalOffset++];
if(c<0xd800) {
/* output BMP code point below 0xd800 */
} else if(c<=0xdbff) {
/* output roundtrip or fallback supplementary code point */
c=((c&0x3ff)<<10)+unicodeCodeUnits[finalOffset]+(0x10000-0xdc00);
} else if(c==0xe000) {
/* output roundtrip BMP code point above 0xd800 or fallback BMP code point */
c=unicodeCodeUnits[finalOffset];
} else {
c=U_SENTINEL;
}
} else if(action==MBCS_STATE_VALID_DIRECT_20) {
/* output supplementary code point */
c=(UChar32)(MBCS_ENTRY_FINAL_VALUE(entry)+0x10000);
} else {
c=U_SENTINEL;
}
codePoints[b&0x1f]=c;
anyCodePoints&=c;
}
if(((++b)&0x1f)==0) {
if(anyCodePoints>=0) {
if(!callback(context, value|(uint32_t)(b-0x20), codePoints)) {
2022-10-28 06:11:55 +00:00
return false;
}
anyCodePoints=-1;
}
}
}
2022-10-28 06:11:55 +00:00
return true;
}
/*
* Only called if stateProps[state]==-1.
* A recursive call may do stateProps[state]|=0x40 if this state is the target of an
* MBCS_STATE_CHANGE_ONLY.
*/
static int8_t
getStateProp(const int32_t (*stateTable)[256], int8_t stateProps[], int state) {
const int32_t *row;
int32_t min, max, entry, nextState;
row=stateTable[state];
stateProps[state]=0;
/* find first non-ignorable state */
for(min=0;; ++min) {
entry=row[min];
nextState=MBCS_ENTRY_STATE(entry);
if(stateProps[nextState]==-1) {
getStateProp(stateTable, stateProps, nextState);
}
if(MBCS_ENTRY_IS_TRANSITION(entry)) {
if(stateProps[nextState]>=0) {
break;
}
} else if(MBCS_ENTRY_FINAL_ACTION(entry)<MBCS_STATE_UNASSIGNED) {
break;
}
if(min==0xff) {
stateProps[state]=-0x40; /* (int8_t)0xc0 */
return stateProps[state];
}
}
stateProps[state]|=(int8_t)((min>>5)<<3);
/* find last non-ignorable state */
for(max=0xff; min<max; --max) {
entry=row[max];
nextState=MBCS_ENTRY_STATE(entry);
if(stateProps[nextState]==-1) {
getStateProp(stateTable, stateProps, nextState);
}
if(MBCS_ENTRY_IS_TRANSITION(entry)) {
if(stateProps[nextState]>=0) {
break;
}
} else if(MBCS_ENTRY_FINAL_ACTION(entry)<MBCS_STATE_UNASSIGNED) {
break;
}
}
stateProps[state]|=(int8_t)(max>>5);
/* recurse further and collect direct-state information */
while(min<=max) {
entry=row[min];
nextState=MBCS_ENTRY_STATE(entry);
if(stateProps[nextState]==-1) {
getStateProp(stateTable, stateProps, nextState);
}
if(MBCS_ENTRY_IS_FINAL(entry)) {
stateProps[nextState]|=0x40;
if(MBCS_ENTRY_FINAL_ACTION(entry)<=MBCS_STATE_FALLBACK_DIRECT_20) {
stateProps[state]|=0x40;
}
}
++min;
}
return stateProps[state];
}
/*
* Internal function enumerating the toUnicode data of an MBCS converter.
* Currently only used for reconstituting data for a MBCS_OPT_NO_FROM_U
* table, but could also be used for a future ucnv_getUnicodeSet() option
* that includes reverse fallbacks (after updating this function's implementation).
* Currently only handles roundtrip mappings.
* Does not currently handle extensions.
*/
static void
ucnv_MBCSEnumToUnicode(UConverterMBCSTable *mbcsTable,
UConverterEnumToUCallback *callback, const void *context,
UErrorCode *pErrorCode) {
/*
* Properties for each state, to speed up the enumeration.
* Ignorable actions are unassigned/illegal/state-change-only:
* They do not lead to mappings.
*
* Bits 7..6:
* 1 direct/initial state (stateful converters have multiple)
* 0 non-initial state with transitions or with non-ignorable result actions
* -1 final state with only ignorable actions
*
* Bits 5..3:
* The lowest byte value with non-ignorable actions is
* value<<5 (rounded down).
*
* Bits 2..0:
* The highest byte value with non-ignorable actions is
* (value<<5)&0x1f (rounded up).
*/
int8_t stateProps[MBCS_MAX_STATE_COUNT];
int32_t state;
uprv_memset(stateProps, -1, sizeof(stateProps));
/* recurse from state 0 and set all stateProps */
getStateProp(mbcsTable->stateTable, stateProps, 0);
for(state=0; state<mbcsTable->countStates; ++state) {
/*if(stateProps[state]==-1) {
printf("unused/unreachable <icu:state> %d\n", state);
}*/
if(stateProps[state]>=0x40) {
/* start from each direct state */
enumToU(
mbcsTable, stateProps, state, 0, 0,
callback, context,
pErrorCode);
}
}
}
U_CFUNC void
ucnv_MBCSGetFilteredUnicodeSetForUnicode(const UConverterSharedData *sharedData,
const USetAdder *sa,
UConverterUnicodeSet which,
UConverterSetFilter filter,
UErrorCode *pErrorCode) {
const UConverterMBCSTable *mbcsTable;
const uint16_t *table;
uint32_t st3;
uint16_t st1, maxStage1, st2;
UChar32 c;
/* enumerate the from-Unicode trie table */
mbcsTable=&sharedData->mbcs;
table=mbcsTable->fromUnicodeTable;
if(mbcsTable->unicodeMask&UCNV_HAS_SUPPLEMENTARY) {
maxStage1=0x440;
} else {
maxStage1=0x40;
}
c=0; /* keep track of the current code point while enumerating */
if(mbcsTable->outputType==MBCS_OUTPUT_1) {
const uint16_t *stage2, *stage3, *results;
uint16_t minValue;
results=(const uint16_t *)mbcsTable->fromUnicodeBytes;
/*
* Set a threshold variable for selecting which mappings to use.
* See ucnv_MBCSSingleFromBMPWithOffsets() and
* MBCS_SINGLE_RESULT_FROM_U() for details.
*/
if(which==UCNV_ROUNDTRIP_SET) {
/* use only roundtrips */
minValue=0xf00;
} else /* UCNV_ROUNDTRIP_AND_FALLBACK_SET */ {
/* use all roundtrip and fallback results */
minValue=0x800;
}
for(st1=0; st1<maxStage1; ++st1) {
st2=table[st1];
if(st2>maxStage1) {
stage2=table+st2;
for(st2=0; st2<64; ++st2) {
if((st3=stage2[st2])!=0) {
/* read the stage 3 block */
stage3=results+st3;
do {
if(*stage3++>=minValue) {
sa->add(sa->set, c);
}
} while((++c&0xf)!=0);
} else {
c+=16; /* empty stage 3 block */
}
}
} else {
c+=1024; /* empty stage 2 block */
}
}
} else {
const uint32_t *stage2;
const uint8_t *stage3, *bytes;
uint32_t st3Multiplier;
uint32_t value;
UBool useFallback;
bytes=mbcsTable->fromUnicodeBytes;
useFallback=(UBool)(which==UCNV_ROUNDTRIP_AND_FALLBACK_SET);
switch(mbcsTable->outputType) {
case MBCS_OUTPUT_3:
case MBCS_OUTPUT_4_EUC:
st3Multiplier=3;
break;
case MBCS_OUTPUT_4:
st3Multiplier=4;
break;
default:
st3Multiplier=2;
break;
}
for(st1=0; st1<maxStage1; ++st1) {
st2=table[st1];
if(st2>(maxStage1>>1)) {
stage2=(const uint32_t *)table+st2;
for(st2=0; st2<64; ++st2) {
if((st3=stage2[st2])!=0) {
/* read the stage 3 block */
stage3=bytes+st3Multiplier*16*(uint32_t)(uint16_t)st3;
/* get the roundtrip flags for the stage 3 block */
st3>>=16;
/*
* Add code points for which the roundtrip flag is set,
* or which map to non-zero bytes if we use fallbacks.
* See ucnv_MBCSFromUnicodeWithOffsets() for details.
*/
switch(filter) {
case UCNV_SET_FILTER_NONE:
do {
if(st3&1) {
sa->add(sa->set, c);
stage3+=st3Multiplier;
} else if(useFallback) {
uint8_t b=0;
switch(st3Multiplier) {
case 4:
b|=*stage3++;
U_FALLTHROUGH;
case 3:
b|=*stage3++;
U_FALLTHROUGH;
case 2:
b|=stage3[0]|stage3[1];
stage3+=2;
U_FALLTHROUGH;
default:
break;
}
if(b!=0) {
sa->add(sa->set, c);
}
}
st3>>=1;
} while((++c&0xf)!=0);
break;
case UCNV_SET_FILTER_DBCS_ONLY:
/* Ignore single-byte results (<0x100). */
do {
if(((st3&1)!=0 || useFallback) && *((const uint16_t *)stage3)>=0x100) {
sa->add(sa->set, c);
}
st3>>=1;
stage3+=2; /* +=st3Multiplier */
} while((++c&0xf)!=0);
break;
case UCNV_SET_FILTER_2022_CN:
/* Only add code points that map to CNS 11643 planes 1 & 2 for non-EXT ISO-2022-CN. */
do {
if(((st3&1)!=0 || useFallback) && ((value=*stage3)==0x81 || value==0x82)) {
sa->add(sa->set, c);
}
st3>>=1;
stage3+=3; /* +=st3Multiplier */
} while((++c&0xf)!=0);
break;
case UCNV_SET_FILTER_SJIS:
/* Only add code points that map to Shift-JIS codes corresponding to JIS X 0208. */
do {
if(((st3&1)!=0 || useFallback) && (value=*((const uint16_t *)stage3))>=0x8140 && value<=0xeffc) {
sa->add(sa->set, c);
}
st3>>=1;
stage3+=2; /* +=st3Multiplier */
} while((++c&0xf)!=0);
break;
case UCNV_SET_FILTER_GR94DBCS:
/* Only add code points that map to ISO 2022 GR 94 DBCS codes (each byte A1..FE). */
do {
if( ((st3&1)!=0 || useFallback) &&
(uint16_t)((value=*((const uint16_t *)stage3)) - 0xa1a1)<=(0xfefe - 0xa1a1) &&
(uint8_t)(value-0xa1)<=(0xfe - 0xa1)
) {
sa->add(sa->set, c);
}
st3>>=1;
stage3+=2; /* +=st3Multiplier */
} while((++c&0xf)!=0);
break;
case UCNV_SET_FILTER_HZ:
/* Only add code points that are suitable for HZ DBCS (lead byte A1..FD). */
do {
if( ((st3&1)!=0 || useFallback) &&
(uint16_t)((value=*((const uint16_t *)stage3))-0xa1a1)<=(0xfdfe - 0xa1a1) &&
(uint8_t)(value-0xa1)<=(0xfe - 0xa1)
) {
sa->add(sa->set, c);
}
st3>>=1;
stage3+=2; /* +=st3Multiplier */
} while((++c&0xf)!=0);
break;
default:
*pErrorCode=U_INTERNAL_PROGRAM_ERROR;
return;
}
} else {
c+=16; /* empty stage 3 block */
}
}
} else {
c+=1024; /* empty stage 2 block */
}
}
}
ucnv_extGetUnicodeSet(sharedData, sa, which, filter, pErrorCode);
}
U_CFUNC void
ucnv_MBCSGetUnicodeSetForUnicode(const UConverterSharedData *sharedData,
const USetAdder *sa,
UConverterUnicodeSet which,
UErrorCode *pErrorCode) {
ucnv_MBCSGetFilteredUnicodeSetForUnicode(
sharedData, sa, which,
sharedData->mbcs.outputType==MBCS_OUTPUT_DBCS_ONLY ?
UCNV_SET_FILTER_DBCS_ONLY :
UCNV_SET_FILTER_NONE,
pErrorCode);
}
static void U_CALLCONV
ucnv_MBCSGetUnicodeSet(const UConverter *cnv,
const USetAdder *sa,
UConverterUnicodeSet which,
UErrorCode *pErrorCode) {
if(cnv->options&_MBCS_OPTION_GB18030) {
sa->addRange(sa->set, 0, 0xd7ff);
sa->addRange(sa->set, 0xe000, 0x10ffff);
} else {
ucnv_MBCSGetUnicodeSetForUnicode(cnv->sharedData, sa, which, pErrorCode);
}
}
/* conversion extensions for input not in the main table -------------------- */
/*
* Hardcoded extension handling for GB 18030.
* Definition of LINEAR macros and gb18030Ranges see near the beginning of the file.
*
* In the future, conversion extensions may handle m:n mappings and delta tables,
2021-10-28 06:15:28 +00:00
* see https://htmlpreview.github.io/?https://github.com/unicode-org/icu-docs/blob/main/design/conversion/conversion_extensions.html
*
* If an input character cannot be mapped, then these functions set an error
* code. The framework will then call the callback function.
*/
/*
* @return if(U_FAILURE) return the code point for cnv->fromUChar32
* else return 0 after output has been written to the target
*/
static UChar32
_extFromU(UConverter *cnv, const UConverterSharedData *sharedData,
UChar32 cp,
const UChar **source, const UChar *sourceLimit,
uint8_t **target, const uint8_t *targetLimit,
int32_t **offsets, int32_t sourceIndex,
UBool flush,
UErrorCode *pErrorCode) {
const int32_t *cx;
2022-10-28 06:11:55 +00:00
cnv->useSubChar1=false;
if( (cx=sharedData->mbcs.extIndexes)!=NULL &&
ucnv_extInitialMatchFromU(
cnv, cx,
cp, source, sourceLimit,
(char **)target, (char *)targetLimit,
offsets, sourceIndex,
flush,
pErrorCode)
) {
return 0; /* an extension mapping handled the input */
}
/* GB 18030 */
if((cnv->options&_MBCS_OPTION_GB18030)!=0) {
const uint32_t *range;
int32_t i;
range=gb18030Ranges[0];
for(i=0; i<UPRV_LENGTHOF(gb18030Ranges); range+=4, ++i) {
if(range[0]<=(uint32_t)cp && (uint32_t)cp<=range[1]) {
/* found the Unicode code point, output the four-byte sequence for it */
uint32_t linear;
char bytes[4];
/* get the linear value of the first GB 18030 code in this range */
linear=range[2]-LINEAR_18030_BASE;
/* add the offset from the beginning of the range */
linear+=((uint32_t)cp-range[0]);
/* turn this into a four-byte sequence */
bytes[3]=(char)(0x30+linear%10); linear/=10;
bytes[2]=(char)(0x81+linear%126); linear/=126;
bytes[1]=(char)(0x30+linear%10); linear/=10;
bytes[0]=(char)(0x81+linear);
/* output this sequence */
ucnv_fromUWriteBytes(cnv,
bytes, 4, (char **)target, (char *)targetLimit,
offsets, sourceIndex, pErrorCode);
return 0;
}
}
}
/* no mapping */
*pErrorCode=U_INVALID_CHAR_FOUND;
return cp;
}
/*
* Input sequence: cnv->toUBytes[0..length[
* @return if(U_FAILURE) return the length (toULength, byteIndex) for the input
* else return 0 after output has been written to the target
*/
static int8_t
_extToU(UConverter *cnv, const UConverterSharedData *sharedData,
int8_t length,
const uint8_t **source, const uint8_t *sourceLimit,
UChar **target, const UChar *targetLimit,
int32_t **offsets, int32_t sourceIndex,
UBool flush,
UErrorCode *pErrorCode) {
const int32_t *cx;
if( (cx=sharedData->mbcs.extIndexes)!=NULL &&
ucnv_extInitialMatchToU(
cnv, cx,
length, (const char **)source, (const char *)sourceLimit,
target, targetLimit,
offsets, sourceIndex,
flush,
pErrorCode)
) {
return 0; /* an extension mapping handled the input */
}
/* GB 18030 */
if(length==4 && (cnv->options&_MBCS_OPTION_GB18030)!=0) {
const uint32_t *range;
uint32_t linear;
int32_t i;
linear=LINEAR_18030(cnv->toUBytes[0], cnv->toUBytes[1], cnv->toUBytes[2], cnv->toUBytes[3]);
range=gb18030Ranges[0];
for(i=0; i<UPRV_LENGTHOF(gb18030Ranges); range+=4, ++i) {
if(range[2]<=linear && linear<=range[3]) {
/* found the sequence, output the Unicode code point for it */
*pErrorCode=U_ZERO_ERROR;
/* add the linear difference between the input and start sequences to the start code point */
linear=range[0]+(linear-range[2]);
/* output this code point */
ucnv_toUWriteCodePoint(cnv, linear, target, targetLimit, offsets, sourceIndex, pErrorCode);
return 0;
}
}
}
/* no mapping */
*pErrorCode=U_INVALID_CHAR_FOUND;
return length;
}
/* EBCDIC swap LF<->NL ------------------------------------------------------ */
/*
* This code modifies a standard EBCDIC<->Unicode mapping table for
* OS/390 (z/OS) Unix System Services (Open Edition).
* The difference is in the mapping of Line Feed and New Line control codes:
* Standard EBCDIC maps
*
* <U000A> \x25 |0
* <U0085> \x15 |0
*
* but OS/390 USS EBCDIC swaps the control codes for LF and NL,
* mapping
*
* <U000A> \x15 |0
* <U0085> \x25 |0
*
* This code modifies a loaded standard EBCDIC<->Unicode mapping table
* by copying it into allocated memory and swapping the LF and NL values.
* It allows to support the same EBCDIC charset in both versions without
* duplicating the entire installed table.
*/
/* standard EBCDIC codes */
#define EBCDIC_LF 0x25
#define EBCDIC_NL 0x15
/* standard EBCDIC codes with roundtrip flag as stored in Unicode-to-single-byte tables */
#define EBCDIC_RT_LF 0xf25
#define EBCDIC_RT_NL 0xf15
/* Unicode code points */
#define U_LF 0x0a
#define U_NL 0x85
static UBool
_EBCDICSwapLFNL(UConverterSharedData *sharedData, UErrorCode *pErrorCode) {
UConverterMBCSTable *mbcsTable;
const uint16_t *table, *results;
const uint8_t *bytes;
int32_t (*newStateTable)[256];
uint16_t *newResults;
uint8_t *p;
char *name;
uint32_t stage2Entry;
uint32_t size, sizeofFromUBytes;
mbcsTable=&sharedData->mbcs;
table=mbcsTable->fromUnicodeTable;
bytes=mbcsTable->fromUnicodeBytes;
results=(const uint16_t *)bytes;
/*
* Check that this is an EBCDIC table with SBCS portion -
* SBCS or EBCDIC_STATEFUL with standard EBCDIC LF and NL mappings.
*
* If not, ignore the option. Options are always ignored if they do not apply.
*/
if(!(
(mbcsTable->outputType==MBCS_OUTPUT_1 || mbcsTable->outputType==MBCS_OUTPUT_2_SISO) &&
mbcsTable->stateTable[0][EBCDIC_LF]==MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, U_LF) &&
mbcsTable->stateTable[0][EBCDIC_NL]==MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, U_NL)
)) {
2022-10-28 06:11:55 +00:00
return false;
}
if(mbcsTable->outputType==MBCS_OUTPUT_1) {
if(!(
EBCDIC_RT_LF==MBCS_SINGLE_RESULT_FROM_U(table, results, U_LF) &&
EBCDIC_RT_NL==MBCS_SINGLE_RESULT_FROM_U(table, results, U_NL)
)) {
2022-10-28 06:11:55 +00:00
return false;
}
} else /* MBCS_OUTPUT_2_SISO */ {
stage2Entry=MBCS_STAGE_2_FROM_U(table, U_LF);
if(!(
MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, U_LF)!=0 &&
EBCDIC_LF==MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, U_LF)
)) {
2022-10-28 06:11:55 +00:00
return false;
}
stage2Entry=MBCS_STAGE_2_FROM_U(table, U_NL);
if(!(
MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, U_NL)!=0 &&
EBCDIC_NL==MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, U_NL)
)) {
2022-10-28 06:11:55 +00:00
return false;
}
}
if(mbcsTable->fromUBytesLength>0) {
/*
* We _know_ the number of bytes in the fromUnicodeBytes array
* starting with header.version 4.1.
*/
sizeofFromUBytes=mbcsTable->fromUBytesLength;
} else {
/*
* Otherwise:
* There used to be code to enumerate the fromUnicode
* trie and find the highest entry, but it was removed in ICU 3.2
* because it was not tested and caused a low code coverage number.
* See Jitterbug 3674.
* This affects only some .cnv file formats with a header.version
* below 4.1, and only when swaplfnl is requested.
*
* ucnvmbcs.c revision 1.99 is the last one with the
* ucnv_MBCSSizeofFromUBytes() function.
*/
*pErrorCode=U_INVALID_FORMAT_ERROR;
2022-10-28 06:11:55 +00:00
return false;
}
/*
* The table has an appropriate format.
* Allocate and build
* - a modified to-Unicode state table
* - a modified from-Unicode output array
* - a converter name string with the swap option appended
*/
size=
mbcsTable->countStates*1024+
sizeofFromUBytes+
UCNV_MAX_CONVERTER_NAME_LENGTH+20;
p=(uint8_t *)uprv_malloc(size);
if(p==NULL) {
*pErrorCode=U_MEMORY_ALLOCATION_ERROR;
2022-10-28 06:11:55 +00:00
return false;
}
/* copy and modify the to-Unicode state table */
newStateTable=(int32_t (*)[256])p;
uprv_memcpy(newStateTable, mbcsTable->stateTable, mbcsTable->countStates*1024);
newStateTable[0][EBCDIC_LF]=MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, U_NL);
newStateTable[0][EBCDIC_NL]=MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, U_LF);
/* copy and modify the from-Unicode result table */
newResults=(uint16_t *)newStateTable[mbcsTable->countStates];
uprv_memcpy(newResults, bytes, sizeofFromUBytes);
/* conveniently, the table access macros work on the left side of expressions */
if(mbcsTable->outputType==MBCS_OUTPUT_1) {
MBCS_SINGLE_RESULT_FROM_U(table, newResults, U_LF)=EBCDIC_RT_NL;
MBCS_SINGLE_RESULT_FROM_U(table, newResults, U_NL)=EBCDIC_RT_LF;
} else /* MBCS_OUTPUT_2_SISO */ {
stage2Entry=MBCS_STAGE_2_FROM_U(table, U_LF);
MBCS_VALUE_2_FROM_STAGE_2(newResults, stage2Entry, U_LF)=EBCDIC_NL;
stage2Entry=MBCS_STAGE_2_FROM_U(table, U_NL);
MBCS_VALUE_2_FROM_STAGE_2(newResults, stage2Entry, U_NL)=EBCDIC_LF;
}
/* set the canonical converter name */
name=(char *)newResults+sizeofFromUBytes;
uprv_strcpy(name, sharedData->staticData->name);
uprv_strcat(name, UCNV_SWAP_LFNL_OPTION_STRING);
/* set the pointers */
icu::umtx_lock(NULL);
if(mbcsTable->swapLFNLStateTable==NULL) {
mbcsTable->swapLFNLStateTable=newStateTable;
mbcsTable->swapLFNLFromUnicodeBytes=(uint8_t *)newResults;
mbcsTable->swapLFNLName=name;
newStateTable=NULL;
}
icu::umtx_unlock(NULL);
/* release the allocated memory if another thread beat us to it */
if(newStateTable!=NULL) {
uprv_free(newStateTable);
}
2022-10-28 06:11:55 +00:00
return true;
}
/* reconstitute omitted fromUnicode data ------------------------------------ */
/* for details, compare with genmbcs.c MBCSAddFromUnicode() and transformEUC() */
static UBool U_CALLCONV
writeStage3Roundtrip(const void *context, uint32_t value, UChar32 codePoints[32]) {
UConverterMBCSTable *mbcsTable=(UConverterMBCSTable *)context;
const uint16_t *table;
uint32_t *stage2;
uint8_t *bytes, *p;
UChar32 c;
int32_t i, st3;
table=mbcsTable->fromUnicodeTable;
bytes=(uint8_t *)mbcsTable->fromUnicodeBytes;
/* for EUC outputTypes, modify the value like genmbcs.c's transformEUC() */
switch(mbcsTable->outputType) {
case MBCS_OUTPUT_3_EUC:
if(value<=0xffff) {
/* short sequences are stored directly */
/* code set 0 or 1 */
} else if(value<=0x8effff) {
/* code set 2 */
value&=0x7fff;
} else /* first byte is 0x8f */ {
/* code set 3 */
value&=0xff7f;
}
break;
case MBCS_OUTPUT_4_EUC:
if(value<=0xffffff) {
/* short sequences are stored directly */
/* code set 0 or 1 */
} else if(value<=0x8effffff) {
/* code set 2 */
value&=0x7fffff;
} else /* first byte is 0x8f */ {
/* code set 3 */
value&=0xff7fff;
}
break;
default:
break;
}
for(i=0; i<=0x1f; ++value, ++i) {
c=codePoints[i];
if(c<0) {
continue;
}
/* locate the stage 2 & 3 data */
stage2=((uint32_t *)table)+table[c>>10]+((c>>4)&0x3f);
p=bytes;
st3=(int32_t)(uint16_t)*stage2*16+(c&0xf);
/* write the codepage bytes into stage 3 */
switch(mbcsTable->outputType) {
case MBCS_OUTPUT_3:
case MBCS_OUTPUT_4_EUC:
p+=st3*3;
p[0]=(uint8_t)(value>>16);
p[1]=(uint8_t)(value>>8);
p[2]=(uint8_t)value;
break;
case MBCS_OUTPUT_4:
((uint32_t *)p)[st3]=value;
break;
default:
/* 2 bytes per character */
((uint16_t *)p)[st3]=(uint16_t)value;
break;
}
/* set the roundtrip flag */
*stage2|=(1UL<<(16+(c&0xf)));
}
2022-10-28 06:11:55 +00:00
return true;
}
static void
reconstituteData(UConverterMBCSTable *mbcsTable,
uint32_t stage1Length, uint32_t stage2Length,
uint32_t fullStage2Length, /* lengths are numbers of units, not bytes */
UErrorCode *pErrorCode) {
uint16_t *stage1;
uint32_t *stage2;
uint32_t dataLength=stage1Length*2+fullStage2Length*4+mbcsTable->fromUBytesLength;
mbcsTable->reconstitutedData=(uint8_t *)uprv_malloc(dataLength);
if(mbcsTable->reconstitutedData==NULL) {
*pErrorCode=U_MEMORY_ALLOCATION_ERROR;
return;
}
uprv_memset(mbcsTable->reconstitutedData, 0, dataLength);
/* copy existing data and reroute the pointers */
stage1=(uint16_t *)mbcsTable->reconstitutedData;
uprv_memcpy(stage1, mbcsTable->fromUnicodeTable, stage1Length*2);
stage2=(uint32_t *)(stage1+stage1Length);
uprv_memcpy(stage2+(fullStage2Length-stage2Length),
mbcsTable->fromUnicodeTable+stage1Length,
stage2Length*4);
mbcsTable->fromUnicodeTable=stage1;
mbcsTable->fromUnicodeBytes=(uint8_t *)(stage2+fullStage2Length);
/* indexes into stage 2 count from the bottom of the fromUnicodeTable */
stage2=(uint32_t *)stage1;
/* reconstitute the initial part of stage 2 from the mbcsIndex */
{
int32_t stageUTF8Length=((int32_t)mbcsTable->maxFastUChar+1)>>6;
int32_t stageUTF8Index=0;
int32_t st1, st2, st3, i;
for(st1=0; stageUTF8Index<stageUTF8Length; ++st1) {
st2=stage1[st1];
if(st2!=(int32_t)stage1Length/2) {
/* each stage 2 block has 64 entries corresponding to 16 entries in the mbcsIndex */
for(i=0; i<16; ++i) {
st3=mbcsTable->mbcsIndex[stageUTF8Index++];
if(st3!=0) {
/* an stage 2 entry's index is per stage 3 16-block, not per stage 3 entry */
st3>>=4;
/*
* 4 stage 2 entries point to 4 consecutive stage 3 16-blocks which are
* allocated together as a single 64-block for access from the mbcsIndex
*/
stage2[st2++]=st3++;
stage2[st2++]=st3++;
stage2[st2++]=st3++;
stage2[st2++]=st3;
} else {
/* no stage 3 block, skip */
st2+=4;
}
}
} else {
/* no stage 2 block, skip */
stageUTF8Index+=16;
}
}
}
/* reconstitute fromUnicodeBytes with roundtrips from toUnicode data */
ucnv_MBCSEnumToUnicode(mbcsTable, writeStage3Roundtrip, mbcsTable, pErrorCode);
}
/* MBCS setup functions ----------------------------------------------------- */
static void U_CALLCONV
ucnv_MBCSLoad(UConverterSharedData *sharedData,
UConverterLoadArgs *pArgs,
const uint8_t *raw,
UErrorCode *pErrorCode) {
UDataInfo info;
UConverterMBCSTable *mbcsTable=&sharedData->mbcs;
_MBCSHeader *header=(_MBCSHeader *)raw;
uint32_t offset;
uint32_t headerLength;
2022-10-28 06:11:55 +00:00
UBool noFromU=false;
if(header->version[0]==4) {
headerLength=MBCS_HEADER_V4_LENGTH;
} else if(header->version[0]==5 && header->version[1]>=3 &&
(header->options&MBCS_OPT_UNKNOWN_INCOMPATIBLE_MASK)==0) {
headerLength=header->options&MBCS_OPT_LENGTH_MASK;
noFromU=(UBool)((header->options&MBCS_OPT_NO_FROM_U)!=0);
} else {
*pErrorCode=U_INVALID_TABLE_FORMAT;
return;
}
mbcsTable->outputType=(uint8_t)header->flags;
if(noFromU && mbcsTable->outputType==MBCS_OUTPUT_1) {
*pErrorCode=U_INVALID_TABLE_FORMAT;
return;
}
/* extension data, header version 4.2 and higher */
offset=header->flags>>8;
if(offset!=0) {
mbcsTable->extIndexes=(const int32_t *)(raw+offset);
}
if(mbcsTable->outputType==MBCS_OUTPUT_EXT_ONLY) {
UConverterLoadArgs args=UCNV_LOAD_ARGS_INITIALIZER;
UConverterSharedData *baseSharedData;
const int32_t *extIndexes;
const char *baseName;
/* extension-only file, load the base table and set values appropriately */
if((extIndexes=mbcsTable->extIndexes)==NULL) {
/* extension-only file without extension */
*pErrorCode=U_INVALID_TABLE_FORMAT;
return;
}
if(pArgs->nestedLoads!=1) {
/* an extension table must not be loaded as a base table */
*pErrorCode=U_INVALID_TABLE_FILE;
return;
}
/* load the base table */
baseName=(const char *)header+headerLength*4;
if(0==uprv_strcmp(baseName, sharedData->staticData->name)) {
/* forbid loading this same extension-only file */
*pErrorCode=U_INVALID_TABLE_FORMAT;
return;
}
/* TODO parse package name out of the prefix of the base name in the extension .cnv file? */
args.size=sizeof(UConverterLoadArgs);
args.nestedLoads=2;
args.onlyTestIsLoadable=pArgs->onlyTestIsLoadable;
args.reserved=pArgs->reserved;
args.options=pArgs->options;
args.pkg=pArgs->pkg;
args.name=baseName;
baseSharedData=ucnv_load(&args, pErrorCode);
if(U_FAILURE(*pErrorCode)) {
return;
}
if( baseSharedData->staticData->conversionType!=UCNV_MBCS ||
baseSharedData->mbcs.baseSharedData!=NULL
) {
ucnv_unload(baseSharedData);
*pErrorCode=U_INVALID_TABLE_FORMAT;
return;
}
if(pArgs->onlyTestIsLoadable) {
/*
* Exit as soon as we know that we can load the converter
* and the format is valid and supported.
* The worst that can happen in the following code is a memory
* allocation error.
*/
ucnv_unload(baseSharedData);
return;
}
/* copy the base table data */
uprv_memcpy(mbcsTable, &baseSharedData->mbcs, sizeof(UConverterMBCSTable));
/* overwrite values with relevant ones for the extension converter */
mbcsTable->baseSharedData=baseSharedData;
mbcsTable->extIndexes=extIndexes;
/*
* It would be possible to share the swapLFNL data with a base converter,
* but the generated name would have to be different, and the memory
* would have to be free'd only once.
* It is easier to just create the data for the extension converter
* separately when it is requested.
*/
mbcsTable->swapLFNLStateTable=NULL;
mbcsTable->swapLFNLFromUnicodeBytes=NULL;
mbcsTable->swapLFNLName=NULL;
/*
* The reconstitutedData must be deleted only when the base converter
* is unloaded.
*/
mbcsTable->reconstitutedData=NULL;
/*
* Set a special, runtime-only outputType if the extension converter
* is a DBCS version of a base converter that also maps single bytes.
*/
if( sharedData->staticData->conversionType==UCNV_DBCS ||
(sharedData->staticData->conversionType==UCNV_MBCS &&
sharedData->staticData->minBytesPerChar>=2)
) {
if(baseSharedData->mbcs.outputType==MBCS_OUTPUT_2_SISO) {
/* the base converter is SI/SO-stateful */
int32_t entry;
/* get the dbcs state from the state table entry for SO=0x0e */
entry=mbcsTable->stateTable[0][0xe];
if( MBCS_ENTRY_IS_FINAL(entry) &&
MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_CHANGE_ONLY &&
MBCS_ENTRY_FINAL_STATE(entry)!=0
) {
mbcsTable->dbcsOnlyState=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry);
mbcsTable->outputType=MBCS_OUTPUT_DBCS_ONLY;
}
} else if(
baseSharedData->staticData->conversionType==UCNV_MBCS &&
baseSharedData->staticData->minBytesPerChar==1 &&
baseSharedData->staticData->maxBytesPerChar==2 &&
mbcsTable->countStates<=127
) {
/* non-stateful base converter, need to modify the state table */
int32_t (*newStateTable)[256];
int32_t *state;
int32_t i, count;
/* allocate a new state table and copy the base state table contents */
count=mbcsTable->countStates;
newStateTable=(int32_t (*)[256])uprv_malloc((count+1)*1024);
if(newStateTable==NULL) {
ucnv_unload(baseSharedData);
*pErrorCode=U_MEMORY_ALLOCATION_ERROR;
return;
}
uprv_memcpy(newStateTable, mbcsTable->stateTable, count*1024);
/* change all final single-byte entries to go to a new all-illegal state */
state=newStateTable[0];
for(i=0; i<256; ++i) {
if(MBCS_ENTRY_IS_FINAL(state[i])) {
state[i]=MBCS_ENTRY_TRANSITION(count, 0);
}
}
/* build the new all-illegal state */
state=newStateTable[count];
for(i=0; i<256; ++i) {
state[i]=MBCS_ENTRY_FINAL(0, MBCS_STATE_ILLEGAL, 0);
}
mbcsTable->stateTable=(const int32_t (*)[256])newStateTable;
mbcsTable->countStates=(uint8_t)(count+1);
2022-10-28 06:11:55 +00:00
mbcsTable->stateTableOwned=true;
mbcsTable->outputType=MBCS_OUTPUT_DBCS_ONLY;
}
}
/*
* unlike below for files with base tables, do not get the unicodeMask
* from the sharedData; instead, use the base table's unicodeMask,
* which we copied in the memcpy above;
* this is necessary because the static data unicodeMask, especially
* the UCNV_HAS_SUPPLEMENTARY flag, is part of the base table data
*/
} else {
/* conversion file with a base table; an additional extension table is optional */
/* make sure that the output type is known */
switch(mbcsTable->outputType) {
case MBCS_OUTPUT_1:
case MBCS_OUTPUT_2:
case MBCS_OUTPUT_3:
case MBCS_OUTPUT_4:
case MBCS_OUTPUT_3_EUC:
case MBCS_OUTPUT_4_EUC:
case MBCS_OUTPUT_2_SISO:
/* OK */
break;
default:
*pErrorCode=U_INVALID_TABLE_FORMAT;
return;
}
if(pArgs->onlyTestIsLoadable) {
/*
* Exit as soon as we know that we can load the converter
* and the format is valid and supported.
* The worst that can happen in the following code is a memory
* allocation error.
*/
return;
}
mbcsTable->countStates=(uint8_t)header->countStates;
mbcsTable->countToUFallbacks=header->countToUFallbacks;
mbcsTable->stateTable=(const int32_t (*)[256])(raw+headerLength*4);
mbcsTable->toUFallbacks=(const _MBCSToUFallback *)(mbcsTable->stateTable+header->countStates);
mbcsTable->unicodeCodeUnits=(const uint16_t *)(raw+header->offsetToUCodeUnits);
mbcsTable->fromUnicodeTable=(const uint16_t *)(raw+header->offsetFromUTable);
mbcsTable->fromUnicodeBytes=(const uint8_t *)(raw+header->offsetFromUBytes);
mbcsTable->fromUBytesLength=header->fromUBytesLength;
/*
* converter versions 6.1 and up contain a unicodeMask that is
* used here to select the most efficient function implementations
*/
info.size=sizeof(UDataInfo);
udata_getInfo((UDataMemory *)sharedData->dataMemory, &info);
if(info.formatVersion[0]>6 || (info.formatVersion[0]==6 && info.formatVersion[1]>=1)) {
/* mask off possible future extensions to be safe */
mbcsTable->unicodeMask=(uint8_t)(sharedData->staticData->unicodeMask&3);
} else {
/* for older versions, assume worst case: contains anything possible (prevent over-optimizations) */
mbcsTable->unicodeMask=UCNV_HAS_SUPPLEMENTARY|UCNV_HAS_SURROGATES;
}
/*
* _MBCSHeader.version 4.3 adds utf8Friendly data structures.
* Check for the header version, SBCS vs. MBCS, and for whether the
* data structures are optimized for code points as high as what the
* runtime code is designed for.
* The implementation does not handle mapping tables with entries for
* unpaired surrogates.
*/
if( header->version[1]>=3 &&
(mbcsTable->unicodeMask&UCNV_HAS_SURROGATES)==0 &&
(mbcsTable->countStates==1 ?
(header->version[2]>=(SBCS_FAST_MAX>>8)) :
(header->version[2]>=(MBCS_FAST_MAX>>8))
)
) {
2022-10-28 06:11:55 +00:00
mbcsTable->utf8Friendly=true;
if(mbcsTable->countStates==1) {
/*
* SBCS: Stage 3 is allocated in 64-entry blocks for U+0000..SBCS_FAST_MAX or higher.
* Build a table with indexes to each block, to be used instead of
* the regular stage 1/2 table.
*/
int32_t i;
for(i=0; i<(SBCS_FAST_LIMIT>>6); ++i) {
mbcsTable->sbcsIndex[i]=mbcsTable->fromUnicodeTable[mbcsTable->fromUnicodeTable[i>>4]+((i<<2)&0x3c)];
}
/* set SBCS_FAST_MAX to reflect the reach of sbcsIndex[] even if header->version[2]>(SBCS_FAST_MAX>>8) */
mbcsTable->maxFastUChar=SBCS_FAST_MAX;
} else {
/*
* MBCS: Stage 3 is allocated in 64-entry blocks for U+0000..MBCS_FAST_MAX or higher.
* The .cnv file is prebuilt with an additional stage table with indexes
* to each block.
*/
mbcsTable->mbcsIndex=(const uint16_t *)
(mbcsTable->fromUnicodeBytes+
(noFromU ? 0 : mbcsTable->fromUBytesLength));
mbcsTable->maxFastUChar=(((UChar)header->version[2])<<8)|0xff;
}
}
/* calculate a bit set of 4 ASCII characters per bit that round-trip to ASCII bytes */
{
uint32_t asciiRoundtrips=0xffffffff;
int32_t i;
for(i=0; i<0x80; ++i) {
if(mbcsTable->stateTable[0][i]!=MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, i)) {
asciiRoundtrips&=~((uint32_t)1<<(i>>2));
}
}
mbcsTable->asciiRoundtrips=asciiRoundtrips;
}
if(noFromU) {
uint32_t stage1Length=
mbcsTable->unicodeMask&UCNV_HAS_SUPPLEMENTARY ?
0x440 : 0x40;
uint32_t stage2Length=
(header->offsetFromUBytes-header->offsetFromUTable)/4-
stage1Length/2;
reconstituteData(mbcsTable, stage1Length, stage2Length, header->fullStage2Length, pErrorCode);
}
}
/* Set the impl pointer here so that it is set for both extension-only and base tables. */
if(mbcsTable->utf8Friendly) {
if(mbcsTable->countStates==1) {
sharedData->impl=&_SBCSUTF8Impl;
} else {
if(mbcsTable->outputType==MBCS_OUTPUT_2) {
sharedData->impl=&_DBCSUTF8Impl;
}
}
}
if(mbcsTable->outputType==MBCS_OUTPUT_DBCS_ONLY || mbcsTable->outputType==MBCS_OUTPUT_2_SISO) {
/*
* MBCS_OUTPUT_DBCS_ONLY: No SBCS mappings, therefore ASCII does not roundtrip.
* MBCS_OUTPUT_2_SISO: Bypass the ASCII fastpath to handle prevLength correctly.
*/
mbcsTable->asciiRoundtrips=0;
}
}
static void U_CALLCONV
ucnv_MBCSUnload(UConverterSharedData *sharedData) {
UConverterMBCSTable *mbcsTable=&sharedData->mbcs;
if(mbcsTable->swapLFNLStateTable!=NULL) {
uprv_free(mbcsTable->swapLFNLStateTable);
}
if(mbcsTable->stateTableOwned) {
uprv_free((void *)mbcsTable->stateTable);
}
if(mbcsTable->baseSharedData!=NULL) {
ucnv_unload(mbcsTable->baseSharedData);
}
if(mbcsTable->reconstitutedData!=NULL) {
uprv_free(mbcsTable->reconstitutedData);
}
}
static void U_CALLCONV
ucnv_MBCSOpen(UConverter *cnv,
UConverterLoadArgs *pArgs,
UErrorCode *pErrorCode) {
UConverterMBCSTable *mbcsTable;
const int32_t *extIndexes;
uint8_t outputType;
int8_t maxBytesPerUChar;
if(pArgs->onlyTestIsLoadable) {
return;
}
mbcsTable=&cnv->sharedData->mbcs;
outputType=mbcsTable->outputType;
if(outputType==MBCS_OUTPUT_DBCS_ONLY) {
/* the swaplfnl option does not apply, remove it */
cnv->options=pArgs->options&=~UCNV_OPTION_SWAP_LFNL;
}
if((pArgs->options&UCNV_OPTION_SWAP_LFNL)!=0) {
/* do this because double-checked locking is broken */
UBool isCached;
icu::umtx_lock(NULL);
isCached=mbcsTable->swapLFNLStateTable!=NULL;
icu::umtx_unlock(NULL);
if(!isCached) {
if(!_EBCDICSwapLFNL(cnv->sharedData, pErrorCode)) {
if(U_FAILURE(*pErrorCode)) {
return; /* something went wrong */
}
/* the option does not apply, remove it */
cnv->options=pArgs->options&=~UCNV_OPTION_SWAP_LFNL;
}
}
}
if(uprv_strstr(pArgs->name, "18030")!=NULL) {
if(uprv_strstr(pArgs->name, "gb18030")!=NULL || uprv_strstr(pArgs->name, "GB18030")!=NULL) {
/* set a flag for GB 18030 mode, which changes the callback behavior */
cnv->options|=_MBCS_OPTION_GB18030;
}
} else if((uprv_strstr(pArgs->name, "KEIS")!=NULL) || (uprv_strstr(pArgs->name, "keis")!=NULL)) {
/* set a flag for KEIS converter, which changes the SI/SO character sequence */
cnv->options|=_MBCS_OPTION_KEIS;
} else if((uprv_strstr(pArgs->name, "JEF")!=NULL) || (uprv_strstr(pArgs->name, "jef")!=NULL)) {
/* set a flag for JEF converter, which changes the SI/SO character sequence */
cnv->options|=_MBCS_OPTION_JEF;
} else if((uprv_strstr(pArgs->name, "JIPS")!=NULL) || (uprv_strstr(pArgs->name, "jips")!=NULL)) {
/* set a flag for JIPS converter, which changes the SI/SO character sequence */
cnv->options|=_MBCS_OPTION_JIPS;
}
/* fix maxBytesPerUChar depending on outputType and options etc. */
if(outputType==MBCS_OUTPUT_2_SISO) {
cnv->maxBytesPerUChar=3; /* SO+DBCS */
}
extIndexes=mbcsTable->extIndexes;
if(extIndexes!=NULL) {
maxBytesPerUChar=(int8_t)UCNV_GET_MAX_BYTES_PER_UCHAR(extIndexes);
if(outputType==MBCS_OUTPUT_2_SISO) {
++maxBytesPerUChar; /* SO + multiple DBCS */
}
if(maxBytesPerUChar>cnv->maxBytesPerUChar) {
cnv->maxBytesPerUChar=maxBytesPerUChar;
}
}
#if 0
/*
* documentation of UConverter fields used for status
* all of these fields are (re)set to 0 by ucnv_bld.c and ucnv_reset()
*/
/* toUnicode */
cnv->toUnicodeStatus=0; /* offset */
cnv->mode=0; /* state */
cnv->toULength=0; /* byteIndex */
/* fromUnicode */
cnv->fromUChar32=0;
cnv->fromUnicodeStatus=1; /* prevLength */
#endif
}
U_CDECL_BEGIN
static const char* U_CALLCONV
ucnv_MBCSGetName(const UConverter *cnv) {
if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0 && cnv->sharedData->mbcs.swapLFNLName!=NULL) {
return cnv->sharedData->mbcs.swapLFNLName;
} else {
return cnv->sharedData->staticData->name;
}
}
U_CDECL_END
/* MBCS-to-Unicode conversion functions ------------------------------------- */
static UChar32 U_CALLCONV
ucnv_MBCSGetFallback(UConverterMBCSTable *mbcsTable, uint32_t offset) {
const _MBCSToUFallback *toUFallbacks;
uint32_t i, start, limit;
limit=mbcsTable->countToUFallbacks;
if(limit>0) {
/* do a binary search for the fallback mapping */
toUFallbacks=mbcsTable->toUFallbacks;
start=0;
while(start<limit-1) {
i=(start+limit)/2;
if(offset<toUFallbacks[i].offset) {
limit=i;
} else {
start=i;
}
}
/* did we really find it? */
if(offset==toUFallbacks[start].offset) {
return toUFallbacks[start].codePoint;
}
}
return 0xfffe;
}
/* This version of ucnv_MBCSToUnicodeWithOffsets() is optimized for single-byte, single-state codepages. */
static void
ucnv_MBCSSingleToUnicodeWithOffsets(UConverterToUnicodeArgs *pArgs,
UErrorCode *pErrorCode) {
UConverter *cnv;
const uint8_t *source, *sourceLimit;
UChar *target;
const UChar *targetLimit;
int32_t *offsets;
const int32_t (*stateTable)[256];
int32_t sourceIndex;
int32_t entry;
UChar c;
uint8_t action;
/* set up the local pointers */
cnv=pArgs->converter;
source=(const uint8_t *)pArgs->source;
sourceLimit=(const uint8_t *)pArgs->sourceLimit;
target=pArgs->target;
targetLimit=pArgs->targetLimit;
offsets=pArgs->offsets;
if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable;
} else {
stateTable=cnv->sharedData->mbcs.stateTable;
}
/* sourceIndex=-1 if the current character began in the previous buffer */
sourceIndex=0;
/* conversion loop */
while(source<sourceLimit) {
/*
* This following test is to see if available input would overflow the output.
* It does not catch output of more than one code unit that
* overflows as a result of a surrogate pair or callback output
* from the last source byte.
* Therefore, those situations also test for overflows and will
* then break the loop, too.
*/
if(target>=targetLimit) {
/* target is full */
*pErrorCode=U_BUFFER_OVERFLOW_ERROR;
break;
}
entry=stateTable[0][*source++];
/* MBCS_ENTRY_IS_FINAL(entry) */
/* test the most common case first */
if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) {
/* output BMP code point */
*target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
if(offsets!=NULL) {
*offsets++=sourceIndex;
}
/* normal end of action codes: prepare for a new character */
++sourceIndex;
continue;
}
/*
* An if-else-if chain provides more reliable performance for
* the most common cases compared to a switch.
*/
action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
if(action==MBCS_STATE_VALID_DIRECT_20 ||
(action==MBCS_STATE_FALLBACK_DIRECT_20 && UCNV_TO_U_USE_FALLBACK(cnv))
) {
entry=MBCS_ENTRY_FINAL_VALUE(entry);
/* output surrogate pair */
*target++=(UChar)(0xd800|(UChar)(entry>>10));
if(offsets!=NULL) {
*offsets++=sourceIndex;
}
c=(UChar)(0xdc00|(UChar)(entry&0x3ff));
if(target<targetLimit) {
*target++=c;
if(offsets!=NULL) {
*offsets++=sourceIndex;
}
} else {
/* target overflow */
cnv->UCharErrorBuffer[0]=c;
cnv->UCharErrorBufferLength=1;
*pErrorCode=U_BUFFER_OVERFLOW_ERROR;
break;
}
++sourceIndex;
continue;
} else if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
if(UCNV_TO_U_USE_FALLBACK(cnv)) {
/* output BMP code point */
*target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
if(offsets!=NULL) {
*offsets++=sourceIndex;
}
++sourceIndex;
continue;
}
} else if(action==MBCS_STATE_UNASSIGNED) {
/* just fall through */
} else if(action==MBCS_STATE_ILLEGAL) {
/* callback(illegal) */
*pErrorCode=U_ILLEGAL_CHAR_FOUND;
} else {
/* reserved, must never occur */
++sourceIndex;
continue;
}
if(U_FAILURE(*pErrorCode)) {
/* callback(illegal) */
break;
} else /* unassigned sequences indicated with byteIndex>0 */ {
/* try an extension mapping */
pArgs->source=(const char *)source;
cnv->toUBytes[0]=*(source-1);
cnv->toULength=_extToU(cnv, cnv->sharedData,
1, &source, sourceLimit,
&target, targetLimit,
&offsets, sourceIndex,
pArgs->flush,
pErrorCode);
sourceIndex+=1+(int32_t)(source-(const uint8_t *)pArgs->source);
if(U_FAILURE(*pErrorCode)) {
/* not mappable or buffer overflow */
break;
}
}
}
/* write back the updated pointers */
pArgs->source=(const char *)source;
pArgs->target=target;
pArgs->offsets=offsets;
}
/*
* This version of ucnv_MBCSSingleToUnicodeWithOffsets() is optimized for single-byte, single-state codepages
* that only map to and from the BMP.
* In addition to single-byte optimizations, the offset calculations
* become much easier.
*/
static void
ucnv_MBCSSingleToBMPWithOffsets(UConverterToUnicodeArgs *pArgs,
UErrorCode *pErrorCode) {
UConverter *cnv;
const uint8_t *source, *sourceLimit, *lastSource;
UChar *target;
int32_t targetCapacity, length;
int32_t *offsets;
const int32_t (*stateTable)[256];
int32_t sourceIndex;
int32_t entry;
uint8_t action;
/* set up the local pointers */
cnv=pArgs->converter;
source=(const uint8_t *)pArgs->source;
sourceLimit=(const uint8_t *)pArgs->sourceLimit;
target=pArgs->target;
targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target);
offsets=pArgs->offsets;
if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable;
} else {
stateTable=cnv->sharedData->mbcs.stateTable;
}
/* sourceIndex=-1 if the current character began in the previous buffer */
sourceIndex=0;
lastSource=source;
/*
* since the conversion here is 1:1 UChar:uint8_t, we need only one counter
* for the minimum of the sourceLength and targetCapacity
*/
length=(int32_t)(sourceLimit-source);
if(length<targetCapacity) {
targetCapacity=length;
}
#if MBCS_UNROLL_SINGLE_TO_BMP
/* unrolling makes it faster on Pentium III/Windows 2000 */
/* unroll the loop with the most common case */
unrolled:
if(targetCapacity>=16) {
int32_t count, loops, oredEntries;
loops=count=targetCapacity>>4;
do {
oredEntries=entry=stateTable[0][*source++];
*target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
oredEntries|=entry=stateTable[0][*source++];
*target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
oredEntries|=entry=stateTable[0][*source++];
*target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
oredEntries|=entry=stateTable[0][*source++];
*target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
oredEntries|=entry=stateTable[0][*source++];
*target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
oredEntries|=entry=stateTable[0][*source++];
*target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
oredEntries|=entry=stateTable[0][*source++];
*target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
oredEntries|=entry=stateTable[0][*source++];
*target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
oredEntries|=entry=stateTable[0][*source++];
*target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
oredEntries|=entry=stateTable[0][*source++];
*target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
oredEntries|=entry=stateTable[0][*source++];
*target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
oredEntries|=entry=stateTable[0][*source++];
*target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
oredEntries|=entry=stateTable[0][*source++];
*target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
oredEntries|=entry=stateTable[0][*source++];
*target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
oredEntries|=entry=stateTable[0][*source++];
*target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
oredEntries|=entry=stateTable[0][*source++];
*target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
/* were all 16 entries really valid? */
if(!MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(oredEntries)) {
/* no, return to the first of these 16 */
source-=16;
target-=16;
break;
}
} while(--count>0);
count=loops-count;
targetCapacity-=16*count;
if(offsets!=NULL) {
lastSource+=16*count;
while(count>0) {
*offsets++=sourceIndex++;
*offsets++=sourceIndex++;
*offsets++=sourceIndex++;
*offsets++=sourceIndex++;
*offsets++=sourceIndex++;
*offsets++=sourceIndex++;
*offsets++=sourceIndex++;
*offsets++=sourceIndex++;
*offsets++=sourceIndex++;
*offsets++=sourceIndex++;
*offsets++=sourceIndex++;
*offsets++=sourceIndex++;
*offsets++=sourceIndex++;
*offsets++=sourceIndex++;
*offsets++=sourceIndex++;
*offsets++=sourceIndex++;
--count;
}
}
}
#endif
/* conversion loop */
while(targetCapacity > 0 && source < sourceLimit) {
entry=stateTable[0][*source++];
/* MBCS_ENTRY_IS_FINAL(entry) */
/* test the most common case first */
if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) {
/* output BMP code point */
*target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
--targetCapacity;
continue;
}
/*
* An if-else-if chain provides more reliable performance for
* the most common cases compared to a switch.
*/
action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
if(UCNV_TO_U_USE_FALLBACK(cnv)) {
/* output BMP code point */
*target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
--targetCapacity;
continue;
}
} else if(action==MBCS_STATE_UNASSIGNED) {
/* just fall through */
} else if(action==MBCS_STATE_ILLEGAL) {
/* callback(illegal) */
*pErrorCode=U_ILLEGAL_CHAR_FOUND;
} else {
/* reserved, must never occur */
continue;
}
/* set offsets since the start or the last extension */
if(offsets!=NULL) {
int32_t count=(int32_t)(source-lastSource);
/* predecrement: do not set the offset for the callback-causing character */
while(--count>0) {
*offsets++=sourceIndex++;
}
/* offset and sourceIndex are now set for the current character */
}
if(U_FAILURE(*pErrorCode)) {
/* callback(illegal) */
break;
} else /* unassigned sequences indicated with byteIndex>0 */ {
/* try an extension mapping */
lastSource=source;
cnv->toUBytes[0]=*(source-1);
cnv->toULength=_extToU(cnv, cnv->sharedData,
1, &source, sourceLimit,
&target, pArgs->targetLimit,
&offsets, sourceIndex,
pArgs->flush,
pErrorCode);
sourceIndex+=1+(int32_t)(source-lastSource);
if(U_FAILURE(*pErrorCode)) {
/* not mappable or buffer overflow */
break;
}
/* recalculate the targetCapacity after an extension mapping */
targetCapacity=(int32_t)(pArgs->targetLimit-target);
length=(int32_t)(sourceLimit-source);
if(length<targetCapacity) {
targetCapacity=length;
}
}
#if MBCS_UNROLL_SINGLE_TO_BMP
/* unrolling makes it faster on Pentium III/Windows 2000 */
goto unrolled;
#endif
}
if(U_SUCCESS(*pErrorCode) && source<sourceLimit && target>=pArgs->targetLimit) {
/* target is full */
*pErrorCode=U_BUFFER_OVERFLOW_ERROR;
}
/* set offsets since the start or the last callback */
if(offsets!=NULL) {
size_t count=source-lastSource;
while(count>0) {
*offsets++=sourceIndex++;
--count;
}
}
/* write back the updated pointers */
pArgs->source=(const char *)source;
pArgs->target=target;
pArgs->offsets=offsets;
}
static UBool
hasValidTrailBytes(const int32_t (*stateTable)[256], uint8_t state) {
const int32_t *row=stateTable[state];
int32_t b, entry;
/* First test for final entries in this state for some commonly valid byte values. */
entry=row[0xa1];
if( !MBCS_ENTRY_IS_TRANSITION(entry) &&
MBCS_ENTRY_FINAL_ACTION(entry)!=MBCS_STATE_ILLEGAL
) {
2022-10-28 06:11:55 +00:00
return true;
}
entry=row[0x41];
if( !MBCS_ENTRY_IS_TRANSITION(entry) &&
MBCS_ENTRY_FINAL_ACTION(entry)!=MBCS_STATE_ILLEGAL
) {
2022-10-28 06:11:55 +00:00
return true;
}
/* Then test for final entries in this state. */
for(b=0; b<=0xff; ++b) {
entry=row[b];
if( !MBCS_ENTRY_IS_TRANSITION(entry) &&
MBCS_ENTRY_FINAL_ACTION(entry)!=MBCS_STATE_ILLEGAL
) {
2022-10-28 06:11:55 +00:00
return true;
}
}
/* Then recurse for transition entries. */
for(b=0; b<=0xff; ++b) {
entry=row[b];
if( MBCS_ENTRY_IS_TRANSITION(entry) &&
hasValidTrailBytes(stateTable, (uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry))
) {
2022-10-28 06:11:55 +00:00
return true;
}
}
2022-10-28 06:11:55 +00:00
return false;
}
/*
* Is byte b a single/lead byte in this state?
* Recurse for transition states, because here we don't want to say that
* b is a lead byte if all byte sequences that start with b are illegal.
*/
static UBool
isSingleOrLead(const int32_t (*stateTable)[256], uint8_t state, UBool isDBCSOnly, uint8_t b) {
const int32_t *row=stateTable[state];
int32_t entry=row[b];
if(MBCS_ENTRY_IS_TRANSITION(entry)) { /* lead byte */
return hasValidTrailBytes(stateTable, (uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry));
} else {
uint8_t action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
if(action==MBCS_STATE_CHANGE_ONLY && isDBCSOnly) {
2022-10-28 06:11:55 +00:00
return false; /* SI/SO are illegal for DBCS-only conversion */
} else {
return action!=MBCS_STATE_ILLEGAL;
}
}
}
U_CFUNC void
ucnv_MBCSToUnicodeWithOffsets(UConverterToUnicodeArgs *pArgs,
UErrorCode *pErrorCode) {
UConverter *cnv;
const uint8_t *source, *sourceLimit;
UChar *target;
const UChar *targetLimit;
int32_t *offsets;
const int32_t (*stateTable)[256];
const uint16_t *unicodeCodeUnits;
uint32_t offset;
uint8_t state;
int8_t byteIndex;
uint8_t *bytes;
int32_t sourceIndex, nextSourceIndex;
int32_t entry;
UChar c;
uint8_t action;
/* use optimized function if possible */
cnv=pArgs->converter;
if(cnv->preToULength>0) {
/*
* pass sourceIndex=-1 because we continue from an earlier buffer
* in the future, this may change with continuous offsets
*/
ucnv_extContinueMatchToU(cnv, pArgs, -1, pErrorCode);
if(U_FAILURE(*pErrorCode) || cnv->preToULength<0) {
return;
}
}
if(cnv->sharedData->mbcs.countStates==1) {
if(!(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY)) {
ucnv_MBCSSingleToBMPWithOffsets(pArgs, pErrorCode);
} else {
ucnv_MBCSSingleToUnicodeWithOffsets(pArgs, pErrorCode);
}
return;
}
/* set up the local pointers */
source=(const uint8_t *)pArgs->source;
sourceLimit=(const uint8_t *)pArgs->sourceLimit;
target=pArgs->target;
targetLimit=pArgs->targetLimit;
offsets=pArgs->offsets;
if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable;
} else {
stateTable=cnv->sharedData->mbcs.stateTable;
}
unicodeCodeUnits=cnv->sharedData->mbcs.unicodeCodeUnits;
/* get the converter state from UConverter */
offset=cnv->toUnicodeStatus;
byteIndex=cnv->toULength;
bytes=cnv->toUBytes;
/*
* if we are in the SBCS state for a DBCS-only converter,
* then load the DBCS state from the MBCS data
* (dbcsOnlyState==0 if it is not a DBCS-only converter)
*/
if((state=(uint8_t)(cnv->mode))==0) {
state=cnv->sharedData->mbcs.dbcsOnlyState;
}
/* sourceIndex=-1 if the current character began in the previous buffer */
sourceIndex=byteIndex==0 ? 0 : -1;
nextSourceIndex=0;
/* conversion loop */
while(source<sourceLimit) {
/*
* This following test is to see if available input would overflow the output.
* It does not catch output of more than one code unit that
* overflows as a result of a surrogate pair or callback output
* from the last source byte.
* Therefore, those situations also test for overflows and will
* then break the loop, too.
*/
if(target>=targetLimit) {
/* target is full */
*pErrorCode=U_BUFFER_OVERFLOW_ERROR;
break;
}
if(byteIndex==0) {
/* optimized loop for 1/2-byte input and BMP output */
if(offsets==NULL) {
do {
entry=stateTable[state][*source];
if(MBCS_ENTRY_IS_TRANSITION(entry)) {
state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry);
offset=MBCS_ENTRY_TRANSITION_OFFSET(entry);
++source;
if( source<sourceLimit &&
MBCS_ENTRY_IS_FINAL(entry=stateTable[state][*source]) &&
MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_VALID_16 &&
(c=unicodeCodeUnits[offset+MBCS_ENTRY_FINAL_VALUE_16(entry)])<0xfffe
) {
++source;
*target++=c;
state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */
offset=0;
} else {
/* set the state and leave the optimized loop */
bytes[0]=*(source-1);
byteIndex=1;
break;
}
} else {
if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) {
/* output BMP code point */
++source;
*target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */
} else {
/* leave the optimized loop */
break;
}
}
} while(source<sourceLimit && target<targetLimit);
} else /* offsets!=NULL */ {
do {
entry=stateTable[state][*source];
if(MBCS_ENTRY_IS_TRANSITION(entry)) {
state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry);
offset=MBCS_ENTRY_TRANSITION_OFFSET(entry);
++source;
if( source<sourceLimit &&
MBCS_ENTRY_IS_FINAL(entry=stateTable[state][*source]) &&
MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_VALID_16 &&
(c=unicodeCodeUnits[offset+MBCS_ENTRY_FINAL_VALUE_16(entry)])<0xfffe
) {
++source;
*target++=c;
if(offsets!=NULL) {
*offsets++=sourceIndex;
sourceIndex=(nextSourceIndex+=2);
}
state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */
offset=0;
} else {
/* set the state and leave the optimized loop */
++nextSourceIndex;
bytes[0]=*(source-1);
byteIndex=1;
break;
}
} else {
if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) {
/* output BMP code point */
++source;
*target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
if(offsets!=NULL) {
*offsets++=sourceIndex;
sourceIndex=++nextSourceIndex;
}
state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */
} else {
/* leave the optimized loop */
break;
}
}
} while(source<sourceLimit && target<targetLimit);
}
/*
* these tests and break statements could be put inside the loop
* if C had "break outerLoop" like Java
*/
if(source>=sourceLimit) {
break;
}
if(target>=targetLimit) {
/* target is full */
*pErrorCode=U_BUFFER_OVERFLOW_ERROR;
break;
}
++nextSourceIndex;
bytes[byteIndex++]=*source++;
} else /* byteIndex>0 */ {
++nextSourceIndex;
entry=stateTable[state][bytes[byteIndex++]=*source++];
}
if(MBCS_ENTRY_IS_TRANSITION(entry)) {
state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry);
offset+=MBCS_ENTRY_TRANSITION_OFFSET(entry);
continue;
}
/* save the previous state for proper extension mapping with SI/SO-stateful converters */
cnv->mode=state;
/* set the next state early so that we can reuse the entry variable */
state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */
/*
* An if-else-if chain provides more reliable performance for
* the most common cases compared to a switch.
*/
action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
if(action==MBCS_STATE_VALID_16) {
offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
c=unicodeCodeUnits[offset];
if(c<0xfffe) {
/* output BMP code point */
*target++=c;
if(offsets!=NULL) {
*offsets++=sourceIndex;
}
byteIndex=0;
} else if(c==0xfffe) {
if(UCNV_TO_U_USE_FALLBACK(cnv) && (entry=(int32_t)ucnv_MBCSGetFallback(&cnv->sharedData->mbcs, offset))!=0xfffe) {
/* output fallback BMP code point */
*target++=(UChar)entry;
if(offsets!=NULL) {
*offsets++=sourceIndex;
}
byteIndex=0;
}
} else {
/* callback(illegal) */
*pErrorCode=U_ILLEGAL_CHAR_FOUND;
}
} else if(action==MBCS_STATE_VALID_DIRECT_16) {
/* output BMP code point */
*target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
if(offsets!=NULL) {
*offsets++=sourceIndex;
}
byteIndex=0;
} else if(action==MBCS_STATE_VALID_16_PAIR) {
offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
c=unicodeCodeUnits[offset++];
if(c<0xd800) {
/* output BMP code point below 0xd800 */
*target++=c;
if(offsets!=NULL) {
*offsets++=sourceIndex;
}
byteIndex=0;
} else if(UCNV_TO_U_USE_FALLBACK(cnv) ? c<=0xdfff : c<=0xdbff) {
/* output roundtrip or fallback surrogate pair */
*target++=(UChar)(c&0xdbff);
if(offsets!=NULL) {
*offsets++=sourceIndex;
}
byteIndex=0;
if(target<targetLimit) {
*target++=unicodeCodeUnits[offset];
if(offsets!=NULL) {
*offsets++=sourceIndex;
}
} else {
/* target overflow */
cnv->UCharErrorBuffer[0]=unicodeCodeUnits[offset];
cnv->UCharErrorBufferLength=1;
*pErrorCode=U_BUFFER_OVERFLOW_ERROR;
offset=0;
break;
}
} else if(UCNV_TO_U_USE_FALLBACK(cnv) ? (c&0xfffe)==0xe000 : c==0xe000) {
/* output roundtrip BMP code point above 0xd800 or fallback BMP code point */
*target++=unicodeCodeUnits[offset];
if(offsets!=NULL) {
*offsets++=sourceIndex;
}
byteIndex=0;
} else if(c==0xffff) {
/* callback(illegal) */
*pErrorCode=U_ILLEGAL_CHAR_FOUND;
}
} else if(action==MBCS_STATE_VALID_DIRECT_20 ||
(action==MBCS_STATE_FALLBACK_DIRECT_20 && UCNV_TO_U_USE_FALLBACK(cnv))
) {
entry=MBCS_ENTRY_FINAL_VALUE(entry);
/* output surrogate pair */
*target++=(UChar)(0xd800|(UChar)(entry>>10));
if(offsets!=NULL) {
*offsets++=sourceIndex;
}
byteIndex=0;
c=(UChar)(0xdc00|(UChar)(entry&0x3ff));
if(target<targetLimit) {
*target++=c;
if(offsets!=NULL) {
*offsets++=sourceIndex;
}
} else {
/* target overflow */
cnv->UCharErrorBuffer[0]=c;
cnv->UCharErrorBufferLength=1;
*pErrorCode=U_BUFFER_OVERFLOW_ERROR;
offset=0;
break;
}
} else if(action==MBCS_STATE_CHANGE_ONLY) {
/*
* This serves as a state change without any output.
* It is useful for reading simple stateful encodings,
* for example using just Shift-In/Shift-Out codes.
* The 21 unused bits may later be used for more sophisticated
* state transitions.
*/
if(cnv->sharedData->mbcs.dbcsOnlyState==0) {
byteIndex=0;
} else {
/* SI/SO are illegal for DBCS-only conversion */
state=(uint8_t)(cnv->mode); /* restore the previous state */
/* callback(illegal) */
*pErrorCode=U_ILLEGAL_CHAR_FOUND;
}
} else if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
if(UCNV_TO_U_USE_FALLBACK(cnv)) {
/* output BMP code point */
*target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
if(offsets!=NULL) {
*offsets++=sourceIndex;
}
byteIndex=0;
}
} else if(action==MBCS_STATE_UNASSIGNED) {
/* just fall through */
} else if(action==MBCS_STATE_ILLEGAL) {
/* callback(illegal) */
*pErrorCode=U_ILLEGAL_CHAR_FOUND;
} else {
/* reserved, must never occur */
byteIndex=0;
}
/* end of action codes: prepare for a new character */
offset=0;
if(byteIndex==0) {
sourceIndex=nextSourceIndex;
} else if(U_FAILURE(*pErrorCode)) {
/* callback(illegal) */
if(byteIndex>1) {
/*
* Ticket 5691: consistent illegal sequences:
* - We include at least the first byte in the illegal sequence.
* - If any of the non-initial bytes could be the start of a character,
* we stop the illegal sequence before the first one of those.
*/
UBool isDBCSOnly=(UBool)(cnv->sharedData->mbcs.dbcsOnlyState!=0);
int8_t i;
for(i=1;
i<byteIndex && !isSingleOrLead(stateTable, state, isDBCSOnly, bytes[i]);
++i) {}
if(i<byteIndex) {
/* Back out some bytes. */
int8_t backOutDistance=byteIndex-i;
int32_t bytesFromThisBuffer=(int32_t)(source-(const uint8_t *)pArgs->source);
byteIndex=i; /* length of reported illegal byte sequence */
if(backOutDistance<=bytesFromThisBuffer) {
source-=backOutDistance;
} else {
/* Back out bytes from the previous buffer: Need to replay them. */
cnv->preToULength=(int8_t)(bytesFromThisBuffer-backOutDistance);
/* preToULength is negative! */
uprv_memcpy(cnv->preToU, bytes+i, -cnv->preToULength);
source=(const uint8_t *)pArgs->source;
}
}
}
break;
} else /* unassigned sequences indicated with byteIndex>0 */ {
/* try an extension mapping */
pArgs->source=(const char *)source;
byteIndex=_extToU(cnv, cnv->sharedData,
byteIndex, &source, sourceLimit,
&target, targetLimit,
&offsets, sourceIndex,
pArgs->flush,
pErrorCode);
sourceIndex=nextSourceIndex+=(int32_t)(source-(const uint8_t *)pArgs->source);
if(U_FAILURE(*pErrorCode)) {
/* not mappable or buffer overflow */
break;
}
}
}
/* set the converter state back into UConverter */
cnv->toUnicodeStatus=offset;
cnv->mode=state;
cnv->toULength=byteIndex;
/* write back the updated pointers */
pArgs->source=(const char *)source;
pArgs->target=target;
pArgs->offsets=offsets;
}
/*
* This version of ucnv_MBCSGetNextUChar() is optimized for single-byte, single-state codepages.
* We still need a conversion loop in case we find reserved action codes, which are to be ignored.
*/
static UChar32
ucnv_MBCSSingleGetNextUChar(UConverterToUnicodeArgs *pArgs,
UErrorCode *pErrorCode) {
UConverter *cnv;
const int32_t (*stateTable)[256];
const uint8_t *source, *sourceLimit;
int32_t entry;
uint8_t action;
/* set up the local pointers */
cnv=pArgs->converter;
source=(const uint8_t *)pArgs->source;
sourceLimit=(const uint8_t *)pArgs->sourceLimit;
if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable;
} else {
stateTable=cnv->sharedData->mbcs.stateTable;
}
/* conversion loop */
while(source<sourceLimit) {
entry=stateTable[0][*source++];
/* MBCS_ENTRY_IS_FINAL(entry) */
/* write back the updated pointer early so that we can return directly */
pArgs->source=(const char *)source;
if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) {
/* output BMP code point */
return (UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
}
/*
* An if-else-if chain provides more reliable performance for
* the most common cases compared to a switch.
*/
action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
if( action==MBCS_STATE_VALID_DIRECT_20 ||
(action==MBCS_STATE_FALLBACK_DIRECT_20 && UCNV_TO_U_USE_FALLBACK(cnv))
) {
/* output supplementary code point */
return (UChar32)(MBCS_ENTRY_FINAL_VALUE(entry)+0x10000);
} else if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
if(UCNV_TO_U_USE_FALLBACK(cnv)) {
/* output BMP code point */
return (UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
}
} else if(action==MBCS_STATE_UNASSIGNED) {
/* just fall through */
} else if(action==MBCS_STATE_ILLEGAL) {
/* callback(illegal) */
*pErrorCode=U_ILLEGAL_CHAR_FOUND;
} else {
/* reserved, must never occur */
continue;
}
if(U_FAILURE(*pErrorCode)) {
/* callback(illegal) */
break;
} else /* unassigned sequence */ {
/* defer to the generic implementation */
pArgs->source=(const char *)source-1;
return UCNV_GET_NEXT_UCHAR_USE_TO_U;
}
}
/* no output because of empty input or only state changes */
*pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
return 0xffff;
}
/*
* Version of _MBCSToUnicodeWithOffsets() optimized for single-character
* conversion without offset handling.
*
* When a character does not have a mapping to Unicode, then we return to the
* generic ucnv_getNextUChar() code for extension/GB 18030 and error/callback
* handling.
* We also defer to the generic code in other complicated cases and have them
* ultimately handled by _MBCSToUnicodeWithOffsets() itself.
*
* All normal mappings and errors are handled here.
*/
static UChar32 U_CALLCONV
ucnv_MBCSGetNextUChar(UConverterToUnicodeArgs *pArgs,
UErrorCode *pErrorCode) {
UConverter *cnv;
const uint8_t *source, *sourceLimit, *lastSource;
const int32_t (*stateTable)[256];
const uint16_t *unicodeCodeUnits;
uint32_t offset;
uint8_t state;
int32_t entry;
UChar32 c;
uint8_t action;
/* use optimized function if possible */
cnv=pArgs->converter;
if(cnv->preToULength>0) {
/* use the generic code in ucnv_getNextUChar() to continue with a partial match */
return UCNV_GET_NEXT_UCHAR_USE_TO_U;
}
if(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SURROGATES) {
/*
* Using the generic ucnv_getNextUChar() code lets us deal correctly
* with the rare case of a codepage that maps single surrogates
* without adding the complexity to this already complicated function here.
*/
return UCNV_GET_NEXT_UCHAR_USE_TO_U;
} else if(cnv->sharedData->mbcs.countStates==1) {
return ucnv_MBCSSingleGetNextUChar(pArgs, pErrorCode);
}
/* set up the local pointers */
source=lastSource=(const uint8_t *)pArgs->source;
sourceLimit=(const uint8_t *)pArgs->sourceLimit;
if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable;
} else {
stateTable=cnv->sharedData->mbcs.stateTable;
}
unicodeCodeUnits=cnv->sharedData->mbcs.unicodeCodeUnits;
/* get the converter state from UConverter */
offset=cnv->toUnicodeStatus;
/*
* if we are in the SBCS state for a DBCS-only converter,
* then load the DBCS state from the MBCS data
* (dbcsOnlyState==0 if it is not a DBCS-only converter)
*/
if((state=(uint8_t)(cnv->mode))==0) {
state=cnv->sharedData->mbcs.dbcsOnlyState;
}
/* conversion loop */
c=U_SENTINEL;
while(source<sourceLimit) {
entry=stateTable[state][*source++];
if(MBCS_ENTRY_IS_TRANSITION(entry)) {
state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry);
offset+=MBCS_ENTRY_TRANSITION_OFFSET(entry);
/* optimization for 1/2-byte input and BMP output */
if( source<sourceLimit &&
MBCS_ENTRY_IS_FINAL(entry=stateTable[state][*source]) &&
MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_VALID_16 &&
(c=unicodeCodeUnits[offset+MBCS_ENTRY_FINAL_VALUE_16(entry)])<0xfffe
) {
++source;
state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */
/* output BMP code point */
break;
}
} else {
/* save the previous state for proper extension mapping with SI/SO-stateful converters */
cnv->mode=state;
/* set the next state early so that we can reuse the entry variable */
state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */
/*
* An if-else-if chain provides more reliable performance for
* the most common cases compared to a switch.
*/
action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
if(action==MBCS_STATE_VALID_DIRECT_16) {
/* output BMP code point */
c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
break;
} else if(action==MBCS_STATE_VALID_16) {
offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
c=unicodeCodeUnits[offset];
if(c<0xfffe) {
/* output BMP code point */
break;
} else if(c==0xfffe) {
if(UCNV_TO_U_USE_FALLBACK(cnv) && (c=ucnv_MBCSGetFallback(&cnv->sharedData->mbcs, offset))!=0xfffe) {
break;
}
} else {
/* callback(illegal) */
*pErrorCode=U_ILLEGAL_CHAR_FOUND;
}
} else if(action==MBCS_STATE_VALID_16_PAIR) {
offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
c=unicodeCodeUnits[offset++];
if(c<0xd800) {
/* output BMP code point below 0xd800 */
break;
} else if(UCNV_TO_U_USE_FALLBACK(cnv) ? c<=0xdfff : c<=0xdbff) {
/* output roundtrip or fallback supplementary code point */
c=((c&0x3ff)<<10)+unicodeCodeUnits[offset]+(0x10000-0xdc00);
break;
} else if(UCNV_TO_U_USE_FALLBACK(cnv) ? (c&0xfffe)==0xe000 : c==0xe000) {
/* output roundtrip BMP code point above 0xd800 or fallback BMP code point */
c=unicodeCodeUnits[offset];
break;
} else if(c==0xffff) {
/* callback(illegal) */
*pErrorCode=U_ILLEGAL_CHAR_FOUND;
}
} else if(action==MBCS_STATE_VALID_DIRECT_20 ||
(action==MBCS_STATE_FALLBACK_DIRECT_20 && UCNV_TO_U_USE_FALLBACK(cnv))
) {
/* output supplementary code point */
c=(UChar32)(MBCS_ENTRY_FINAL_VALUE(entry)+0x10000);
break;
} else if(action==MBCS_STATE_CHANGE_ONLY) {
/*
* This serves as a state change without any output.
* It is useful for reading simple stateful encodings,
* for example using just Shift-In/Shift-Out codes.
* The 21 unused bits may later be used for more sophisticated
* state transitions.
*/
if(cnv->sharedData->mbcs.dbcsOnlyState!=0) {
/* SI/SO are illegal for DBCS-only conversion */
state=(uint8_t)(cnv->mode); /* restore the previous state */
/* callback(illegal) */
*pErrorCode=U_ILLEGAL_CHAR_FOUND;
}
} else if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
if(UCNV_TO_U_USE_FALLBACK(cnv)) {
/* output BMP code point */
c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
break;
}
} else if(action==MBCS_STATE_UNASSIGNED) {
/* just fall through */
} else if(action==MBCS_STATE_ILLEGAL) {
/* callback(illegal) */
*pErrorCode=U_ILLEGAL_CHAR_FOUND;
} else {
/* reserved (must never occur), or only state change */
offset=0;
lastSource=source;
continue;
}
/* end of action codes: prepare for a new character */
offset=0;
if(U_FAILURE(*pErrorCode)) {
/* callback(illegal) */
break;
} else /* unassigned sequence */ {
/* defer to the generic implementation */
cnv->toUnicodeStatus=0;
cnv->mode=state;
pArgs->source=(const char *)lastSource;
return UCNV_GET_NEXT_UCHAR_USE_TO_U;
}
}
}
if(c<0) {
if(U_SUCCESS(*pErrorCode) && source==sourceLimit && lastSource<source) {
/* incomplete character byte sequence */
uint8_t *bytes=cnv->toUBytes;
cnv->toULength=(int8_t)(source-lastSource);
do {
*bytes++=*lastSource++;
} while(lastSource<source);
*pErrorCode=U_TRUNCATED_CHAR_FOUND;
} else if(U_FAILURE(*pErrorCode)) {
/* callback(illegal) */
/*
* Ticket 5691: consistent illegal sequences:
* - We include at least the first byte in the illegal sequence.
* - If any of the non-initial bytes could be the start of a character,
* we stop the illegal sequence before the first one of those.
*/
UBool isDBCSOnly=(UBool)(cnv->sharedData->mbcs.dbcsOnlyState!=0);
uint8_t *bytes=cnv->toUBytes;
*bytes++=*lastSource++; /* first byte */
if(lastSource==source) {
cnv->toULength=1;
} else /* lastSource<source: multi-byte character */ {
int8_t i;
for(i=1;
lastSource<source && !isSingleOrLead(stateTable, state, isDBCSOnly, *lastSource);
++i
) {
*bytes++=*lastSource++;
}
cnv->toULength=i;
source=lastSource;
}
} else {
/* no output because of empty input or only state changes */
*pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
}
c=0xffff;
}
/* set the converter state back into UConverter, ready for a new character */
cnv->toUnicodeStatus=0;
cnv->mode=state;
/* write back the updated pointer */
pArgs->source=(const char *)source;
return c;
}
#if 0
/*
* Code disabled 2002dec09 (ICU 2.4) because it is not currently used in ICU. markus
* Removal improves code coverage.
*/
/**
* This version of ucnv_MBCSSimpleGetNextUChar() is optimized for single-byte, single-state codepages.
* It does not handle the EBCDIC swaplfnl option (set in UConverter).
* It does not handle conversion extensions (_extToU()).
*/
U_CFUNC UChar32
ucnv_MBCSSingleSimpleGetNextUChar(UConverterSharedData *sharedData,
uint8_t b, UBool useFallback) {
int32_t entry;
uint8_t action;
entry=sharedData->mbcs.stateTable[0][b];
/* MBCS_ENTRY_IS_FINAL(entry) */
if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) {
/* output BMP code point */
return (UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
}
/*
* An if-else-if chain provides more reliable performance for
* the most common cases compared to a switch.
*/
action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
if(action==MBCS_STATE_VALID_DIRECT_20) {
/* output supplementary code point */
return 0x10000+MBCS_ENTRY_FINAL_VALUE(entry);
} else if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
if(!TO_U_USE_FALLBACK(useFallback)) {
return 0xfffe;
}
/* output BMP code point */
return (UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
} else if(action==MBCS_STATE_FALLBACK_DIRECT_20) {
if(!TO_U_USE_FALLBACK(useFallback)) {
return 0xfffe;
}
/* output supplementary code point */
return 0x10000+MBCS_ENTRY_FINAL_VALUE(entry);
} else if(action==MBCS_STATE_UNASSIGNED) {
return 0xfffe;
} else if(action==MBCS_STATE_ILLEGAL) {
return 0xffff;
} else {
/* reserved, must never occur */
return 0xffff;
}
}
#endif
/*
* This is a simple version of _MBCSGetNextUChar() that is used
* by other converter implementations.
* It only returns an "assigned" result if it consumes the entire input.
* It does not use state from the converter, nor error codes.
* It does not handle the EBCDIC swaplfnl option (set in UConverter).
* It handles conversion extensions but not GB 18030.
*
* Return value:
* U+fffe unassigned
* U+ffff illegal
* otherwise the Unicode code point
*/
U_CFUNC UChar32
ucnv_MBCSSimpleGetNextUChar(UConverterSharedData *sharedData,
const char *source, int32_t length,
UBool useFallback) {
const int32_t (*stateTable)[256];
const uint16_t *unicodeCodeUnits;
uint32_t offset;
uint8_t state, action;
UChar32 c;
int32_t i, entry;
if(length<=0) {
/* no input at all: "illegal" */
return 0xffff;
}
#if 0
/*
* Code disabled 2002dec09 (ICU 2.4) because it is not currently used in ICU. markus
* TODO In future releases, verify that this function is never called for SBCS
* conversions, i.e., that sharedData->mbcs.countStates==1 is still true.
* Removal improves code coverage.
*/
/* use optimized function if possible */
if(sharedData->mbcs.countStates==1) {
if(length==1) {
return ucnv_MBCSSingleSimpleGetNextUChar(sharedData, (uint8_t)*source, useFallback);
} else {
return 0xffff; /* illegal: more than a single byte for an SBCS converter */
}
}
#endif
/* set up the local pointers */
stateTable=sharedData->mbcs.stateTable;
unicodeCodeUnits=sharedData->mbcs.unicodeCodeUnits;
/* converter state */
offset=0;
state=sharedData->mbcs.dbcsOnlyState;
/* conversion loop */
for(i=0;;) {
entry=stateTable[state][(uint8_t)source[i++]];
if(MBCS_ENTRY_IS_TRANSITION(entry)) {
state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry);
offset+=MBCS_ENTRY_TRANSITION_OFFSET(entry);
if(i==length) {
return 0xffff; /* truncated character */
}
} else {
/*
* An if-else-if chain provides more reliable performance for
* the most common cases compared to a switch.
*/
action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
if(action==MBCS_STATE_VALID_16) {
offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
c=unicodeCodeUnits[offset];
if(c!=0xfffe) {
/* done */
} else if(UCNV_TO_U_USE_FALLBACK(cnv)) {
c=ucnv_MBCSGetFallback(&sharedData->mbcs, offset);
/* else done with 0xfffe */
}
break;
} else if(action==MBCS_STATE_VALID_DIRECT_16) {
/* output BMP code point */
c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
break;
} else if(action==MBCS_STATE_VALID_16_PAIR) {
offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
c=unicodeCodeUnits[offset++];
if(c<0xd800) {
/* output BMP code point below 0xd800 */
} else if(UCNV_TO_U_USE_FALLBACK(cnv) ? c<=0xdfff : c<=0xdbff) {
/* output roundtrip or fallback supplementary code point */
c=(UChar32)(((c&0x3ff)<<10)+unicodeCodeUnits[offset]+(0x10000-0xdc00));
} else if(UCNV_TO_U_USE_FALLBACK(cnv) ? (c&0xfffe)==0xe000 : c==0xe000) {
/* output roundtrip BMP code point above 0xd800 or fallback BMP code point */
c=unicodeCodeUnits[offset];
} else if(c==0xffff) {
return 0xffff;
} else {
c=0xfffe;
}
break;
} else if(action==MBCS_STATE_VALID_DIRECT_20) {
/* output supplementary code point */
c=0x10000+MBCS_ENTRY_FINAL_VALUE(entry);
break;
} else if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
if(!TO_U_USE_FALLBACK(useFallback)) {
c=0xfffe;
break;
}
/* output BMP code point */
c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
break;
} else if(action==MBCS_STATE_FALLBACK_DIRECT_20) {
if(!TO_U_USE_FALLBACK(useFallback)) {
c=0xfffe;
break;
}
/* output supplementary code point */
c=0x10000+MBCS_ENTRY_FINAL_VALUE(entry);
break;
} else if(action==MBCS_STATE_UNASSIGNED) {
c=0xfffe;
break;
}
/*
* forbid MBCS_STATE_CHANGE_ONLY for this function,
* and MBCS_STATE_ILLEGAL and reserved action codes
*/
return 0xffff;
}
}
if(i!=length) {
/* illegal for this function: not all input consumed */
return 0xffff;
}
if(c==0xfffe) {
/* try an extension mapping */
const int32_t *cx=sharedData->mbcs.extIndexes;
if(cx!=NULL) {
return ucnv_extSimpleMatchToU(cx, source, length, useFallback);
}
}
return c;
}
/* MBCS-from-Unicode conversion functions ----------------------------------- */
/* This version of ucnv_MBCSFromUnicodeWithOffsets() is optimized for double-byte codepages. */
static void
ucnv_MBCSDoubleFromUnicodeWithOffsets(UConverterFromUnicodeArgs *pArgs,
UErrorCode *pErrorCode) {
UConverter *cnv;
const UChar *source, *sourceLimit;
uint8_t *target;
int32_t targetCapacity;
int32_t *offsets;
const uint16_t *table;
const uint16_t *mbcsIndex;
const uint8_t *bytes;
UChar32 c;
int32_t sourceIndex, nextSourceIndex;
uint32_t stage2Entry;
uint32_t asciiRoundtrips;
uint32_t value;
uint8_t unicodeMask;
/* use optimized function if possible */
cnv=pArgs->converter;
unicodeMask=cnv->sharedData->mbcs.unicodeMask;
/* set up the local pointers */
source=pArgs->source;
sourceLimit=pArgs->sourceLimit;
target=(uint8_t *)pArgs->target;
targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target);
offsets=pArgs->offsets;
table=cnv->sharedData->mbcs.fromUnicodeTable;
mbcsIndex=cnv->sharedData->mbcs.mbcsIndex;
if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
bytes=cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes;
} else {
bytes=cnv->sharedData->mbcs.fromUnicodeBytes;
}
asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips;
/* get the converter state from UConverter */
c=cnv->fromUChar32;
/* sourceIndex=-1 if the current character began in the previous buffer */
sourceIndex= c==0 ? 0 : -1;
nextSourceIndex=0;
/* conversion loop */
if(c!=0 && targetCapacity>0) {
goto getTrail;
}
while(source<sourceLimit) {
/*
* This following test is to see if available input would overflow the output.
* It does not catch output of more than one byte that
* overflows as a result of a multi-byte character or callback output
* from the last source character.
* Therefore, those situations also test for overflows and will
* then break the loop, too.
*/
if(targetCapacity>0) {
/*
* Get a correct Unicode code point:
* a single UChar for a BMP code point or
* a matched surrogate pair for a "supplementary code point".
*/
c=*source++;
++nextSourceIndex;
if(c<=0x7f && IS_ASCII_ROUNDTRIP(c, asciiRoundtrips)) {
*target++=(uint8_t)c;
if(offsets!=NULL) {
*offsets++=sourceIndex;
sourceIndex=nextSourceIndex;
}
--targetCapacity;
c=0;
continue;
}
/*
* utf8Friendly table: Test for <=0xd7ff rather than <=MBCS_FAST_MAX
* to avoid dealing with surrogates.
* MBCS_FAST_MAX must be >=0xd7ff.
*/
if(c<=0xd7ff) {
value=DBCS_RESULT_FROM_MOST_BMP(mbcsIndex, (const uint16_t *)bytes, c);
/* There are only roundtrips (!=0) and no-mapping (==0) entries. */
if(value==0) {
goto unassigned;
}
/* output the value */
} else {
/*
* This also tests if the codepage maps single surrogates.
* If it does, then surrogates are not paired but mapped separately.
* Note that in this case unmatched surrogates are not detected.
*/
if(U16_IS_SURROGATE(c) && !(unicodeMask&UCNV_HAS_SURROGATES)) {
if(U16_IS_SURROGATE_LEAD(c)) {
getTrail:
if(source<sourceLimit) {
/* test the following code unit */
UChar trail=*source;
if(U16_IS_TRAIL(trail)) {
++source;
++nextSourceIndex;
c=U16_GET_SUPPLEMENTARY(c, trail);
if(!(unicodeMask&UCNV_HAS_SUPPLEMENTARY)) {
/* BMP-only codepages are stored without stage 1 entries for supplementary code points */
/* callback(unassigned) */
goto unassigned;
}
/* convert this supplementary code point */
/* exit this condition tree */
} else {
/* this is an unmatched lead code unit (1st surrogate) */
/* callback(illegal) */
*pErrorCode=U_ILLEGAL_CHAR_FOUND;
break;
}
} else {
/* no more input */
break;
}
} else {
/* this is an unmatched trail code unit (2nd surrogate) */
/* callback(illegal) */
*pErrorCode=U_ILLEGAL_CHAR_FOUND;
break;
}
}
/* convert the Unicode code point in c into codepage bytes */
stage2Entry=MBCS_STAGE_2_FROM_U(table, c);
/* get the bytes and the length for the output */
/* MBCS_OUTPUT_2 */
value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c);
/* is this code point assigned, or do we use fallbacks? */
if(!(MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c) ||
(UCNV_FROM_U_USE_FALLBACK(cnv, c) && value!=0))
) {
/*
* We allow a 0 byte output if the "assigned" bit is set for this entry.
* There is no way with this data structure for fallback output
* to be a zero byte.
*/
unassigned:
/* try an extension mapping */
pArgs->source=source;
c=_extFromU(cnv, cnv->sharedData,
c, &source, sourceLimit,
&target, target+targetCapacity,
&offsets, sourceIndex,
pArgs->flush,
pErrorCode);
nextSourceIndex+=(int32_t)(source-pArgs->source);
if(U_FAILURE(*pErrorCode)) {
/* not mappable or buffer overflow */
break;
} else {
/* a mapping was written to the target, continue */
/* recalculate the targetCapacity after an extension mapping */
targetCapacity=(int32_t)(pArgs->targetLimit-(char *)target);
/* normal end of conversion: prepare for a new character */
sourceIndex=nextSourceIndex;
continue;
}
}
}
/* write the output character bytes from value and length */
/* from the first if in the loop we know that targetCapacity>0 */
if(value<=0xff) {
/* this is easy because we know that there is enough space */
*target++=(uint8_t)value;
if(offsets!=NULL) {
*offsets++=sourceIndex;
}
--targetCapacity;
} else /* length==2 */ {
*target++=(uint8_t)(value>>8);
if(2<=targetCapacity) {
*target++=(uint8_t)value;
if(offsets!=NULL) {
*offsets++=sourceIndex;
*offsets++=sourceIndex;
}
targetCapacity-=2;
} else {
if(offsets!=NULL) {
*offsets++=sourceIndex;
}
cnv->charErrorBuffer[0]=(char)value;
cnv->charErrorBufferLength=1;
/* target overflow */
targetCapacity=0;
*pErrorCode=U_BUFFER_OVERFLOW_ERROR;
c=0;
break;
}
}
/* normal end of conversion: prepare for a new character */
c=0;
sourceIndex=nextSourceIndex;
continue;
} else {
/* target is full */
*pErrorCode=U_BUFFER_OVERFLOW_ERROR;
break;
}
}
/* set the converter state back into UConverter */
cnv->fromUChar32=c;
/* write back the updated pointers */
pArgs->source=source;
pArgs->target=(char *)target;
pArgs->offsets=offsets;
}
/* This version of ucnv_MBCSFromUnicodeWithOffsets() is optimized for single-byte codepages. */
static void
ucnv_MBCSSingleFromUnicodeWithOffsets(UConverterFromUnicodeArgs *pArgs,
UErrorCode *pErrorCode) {
UConverter *cnv;
const UChar *source, *sourceLimit;
uint8_t *target;
int32_t targetCapacity;
int32_t *offsets;
const uint16_t *table;
const uint16_t *results;
UChar32 c;
int32_t sourceIndex, nextSourceIndex;
uint16_t value, minValue;
UBool hasSupplementary;
/* set up the local pointers */
cnv=pArgs->converter;
source=pArgs->source;
sourceLimit=pArgs->sourceLimit;
target=(uint8_t *)pArgs->target;
targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target);
offsets=pArgs->offsets;
table=cnv->sharedData->mbcs.fromUnicodeTable;
if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
results=(uint16_t *)cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes;
} else {
results=(uint16_t *)cnv->sharedData->mbcs.fromUnicodeBytes;
}
if(cnv->useFallback) {
/* use all roundtrip and fallback results */
minValue=0x800;
} else {
/* use only roundtrips and fallbacks from private-use characters */
minValue=0xc00;
}
hasSupplementary=(UBool)(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY);
/* get the converter state from UConverter */
c=cnv->fromUChar32;
/* sourceIndex=-1 if the current character began in the previous buffer */
sourceIndex= c==0 ? 0 : -1;
nextSourceIndex=0;
/* conversion loop */
if(c!=0 && targetCapacity>0) {
goto getTrail;
}
while(source<sourceLimit) {
/*
* This following test is to see if available input would overflow the output.
* It does not catch output of more than one byte that
* overflows as a result of a multi-byte character or callback output
* from the last source character.
* Therefore, those situations also test for overflows and will
* then break the loop, too.
*/
if(targetCapacity>0) {
/*
* Get a correct Unicode code point:
* a single UChar for a BMP code point or
* a matched surrogate pair for a "supplementary code point".
*/
c=*source++;
++nextSourceIndex;
if(U16_IS_SURROGATE(c)) {
if(U16_IS_SURROGATE_LEAD(c)) {
getTrail:
if(source<sourceLimit) {
/* test the following code unit */
UChar trail=*source;
if(U16_IS_TRAIL(trail)) {
++source;
++nextSourceIndex;
c=U16_GET_SUPPLEMENTARY(c, trail);
if(!hasSupplementary) {
/* BMP-only codepages are stored without stage 1 entries for supplementary code points */
/* callback(unassigned) */
goto unassigned;
}
/* convert this supplementary code point */
/* exit this condition tree */
} else {
/* this is an unmatched lead code unit (1st surrogate) */
/* callback(illegal) */
*pErrorCode=U_ILLEGAL_CHAR_FOUND;
break;
}
} else {
/* no more input */
break;
}
} else {
/* this is an unmatched trail code unit (2nd surrogate) */
/* callback(illegal) */
*pErrorCode=U_ILLEGAL_CHAR_FOUND;
break;
}
}
/* convert the Unicode code point in c into codepage bytes */
value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
/* is this code point assigned, or do we use fallbacks? */
if(value>=minValue) {
/* assigned, write the output character bytes from value and length */
/* length==1 */
/* this is easy because we know that there is enough space */
*target++=(uint8_t)value;
if(offsets!=NULL) {
*offsets++=sourceIndex;
}
--targetCapacity;
/* normal end of conversion: prepare for a new character */
c=0;
sourceIndex=nextSourceIndex;
} else { /* unassigned */
unassigned:
/* try an extension mapping */
pArgs->source=source;
c=_extFromU(cnv, cnv->sharedData,
c, &source, sourceLimit,
&target, target+targetCapacity,
&offsets, sourceIndex,
pArgs->flush,
pErrorCode);
nextSourceIndex+=(int32_t)(source-pArgs->source);
if(U_FAILURE(*pErrorCode)) {
/* not mappable or buffer overflow */
break;
} else {
/* a mapping was written to the target, continue */
/* recalculate the targetCapacity after an extension mapping */
targetCapacity=(int32_t)(pArgs->targetLimit-(char *)target);
/* normal end of conversion: prepare for a new character */
sourceIndex=nextSourceIndex;
}
}
} else {
/* target is full */
*pErrorCode=U_BUFFER_OVERFLOW_ERROR;
break;
}
}
/* set the converter state back into UConverter */
cnv->fromUChar32=c;
/* write back the updated pointers */
pArgs->source=source;
pArgs->target=(char *)target;
pArgs->offsets=offsets;
}
/*
* This version of ucnv_MBCSFromUnicode() is optimized for single-byte codepages
* that map only to and from the BMP.
* In addition to single-byte/state optimizations, the offset calculations
* become much easier.
* It would be possible to use the sbcsIndex for UTF-8-friendly tables,
* but measurements have shown that this diminishes performance
* in more cases than it improves it.
* See SVN revision 21013 (2007-feb-06) for the last version with #if switches
* for various MBCS and SBCS optimizations.
*/
static void
ucnv_MBCSSingleFromBMPWithOffsets(UConverterFromUnicodeArgs *pArgs,
UErrorCode *pErrorCode) {
UConverter *cnv;
const UChar *source, *sourceLimit, *lastSource;
uint8_t *target;
int32_t targetCapacity, length;
int32_t *offsets;
const uint16_t *table;
const uint16_t *results;
UChar32 c;
int32_t sourceIndex;
uint32_t asciiRoundtrips;
uint16_t value, minValue;
/* set up the local pointers */
cnv=pArgs->converter;
source=pArgs->source;
sourceLimit=pArgs->sourceLimit;
target=(uint8_t *)pArgs->target;
targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target);
offsets=pArgs->offsets;
table=cnv->sharedData->mbcs.fromUnicodeTable;
if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
results=(uint16_t *)cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes;
} else {
results=(uint16_t *)cnv->sharedData->mbcs.fromUnicodeBytes;
}
asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips;
if(cnv->useFallback) {
/* use all roundtrip and fallback results */
minValue=0x800;
} else {
/* use only roundtrips and fallbacks from private-use characters */
minValue=0xc00;
}
/* get the converter state from UConverter */
c=cnv->fromUChar32;
/* sourceIndex=-1 if the current character began in the previous buffer */
sourceIndex= c==0 ? 0 : -1;
lastSource=source;
/*
* since the conversion here is 1:1 UChar:uint8_t, we need only one counter
* for the minimum of the sourceLength and targetCapacity
*/
length=(int32_t)(sourceLimit-source);
if(length<targetCapacity) {
targetCapacity=length;
}
/* conversion loop */
if(c!=0 && targetCapacity>0) {
goto getTrail;
}
#if MBCS_UNROLL_SINGLE_FROM_BMP
/* unrolling makes it slower on Pentium III/Windows 2000?! */
/* unroll the loop with the most common case */
unrolled:
if(targetCapacity>=4) {
int32_t count, loops;
uint16_t andedValues;
loops=count=targetCapacity>>2;
do {
c=*source++;
andedValues=value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
*target++=(uint8_t)value;
c=*source++;
andedValues&=value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
*target++=(uint8_t)value;
c=*source++;
andedValues&=value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
*target++=(uint8_t)value;
c=*source++;
andedValues&=value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
*target++=(uint8_t)value;
/* were all 4 entries really valid? */
if(andedValues<minValue) {
/* no, return to the first of these 4 */
source-=4;
target-=4;
break;
}
} while(--count>0);
count=loops-count;
targetCapacity-=4*count;
if(offsets!=NULL) {
lastSource+=4*count;
while(count>0) {
*offsets++=sourceIndex++;
*offsets++=sourceIndex++;
*offsets++=sourceIndex++;
*offsets++=sourceIndex++;
--count;
}
}
c=0;
}
#endif
while(targetCapacity>0) {
/*
* Get a correct Unicode code point:
* a single UChar for a BMP code point or
* a matched surrogate pair for a "supplementary code point".
*/
c=*source++;
/*
* Do not immediately check for single surrogates:
* Assume that they are unassigned and check for them in that case.
* This speeds up the conversion of assigned characters.
*/
/* convert the Unicode code point in c into codepage bytes */
if(c<=0x7f && IS_ASCII_ROUNDTRIP(c, asciiRoundtrips)) {
*target++=(uint8_t)c;
--targetCapacity;
c=0;
continue;
}
value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
/* is this code point assigned, or do we use fallbacks? */
if(value>=minValue) {
/* assigned, write the output character bytes from value and length */
/* length==1 */
/* this is easy because we know that there is enough space */
*target++=(uint8_t)value;
--targetCapacity;
/* normal end of conversion: prepare for a new character */
c=0;
continue;
} else if(!U16_IS_SURROGATE(c)) {
/* normal, unassigned BMP character */
} else if(U16_IS_SURROGATE_LEAD(c)) {
getTrail:
if(source<sourceLimit) {
/* test the following code unit */
UChar trail=*source;
if(U16_IS_TRAIL(trail)) {
++source;
c=U16_GET_SUPPLEMENTARY(c, trail);
/* this codepage does not map supplementary code points */
/* callback(unassigned) */
} else {
/* this is an unmatched lead code unit (1st surrogate) */
/* callback(illegal) */
*pErrorCode=U_ILLEGAL_CHAR_FOUND;
break;
}
} else {
/* no more input */
if (pArgs->flush) {
*pErrorCode=U_TRUNCATED_CHAR_FOUND;
}
break;
}
} else {
/* this is an unmatched trail code unit (2nd surrogate) */
/* callback(illegal) */
*pErrorCode=U_ILLEGAL_CHAR_FOUND;
break;
}
/* c does not have a mapping */
/* get the number of code units for c to correctly advance sourceIndex */
length=U16_LENGTH(c);
/* set offsets since the start or the last extension */
if(offsets!=NULL) {
int32_t count=(int32_t)(source-lastSource);
/* do not set the offset for this character */
count-=length;
while(count>0) {
*offsets++=sourceIndex++;
--count;
}
/* offsets and sourceIndex are now set for the current character */
}
/* try an extension mapping */
lastSource=source;
c=_extFromU(cnv, cnv->sharedData,
c, &source, sourceLimit,
&target, (const uint8_t *)(pArgs->targetLimit),
&offsets, sourceIndex,
pArgs->flush,
pErrorCode);
sourceIndex+=length+(int32_t)(source-lastSource);
lastSource=source;
if(U_FAILURE(*pErrorCode)) {
/* not mappable or buffer overflow */
break;
} else {
/* a mapping was written to the target, continue */
/* recalculate the targetCapacity after an extension mapping */
targetCapacity=(int32_t)(pArgs->targetLimit-(char *)target);
length=(int32_t)(sourceLimit-source);
if(length<targetCapacity) {
targetCapacity=length;
}
}
#if MBCS_UNROLL_SINGLE_FROM_BMP
/* unrolling makes it slower on Pentium III/Windows 2000?! */
goto unrolled;
#endif
}
if(U_SUCCESS(*pErrorCode) && source<sourceLimit && target>=(uint8_t *)pArgs->targetLimit) {
/* target is full */
*pErrorCode=U_BUFFER_OVERFLOW_ERROR;
}
/* set offsets since the start or the last callback */
if(offsets!=NULL) {
size_t count=source-lastSource;
if (count > 0 && *pErrorCode == U_TRUNCATED_CHAR_FOUND) {
/*
Caller gave us a partial supplementary character,
which this function couldn't convert in any case.
The callback will handle the offset.
*/
count--;
}
while(count>0) {
*offsets++=sourceIndex++;
--count;
}
}
/* set the converter state back into UConverter */
cnv->fromUChar32=c;
/* write back the updated pointers */
pArgs->source=source;
pArgs->target=(char *)target;
pArgs->offsets=offsets;
}
U_CFUNC void
ucnv_MBCSFromUnicodeWithOffsets(UConverterFromUnicodeArgs *pArgs,
UErrorCode *pErrorCode) {
UConverter *cnv;
const UChar *source, *sourceLimit;
uint8_t *target;
int32_t targetCapacity;
int32_t *offsets;
const uint16_t *table;
const uint16_t *mbcsIndex;
const uint8_t *p, *bytes;
uint8_t outputType;
UChar32 c;
int32_t prevSourceIndex, sourceIndex, nextSourceIndex;
uint32_t stage2Entry;
uint32_t asciiRoundtrips;
uint32_t value;
/* Shift-In and Shift-Out byte sequences differ by encoding scheme. */
uint8_t siBytes[2] = {0, 0};
uint8_t soBytes[2] = {0, 0};
uint8_t siLength, soLength;
int32_t length = 0, prevLength;
uint8_t unicodeMask;
cnv=pArgs->converter;
if(cnv->preFromUFirstCP>=0) {
/*
* pass sourceIndex=-1 because we continue from an earlier buffer
* in the future, this may change with continuous offsets
*/
ucnv_extContinueMatchFromU(cnv, pArgs, -1, pErrorCode);
if(U_FAILURE(*pErrorCode) || cnv->preFromULength<0) {
return;
}
}
/* use optimized function if possible */
outputType=cnv->sharedData->mbcs.outputType;
unicodeMask=cnv->sharedData->mbcs.unicodeMask;
if(outputType==MBCS_OUTPUT_1 && !(unicodeMask&UCNV_HAS_SURROGATES)) {
if(!(unicodeMask&UCNV_HAS_SUPPLEMENTARY)) {
ucnv_MBCSSingleFromBMPWithOffsets(pArgs, pErrorCode);
} else {
ucnv_MBCSSingleFromUnicodeWithOffsets(pArgs, pErrorCode);
}
return;
} else if(outputType==MBCS_OUTPUT_2 && cnv->sharedData->mbcs.utf8Friendly) {
ucnv_MBCSDoubleFromUnicodeWithOffsets(pArgs, pErrorCode);
return;
}
/* set up the local pointers */
source=pArgs->source;
sourceLimit=pArgs->sourceLimit;
target=(uint8_t *)pArgs->target;
targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target);
offsets=pArgs->offsets;
table=cnv->sharedData->mbcs.fromUnicodeTable;
if(cnv->sharedData->mbcs.utf8Friendly) {
mbcsIndex=cnv->sharedData->mbcs.mbcsIndex;
} else {
mbcsIndex=NULL;
}
if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
bytes=cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes;
} else {
bytes=cnv->sharedData->mbcs.fromUnicodeBytes;
}
asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips;
/* get the converter state from UConverter */
c=cnv->fromUChar32;
if(outputType==MBCS_OUTPUT_2_SISO) {
prevLength=cnv->fromUnicodeStatus;
if(prevLength==0) {
/* set the real value */
prevLength=1;
}
} else {
/* prevent fromUnicodeStatus from being set to something non-0 */
prevLength=0;
}
/* sourceIndex=-1 if the current character began in the previous buffer */
prevSourceIndex=-1;
sourceIndex= c==0 ? 0 : -1;
nextSourceIndex=0;
/* Get the SI/SO character for the converter */
siLength = static_cast<uint8_t>(getSISOBytes(SI, cnv->options, siBytes));
soLength = static_cast<uint8_t>(getSISOBytes(SO, cnv->options, soBytes));
/* conversion loop */
/*
* This is another piece of ugly code:
* A goto into the loop if the converter state contains a first surrogate
* from the previous function call.
* It saves me to check in each loop iteration a check of if(c==0)
* and duplicating the trail-surrogate-handling code in the else
* branch of that check.
* I could not find any other way to get around this other than
* using a function call for the conversion and callback, which would
* be even more inefficient.
*
* Markus Scherer 2000-jul-19
*/
if(c!=0 && targetCapacity>0) {
goto getTrail;
}
while(source<sourceLimit) {
/*
* This following test is to see if available input would overflow the output.
* It does not catch output of more than one byte that
* overflows as a result of a multi-byte character or callback output
* from the last source character.
* Therefore, those situations also test for overflows and will
* then break the loop, too.
*/
if(targetCapacity>0) {
/*
* Get a correct Unicode code point:
* a single UChar for a BMP code point or
* a matched surrogate pair for a "supplementary code point".
*/
c=*source++;
++nextSourceIndex;
if(c<=0x7f && IS_ASCII_ROUNDTRIP(c, asciiRoundtrips)) {
*target++=(uint8_t)c;
if(offsets!=NULL) {
*offsets++=sourceIndex;
prevSourceIndex=sourceIndex;
sourceIndex=nextSourceIndex;
}
--targetCapacity;
c=0;
continue;
}
/*
* utf8Friendly table: Test for <=0xd7ff rather than <=MBCS_FAST_MAX
* to avoid dealing with surrogates.
* MBCS_FAST_MAX must be >=0xd7ff.
*/
if(c<=0xd7ff && mbcsIndex!=NULL) {
value=mbcsIndex[c>>6];
/* get the bytes and the length for the output (copied from below and adapted for utf8Friendly data) */
/* There are only roundtrips (!=0) and no-mapping (==0) entries. */
switch(outputType) {
case MBCS_OUTPUT_2:
value=((const uint16_t *)bytes)[value +(c&0x3f)];
if(value<=0xff) {
if(value==0) {
goto unassigned;
} else {
length=1;
}
} else {
length=2;
}
break;
case MBCS_OUTPUT_2_SISO:
/* 1/2-byte stateful with Shift-In/Shift-Out */
/*
* Save the old state in the converter object
* right here, then change the local prevLength state variable if necessary.
* Then, if this character turns out to be unassigned or a fallback that
* is not taken, the callback code must not save the new state in the converter
* because the new state is for a character that is not output.
* However, the callback must still restore the state from the converter
* in case the callback function changed it for its output.
*/
cnv->fromUnicodeStatus=prevLength; /* save the old state */
value=((const uint16_t *)bytes)[value +(c&0x3f)];
if(value<=0xff) {
if(value==0) {
goto unassigned;
} else if(prevLength<=1) {
length=1;
} else {
/* change from double-byte mode to single-byte */
if (siLength == 1) {
value|=(uint32_t)siBytes[0]<<8;
length = 2;
} else if (siLength == 2) {
value|=(uint32_t)siBytes[1]<<8;
value|=(uint32_t)siBytes[0]<<16;
length = 3;
}
prevLength=1;
}
} else {
if(prevLength==2) {
length=2;
} else {
/* change from single-byte mode to double-byte */
if (soLength == 1) {
value|=(uint32_t)soBytes[0]<<16;
length = 3;
} else if (soLength == 2) {
value|=(uint32_t)soBytes[1]<<16;
value|=(uint32_t)soBytes[0]<<24;
length = 4;
}
prevLength=2;
}
}
break;
case MBCS_OUTPUT_DBCS_ONLY:
/* table with single-byte results, but only DBCS mappings used */
value=((const uint16_t *)bytes)[value +(c&0x3f)];
if(value<=0xff) {
/* no mapping or SBCS result, not taken for DBCS-only */
goto unassigned;
} else {
length=2;
}
break;
case MBCS_OUTPUT_3:
p=bytes+(value+(c&0x3f))*3;
value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2];
if(value<=0xff) {
if(value==0) {
goto unassigned;
} else {
length=1;
}
} else if(value<=0xffff) {
length=2;
} else {
length=3;
}
break;
case MBCS_OUTPUT_4:
value=((const uint32_t *)bytes)[value +(c&0x3f)];
if(value<=0xff) {
if(value==0) {
goto unassigned;
} else {
length=1;
}
} else if(value<=0xffff) {
length=2;
} else if(value<=0xffffff) {
length=3;
} else {
length=4;
}
break;
case MBCS_OUTPUT_3_EUC:
value=((const uint16_t *)bytes)[value +(c&0x3f)];
/* EUC 16-bit fixed-length representation */
if(value<=0xff) {
if(value==0) {
goto unassigned;
} else {
length=1;
}
} else if((value&0x8000)==0) {
value|=0x8e8000;
length=3;
} else if((value&0x80)==0) {
value|=0x8f0080;
length=3;
} else {
length=2;
}
break;
case MBCS_OUTPUT_4_EUC:
p=bytes+(value+(c&0x3f))*3;
value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2];
/* EUC 16-bit fixed-length representation applied to the first two bytes */
if(value<=0xff) {
if(value==0) {
goto unassigned;
} else {
length=1;
}
} else if(value<=0xffff) {
length=2;
} else if((value&0x800000)==0) {
value|=0x8e800000;
length=4;
} else if((value&0x8000)==0) {
value|=0x8f008000;
length=4;
} else {
length=3;
}
break;
default:
/* must not occur */
/*
* To avoid compiler warnings that value & length may be
* used without having been initialized, we set them here.
* In reality, this is unreachable code.
* Not having a default branch also causes warnings with
* some compilers.
*/
value=0;
length=0;
break;
}
/* output the value */
} else {
/*
* This also tests if the codepage maps single surrogates.
* If it does, then surrogates are not paired but mapped separately.
* Note that in this case unmatched surrogates are not detected.
*/
if(U16_IS_SURROGATE(c) && !(unicodeMask&UCNV_HAS_SURROGATES)) {
if(U16_IS_SURROGATE_LEAD(c)) {
getTrail:
if(source<sourceLimit) {
/* test the following code unit */
UChar trail=*source;
if(U16_IS_TRAIL(trail)) {
++source;
++nextSourceIndex;
c=U16_GET_SUPPLEMENTARY(c, trail);
if(!(unicodeMask&UCNV_HAS_SUPPLEMENTARY)) {
/* BMP-only codepages are stored without stage 1 entries for supplementary code points */
cnv->fromUnicodeStatus=prevLength; /* save the old state */
/* callback(unassigned) */
goto unassigned;
}
/* convert this supplementary code point */
/* exit this condition tree */
} else {
/* this is an unmatched lead code unit (1st surrogate) */
/* callback(illegal) */
*pErrorCode=U_ILLEGAL_CHAR_FOUND;
break;
}
} else {
/* no more input */
break;
}
} else {
/* this is an unmatched trail code unit (2nd surrogate) */
/* callback(illegal) */
*pErrorCode=U_ILLEGAL_CHAR_FOUND;
break;
}
}
/* convert the Unicode code point in c into codepage bytes */
/*
* The basic lookup is a triple-stage compact array (trie) lookup.
* For details see the beginning of this file.
*
* Single-byte codepages are handled with a different data structure
* by _MBCSSingle... functions.
*
* The result consists of a 32-bit value from stage 2 and
* a pointer to as many bytes as are stored per character.
* The pointer points to the character's bytes in stage 3.
* Bits 15..0 of the stage 2 entry contain the stage 3 index
* for that pointer, while bits 31..16 are flags for which of
* the 16 characters in the block are roundtrip-assigned.
*
* For 2-byte and 4-byte codepages, the bytes are stored as uint16_t
* respectively as uint32_t, in the platform encoding.
* For 3-byte codepages, the bytes are always stored in big-endian order.
*
* For EUC encodings that use only either 0x8e or 0x8f as the first
* byte of their longest byte sequences, the first two bytes in
* this third stage indicate with their 7th bits whether these bytes
2021-10-28 06:15:28 +00:00
* are to be written directly or actually need to be preceded by
* one of the two Single-Shift codes. With this, the third stage
* stores one byte fewer per character than the actual maximum length of
* EUC byte sequences.
*
* Other than that, leading zero bytes are removed and the other
* bytes output. A single zero byte may be output if the "assigned"
* bit in stage 2 was on.
* The data structure does not support zero byte output as a fallback,
* and also does not allow output of leading zeros.
*/
stage2Entry=MBCS_STAGE_2_FROM_U(table, c);
/* get the bytes and the length for the output */
switch(outputType) {
case MBCS_OUTPUT_2:
value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c);
if(value<=0xff) {
length=1;
} else {
length=2;
}
break;
case MBCS_OUTPUT_2_SISO:
/* 1/2-byte stateful with Shift-In/Shift-Out */
/*
* Save the old state in the converter object
* right here, then change the local prevLength state variable if necessary.
* Then, if this character turns out to be unassigned or a fallback that
* is not taken, the callback code must not save the new state in the converter
* because the new state is for a character that is not output.
* However, the callback must still restore the state from the converter
* in case the callback function changed it for its output.
*/
cnv->fromUnicodeStatus=prevLength; /* save the old state */
value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c);
if(value<=0xff) {
if(value==0 && MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c)==0) {
/* no mapping, leave value==0 */
length=0;
} else if(prevLength<=1) {
length=1;
} else {
/* change from double-byte mode to single-byte */
if (siLength == 1) {
value|=(uint32_t)siBytes[0]<<8;
length = 2;
} else if (siLength == 2) {
value|=(uint32_t)siBytes[1]<<8;
value|=(uint32_t)siBytes[0]<<16;
length = 3;
}
prevLength=1;
}
} else {
if(prevLength==2) {
length=2;
} else {
/* change from single-byte mode to double-byte */
if (soLength == 1) {
value|=(uint32_t)soBytes[0]<<16;
length = 3;
} else if (soLength == 2) {
value|=(uint32_t)soBytes[1]<<16;
value|=(uint32_t)soBytes[0]<<24;
length = 4;
}
prevLength=2;
}
}
break;
case MBCS_OUTPUT_DBCS_ONLY:
/* table with single-byte results, but only DBCS mappings used */
value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c);
if(value<=0xff) {
/* no mapping or SBCS result, not taken for DBCS-only */
value=stage2Entry=0; /* stage2Entry=0 to reset roundtrip flags */
length=0;
} else {
length=2;
}
break;
case MBCS_OUTPUT_3:
p=MBCS_POINTER_3_FROM_STAGE_2(bytes, stage2Entry, c);
value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2];
if(value<=0xff) {
length=1;
} else if(value<=0xffff) {
length=2;
} else {
length=3;
}
break;
case MBCS_OUTPUT_4:
value=MBCS_VALUE_4_FROM_STAGE_2(bytes, stage2Entry, c);
if(value<=0xff) {
length=1;
} else if(value<=0xffff) {
length=2;
} else if(value<=0xffffff) {
length=3;
} else {
length=4;
}
break;
case MBCS_OUTPUT_3_EUC:
value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c);
/* EUC 16-bit fixed-length representation */
if(value<=0xff) {
length=1;
} else if((value&0x8000)==0) {
value|=0x8e8000;
length=3;
} else if((value&0x80)==0) {
value|=0x8f0080;
length=3;
} else {
length=2;
}
break;
case MBCS_OUTPUT_4_EUC:
p=MBCS_POINTER_3_FROM_STAGE_2(bytes, stage2Entry, c);
value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2];
/* EUC 16-bit fixed-length representation applied to the first two bytes */
if(value<=0xff) {
length=1;
} else if(value<=0xffff) {
length=2;
} else if((value&0x800000)==0) {
value|=0x8e800000;
length=4;
} else if((value&0x8000)==0) {
value|=0x8f008000;
length=4;
} else {
length=3;
}
break;
default:
/* must not occur */
/*
* To avoid compiler warnings that value & length may be
* used without having been initialized, we set them here.
* In reality, this is unreachable code.
* Not having a default branch also causes warnings with
* some compilers.
*/
value=stage2Entry=0; /* stage2Entry=0 to reset roundtrip flags */
length=0;
break;
}
/* is this code point assigned, or do we use fallbacks? */
if(!(MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c)!=0 ||
(UCNV_FROM_U_USE_FALLBACK(cnv, c) && value!=0))
) {
/*
* We allow a 0 byte output if the "assigned" bit is set for this entry.
* There is no way with this data structure for fallback output
* to be a zero byte.
*/
unassigned:
/* try an extension mapping */
pArgs->source=source;
c=_extFromU(cnv, cnv->sharedData,
c, &source, sourceLimit,
&target, target+targetCapacity,
&offsets, sourceIndex,
pArgs->flush,
pErrorCode);
nextSourceIndex+=(int32_t)(source-pArgs->source);
prevLength=cnv->fromUnicodeStatus; /* restore SISO state */
if(U_FAILURE(*pErrorCode)) {
/* not mappable or buffer overflow */
break;
} else {
/* a mapping was written to the target, continue */
/* recalculate the targetCapacity after an extension mapping */
targetCapacity=(int32_t)(pArgs->targetLimit-(char *)target);
/* normal end of conversion: prepare for a new character */
if(offsets!=NULL) {
prevSourceIndex=sourceIndex;
sourceIndex=nextSourceIndex;
}
continue;
}
}
}
/* write the output character bytes from value and length */
/* from the first if in the loop we know that targetCapacity>0 */
if(length<=targetCapacity) {
if(offsets==NULL) {
switch(length) {
/* each branch falls through to the next one */
case 4:
*target++=(uint8_t)(value>>24);
U_FALLTHROUGH;
case 3:
*target++=(uint8_t)(value>>16);
U_FALLTHROUGH;
case 2:
*target++=(uint8_t)(value>>8);
U_FALLTHROUGH;
case 1:
*target++=(uint8_t)value;
U_FALLTHROUGH;
default:
/* will never occur */
break;
}
} else {
switch(length) {
/* each branch falls through to the next one */
case 4:
*target++=(uint8_t)(value>>24);
*offsets++=sourceIndex;
U_FALLTHROUGH;
case 3:
*target++=(uint8_t)(value>>16);
*offsets++=sourceIndex;
U_FALLTHROUGH;
case 2:
*target++=(uint8_t)(value>>8);
*offsets++=sourceIndex;
U_FALLTHROUGH;
case 1:
*target++=(uint8_t)value;
*offsets++=sourceIndex;
U_FALLTHROUGH;
default:
/* will never occur */
break;
}
}
targetCapacity-=length;
} else {
uint8_t *charErrorBuffer;
/*
* We actually do this backwards here:
* In order to save an intermediate variable, we output
* first to the overflow buffer what does not fit into the
* regular target.
*/
/* we know that 1<=targetCapacity<length<=4 */
length-=targetCapacity;
charErrorBuffer=(uint8_t *)cnv->charErrorBuffer;
switch(length) {
/* each branch falls through to the next one */
case 3:
*charErrorBuffer++=(uint8_t)(value>>16);
U_FALLTHROUGH;
case 2:
*charErrorBuffer++=(uint8_t)(value>>8);
U_FALLTHROUGH;
case 1:
*charErrorBuffer=(uint8_t)value;
U_FALLTHROUGH;
default:
/* will never occur */
break;
}
cnv->charErrorBufferLength=(int8_t)length;
/* now output what fits into the regular target */
value>>=8*length; /* length was reduced by targetCapacity */
switch(targetCapacity) {
/* each branch falls through to the next one */
case 3:
*target++=(uint8_t)(value>>16);
if(offsets!=NULL) {
*offsets++=sourceIndex;
}
U_FALLTHROUGH;
case 2:
*target++=(uint8_t)(value>>8);
if(offsets!=NULL) {
*offsets++=sourceIndex;
}
U_FALLTHROUGH;
case 1:
*target++=(uint8_t)value;
if(offsets!=NULL) {
*offsets++=sourceIndex;
}
U_FALLTHROUGH;
default:
/* will never occur */
break;
}
/* target overflow */
targetCapacity=0;
*pErrorCode=U_BUFFER_OVERFLOW_ERROR;
c=0;
break;
}
/* normal end of conversion: prepare for a new character */
c=0;
if(offsets!=NULL) {
prevSourceIndex=sourceIndex;
sourceIndex=nextSourceIndex;
}
continue;
} else {
/* target is full */
*pErrorCode=U_BUFFER_OVERFLOW_ERROR;
break;
}
}
/*
* the end of the input stream and detection of truncated input
* are handled by the framework, but for EBCDIC_STATEFUL conversion
* we need to emit an SI at the very end
*
* conditions:
* successful
* EBCDIC_STATEFUL in DBCS mode
* end of input and no truncated input
*/
if( U_SUCCESS(*pErrorCode) &&
outputType==MBCS_OUTPUT_2_SISO && prevLength==2 &&
pArgs->flush && source>=sourceLimit && c==0
) {
/* EBCDIC_STATEFUL ending with DBCS: emit an SI to return the output stream to SBCS */
if(targetCapacity>0) {
*target++=(uint8_t)siBytes[0];
if (siLength == 2) {
if (targetCapacity<2) {
cnv->charErrorBuffer[0]=(uint8_t)siBytes[1];
cnv->charErrorBufferLength=1;
*pErrorCode=U_BUFFER_OVERFLOW_ERROR;
} else {
*target++=(uint8_t)siBytes[1];
}
}
if(offsets!=NULL) {
/* set the last source character's index (sourceIndex points at sourceLimit now) */
*offsets++=prevSourceIndex;
}
} else {
/* target is full */
cnv->charErrorBuffer[0]=(uint8_t)siBytes[0];
if (siLength == 2) {
cnv->charErrorBuffer[1]=(uint8_t)siBytes[1];
}
cnv->charErrorBufferLength=siLength;
*pErrorCode=U_BUFFER_OVERFLOW_ERROR;
}
prevLength=1; /* we switched into SBCS */
}
/* set the converter state back into UConverter */
cnv->fromUChar32=c;
cnv->fromUnicodeStatus=prevLength;
/* write back the updated pointers */
pArgs->source=source;
pArgs->target=(char *)target;
pArgs->offsets=offsets;
}
/*
* This is another simple conversion function for internal use by other
* conversion implementations.
* It does not use the converter state nor call callbacks.
* It does not handle the EBCDIC swaplfnl option (set in UConverter).
* It handles conversion extensions but not GB 18030.
*
* It converts one single Unicode code point into codepage bytes, encoded
* as one 32-bit value. The function returns the number of bytes in *pValue:
* 1..4 the number of bytes in *pValue
* 0 unassigned (*pValue undefined)
* -1 illegal (currently not used, *pValue undefined)
*
* *pValue will contain the resulting bytes with the last byte in bits 7..0,
* the second to last byte in bits 15..8, etc.
* Currently, the function assumes but does not check that 0<=c<=0x10ffff.
*/
U_CFUNC int32_t
ucnv_MBCSFromUChar32(UConverterSharedData *sharedData,
UChar32 c, uint32_t *pValue,
UBool useFallback) {
const int32_t *cx;
const uint16_t *table;
#if 0
/* #if 0 because this is not currently used in ICU - reduce code, increase code coverage */
const uint8_t *p;
#endif
uint32_t stage2Entry;
uint32_t value;
int32_t length;
/* BMP-only codepages are stored without stage 1 entries for supplementary code points */
if(c<=0xffff || (sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY)) {
table=sharedData->mbcs.fromUnicodeTable;
/* convert the Unicode code point in c into codepage bytes (same as in _MBCSFromUnicodeWithOffsets) */
if(sharedData->mbcs.outputType==MBCS_OUTPUT_1) {
value=MBCS_SINGLE_RESULT_FROM_U(table, (uint16_t *)sharedData->mbcs.fromUnicodeBytes, c);
/* is this code point assigned, or do we use fallbacks? */
if(useFallback ? value>=0x800 : value>=0xc00) {
*pValue=value&0xff;
return 1;
}
} else /* outputType!=MBCS_OUTPUT_1 */ {
stage2Entry=MBCS_STAGE_2_FROM_U(table, c);
/* get the bytes and the length for the output */
switch(sharedData->mbcs.outputType) {
case MBCS_OUTPUT_2:
value=MBCS_VALUE_2_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c);
if(value<=0xff) {
length=1;
} else {
length=2;
}
break;
#if 0
/* #if 0 because this is not currently used in ICU - reduce code, increase code coverage */
case MBCS_OUTPUT_DBCS_ONLY:
/* table with single-byte results, but only DBCS mappings used */
value=MBCS_VALUE_2_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c);
if(value<=0xff) {
/* no mapping or SBCS result, not taken for DBCS-only */
value=stage2Entry=0; /* stage2Entry=0 to reset roundtrip flags */
length=0;
} else {
length=2;
}
break;
case MBCS_OUTPUT_3:
p=MBCS_POINTER_3_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c);
value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2];
if(value<=0xff) {
length=1;
} else if(value<=0xffff) {
length=2;
} else {
length=3;
}
break;
case MBCS_OUTPUT_4:
value=MBCS_VALUE_4_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c);
if(value<=0xff) {
length=1;
} else if(value<=0xffff) {
length=2;
} else if(value<=0xffffff) {
length=3;
} else {
length=4;
}
break;
case MBCS_OUTPUT_3_EUC:
value=MBCS_VALUE_2_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c);
/* EUC 16-bit fixed-length representation */
if(value<=0xff) {
length=1;
} else if((value&0x8000)==0) {
value|=0x8e8000;
length=3;
} else if((value&0x80)==0) {
value|=0x8f0080;
length=3;
} else {
length=2;
}
break;
case MBCS_OUTPUT_4_EUC:
p=MBCS_POINTER_3_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c);
value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2];
/* EUC 16-bit fixed-length representation applied to the first two bytes */
if(value<=0xff) {
length=1;
} else if(value<=0xffff) {
length=2;
} else if((value&0x800000)==0) {
value|=0x8e800000;
length=4;
} else if((value&0x8000)==0) {
value|=0x8f008000;
length=4;
} else {
length=3;
}
break;
#endif
default:
/* must not occur */
return -1;
}
/* is this code point assigned, or do we use fallbacks? */
if( MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c) ||
(FROM_U_USE_FALLBACK(useFallback, c) && value!=0)
) {
/*
* We allow a 0 byte output if the "assigned" bit is set for this entry.
* There is no way with this data structure for fallback output
* to be a zero byte.
*/
/* assigned */
*pValue=value;
return length;
}
}
}
cx=sharedData->mbcs.extIndexes;
if(cx!=NULL) {
length=ucnv_extSimpleMatchFromU(cx, c, pValue, useFallback);
return length>=0 ? length : -length; /* return abs(length); */
}
/* unassigned */
return 0;
}
#if 0
/*
* This function has been moved to ucnv2022.c for inlining.
* This implementation is here only for documentation purposes
*/
/**
* This version of ucnv_MBCSFromUChar32() is optimized for single-byte codepages.
* It does not handle the EBCDIC swaplfnl option (set in UConverter).
* It does not handle conversion extensions (_extFromU()).
*
* It returns the codepage byte for the code point, or -1 if it is unassigned.
*/
U_CFUNC int32_t
ucnv_MBCSSingleFromUChar32(UConverterSharedData *sharedData,
UChar32 c,
UBool useFallback) {
const uint16_t *table;
int32_t value;
/* BMP-only codepages are stored without stage 1 entries for supplementary code points */
if(c>=0x10000 && !(sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY)) {
return -1;
}
/* convert the Unicode code point in c into codepage bytes (same as in _MBCSFromUnicodeWithOffsets) */
table=sharedData->mbcs.fromUnicodeTable;
/* get the byte for the output */
value=MBCS_SINGLE_RESULT_FROM_U(table, (uint16_t *)sharedData->mbcs.fromUnicodeBytes, c);
/* is this code point assigned, or do we use fallbacks? */
if(useFallback ? value>=0x800 : value>=0xc00) {
return value&0xff;
} else {
return -1;
}
}
#endif
/* MBCS-from-UTF-8 conversion functions ------------------------------------- */
/* offsets for n-byte UTF-8 sequences that were calculated with ((lead<<6)+trail)<<6+trail... */
static const UChar32
utf8_offsets[5]={ 0, 0, 0x3080, 0xE2080, 0x3C82080 };
static void U_CALLCONV
ucnv_SBCSFromUTF8(UConverterFromUnicodeArgs *pFromUArgs,
UConverterToUnicodeArgs *pToUArgs,
UErrorCode *pErrorCode) {
UConverter *utf8, *cnv;
const uint8_t *source, *sourceLimit;
uint8_t *target;
int32_t targetCapacity;
const uint16_t *table, *sbcsIndex;
const uint16_t *results;
int8_t oldToULength, toULength, toULimit;
UChar32 c;
uint8_t b, t1, t2;
uint32_t asciiRoundtrips;
uint16_t value, minValue = 0;
UBool hasSupplementary;
/* set up the local pointers */
utf8=pToUArgs->converter;
cnv=pFromUArgs->converter;
source=(uint8_t *)pToUArgs->source;
sourceLimit=(uint8_t *)pToUArgs->sourceLimit;
target=(uint8_t *)pFromUArgs->target;
targetCapacity=(int32_t)(pFromUArgs->targetLimit-pFromUArgs->target);
table=cnv->sharedData->mbcs.fromUnicodeTable;
sbcsIndex=cnv->sharedData->mbcs.sbcsIndex;
if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
results=(uint16_t *)cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes;
} else {
results=(uint16_t *)cnv->sharedData->mbcs.fromUnicodeBytes;
}
asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips;
if(cnv->useFallback) {
/* use all roundtrip and fallback results */
minValue=0x800;
} else {
/* use only roundtrips and fallbacks from private-use characters */
minValue=0xc00;
}
hasSupplementary=(UBool)(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY);
/* get the converter state from the UTF-8 UConverter */
if(utf8->toULength > 0) {
toULength=oldToULength=utf8->toULength;
toULimit=(int8_t)utf8->mode;
c=(UChar32)utf8->toUnicodeStatus;
} else {
toULength=oldToULength=toULimit=0;
c = 0;
}
// The conversion loop checks source<sourceLimit only once per 1/2/3-byte character.
// If the buffer ends with a truncated 2- or 3-byte sequence,
// then we reduce the sourceLimit to before that,
// and collect the remaining bytes after the conversion loop.
{
// Do not go back into the bytes that will be read for finishing a partial
// sequence from the previous buffer.
int32_t length=(int32_t)(sourceLimit-source) - (toULimit-oldToULength);
if(length>0) {
uint8_t b1=*(sourceLimit-1);
if(U8_IS_SINGLE(b1)) {
// common ASCII character
} else if(U8_IS_TRAIL(b1) && length>=2) {
uint8_t b2=*(sourceLimit-2);
if(0xe0<=b2 && b2<0xf0 && U8_IS_VALID_LEAD3_AND_T1(b2, b1)) {
// truncated 3-byte sequence
sourceLimit-=2;
}
} else if(0xc2<=b1 && b1<0xf0) {
// truncated 2- or 3-byte sequence
--sourceLimit;
}
}
}
if(c!=0 && targetCapacity>0) {
utf8->toUnicodeStatus=0;
utf8->toULength=0;
goto moreBytes;
/*
* Note: We could avoid the goto by duplicating some of the moreBytes
* code, but only up to the point of collecting a complete UTF-8
* sequence; then recurse for the toUBytes[toULength]
* and then continue with normal conversion.
*
* If so, move this code to just after initializing the minimum
* set of local variables for reading the UTF-8 input
* (utf8, source, target, limits but not cnv, table, minValue, etc.).
*
* Potential advantages:
* - avoid the goto
* - oldToULength could become a local variable in just those code blocks
* that deal with buffer boundaries
* - possibly faster if the goto prevents some compiler optimizations
* (this would need measuring to confirm)
* Disadvantage:
* - code duplication
*/
}
/* conversion loop */
while(source<sourceLimit) {
if(targetCapacity>0) {
b=*source++;
if(U8_IS_SINGLE(b)) {
/* convert ASCII */
if(IS_ASCII_ROUNDTRIP(b, asciiRoundtrips)) {
*target++=(uint8_t)b;
--targetCapacity;
continue;
} else {
c=b;
value=SBCS_RESULT_FROM_UTF8(sbcsIndex, results, 0, c);
}
} else {
if(b<0xe0) {
if( /* handle U+0080..U+07FF inline */
b>=0xc2 &&
(t1=(uint8_t)(*source-0x80)) <= 0x3f
) {
c=b&0x1f;
++source;
value=SBCS_RESULT_FROM_UTF8(sbcsIndex, results, c, t1);
if(value>=minValue) {
*target++=(uint8_t)value;
--targetCapacity;
continue;
} else {
c=(c<<6)|t1;
}
} else {
c=-1;
}
} else if(b==0xe0) {
if( /* handle U+0800..U+0FFF inline */
(t1=(uint8_t)(source[0]-0x80)) <= 0x3f && t1 >= 0x20 &&
(t2=(uint8_t)(source[1]-0x80)) <= 0x3f
) {
c=t1;
source+=2;
value=SBCS_RESULT_FROM_UTF8(sbcsIndex, results, c, t2);
if(value>=minValue) {
*target++=(uint8_t)value;
--targetCapacity;
continue;
} else {
c=(c<<6)|t2;
}
} else {
c=-1;
}
} else {
c=-1;
}
if(c<0) {
/* handle "complicated" and error cases, and continuing partial characters */
oldToULength=0;
toULength=1;
toULimit=U8_COUNT_BYTES_NON_ASCII(b);
c=b;
moreBytes:
while(toULength<toULimit) {
/*
* The sourceLimit may have been adjusted before the conversion loop
* to stop before a truncated sequence.
* Here we need to use the real limit in case we have two truncated
* sequences at the end.
* See ticket #7492.
*/
if(source<(uint8_t *)pToUArgs->sourceLimit) {
b=*source;
if(icu::UTF8::isValidTrail(c, b, toULength, toULimit)) {
++source;
++toULength;
c=(c<<6)+b;
} else {
break; /* sequence too short, stop with toULength<toULimit */
}
} else {
/* store the partial UTF-8 character, compatible with the regular UTF-8 converter */
source-=(toULength-oldToULength);
while(oldToULength<toULength) {
utf8->toUBytes[oldToULength++]=*source++;
}
utf8->toUnicodeStatus=c;
utf8->toULength=toULength;
utf8->mode=toULimit;
pToUArgs->source=(char *)source;
pFromUArgs->target=(char *)target;
return;
}
}
if(toULength==toULimit) {
c-=utf8_offsets[toULength];
if(toULength<=3) { /* BMP */
value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
} else {
/* supplementary code point */
if(!hasSupplementary) {
/* BMP-only codepages are stored without stage 1 entries for supplementary code points */
value=0;
} else {
value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
}
}
} else {
/* error handling: illegal UTF-8 byte sequence */
source-=(toULength-oldToULength);
while(oldToULength<toULength) {
utf8->toUBytes[oldToULength++]=*source++;
}
utf8->toULength=toULength;
pToUArgs->source=(char *)source;
pFromUArgs->target=(char *)target;
*pErrorCode=U_ILLEGAL_CHAR_FOUND;
return;
}
}
}
if(value>=minValue) {
/* output the mapping for c */
*target++=(uint8_t)value;
--targetCapacity;
} else {
/* value<minValue means c is unassigned (unmappable) */
/*
* Try an extension mapping.
* Pass in no source because we don't have UTF-16 input.
* If we have a partial match on c, we will return and revert
* to UTF-8->UTF-16->charset conversion.
*/
static const UChar nul=0;
const UChar *noSource=&nul;
c=_extFromU(cnv, cnv->sharedData,
c, &noSource, noSource,
&target, target+targetCapacity,
NULL, -1,
pFromUArgs->flush,
pErrorCode);
if(U_FAILURE(*pErrorCode)) {
/* not mappable or buffer overflow */
cnv->fromUChar32=c;
break;
} else if(cnv->preFromUFirstCP>=0) {
/*
* Partial match, return and revert to pivoting.
* In normal from-UTF-16 conversion, we would just continue
* but then exit the loop because the extension match would
* have consumed the source.
*/
*pErrorCode=U_USING_DEFAULT_WARNING;
break;
} else {
/* a mapping was written to the target, continue */
/* recalculate the targetCapacity after an extension mapping */
targetCapacity=(int32_t)(pFromUArgs->targetLimit-(char *)target);
}
}
} else {
/* target is full */
*pErrorCode=U_BUFFER_OVERFLOW_ERROR;
break;
}
}
/*
* The sourceLimit may have been adjusted before the conversion loop
* to stop before a truncated sequence.
* If so, then collect the truncated sequence now.
*/
if(U_SUCCESS(*pErrorCode) &&
cnv->preFromUFirstCP<0 &&
source<(sourceLimit=(uint8_t *)pToUArgs->sourceLimit)) {
c=utf8->toUBytes[0]=b=*source++;
toULength=1;
toULimit=U8_COUNT_BYTES(b);
while(source<sourceLimit) {
utf8->toUBytes[toULength++]=b=*source++;
c=(c<<6)+b;
}
utf8->toUnicodeStatus=c;
utf8->toULength=toULength;
utf8->mode=toULimit;
}
/* write back the updated pointers */
pToUArgs->source=(char *)source;
pFromUArgs->target=(char *)target;
}
static void U_CALLCONV
ucnv_DBCSFromUTF8(UConverterFromUnicodeArgs *pFromUArgs,
UConverterToUnicodeArgs *pToUArgs,
UErrorCode *pErrorCode) {
UConverter *utf8, *cnv;
const uint8_t *source, *sourceLimit;
uint8_t *target;
int32_t targetCapacity;
const uint16_t *table, *mbcsIndex;
const uint16_t *results;
int8_t oldToULength, toULength, toULimit;
UChar32 c;
uint8_t b, t1, t2;
uint32_t stage2Entry;
uint32_t asciiRoundtrips;
uint16_t value = 0;
UBool hasSupplementary;
/* set up the local pointers */
utf8=pToUArgs->converter;
cnv=pFromUArgs->converter;
source=(uint8_t *)pToUArgs->source;
sourceLimit=(uint8_t *)pToUArgs->sourceLimit;
target=(uint8_t *)pFromUArgs->target;
targetCapacity=(int32_t)(pFromUArgs->targetLimit-pFromUArgs->target);
table=cnv->sharedData->mbcs.fromUnicodeTable;
mbcsIndex=cnv->sharedData->mbcs.mbcsIndex;
if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
results=(uint16_t *)cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes;
} else {
results=(uint16_t *)cnv->sharedData->mbcs.fromUnicodeBytes;
}
asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips;
hasSupplementary=(UBool)(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY);
/* get the converter state from the UTF-8 UConverter */
if(utf8->toULength > 0) {
toULength=oldToULength=utf8->toULength;
toULimit=(int8_t)utf8->mode;
c=(UChar32)utf8->toUnicodeStatus;
} else {
toULength=oldToULength=toULimit=0;
c = 0;
}
// The conversion loop checks source<sourceLimit only once per 1/2/3-byte character.
// If the buffer ends with a truncated 2- or 3-byte sequence,
// then we reduce the sourceLimit to before that,
// and collect the remaining bytes after the conversion loop.
{
// Do not go back into the bytes that will be read for finishing a partial
// sequence from the previous buffer.
int32_t length=(int32_t)(sourceLimit-source) - (toULimit-oldToULength);
if(length>0) {
uint8_t b1=*(sourceLimit-1);
if(U8_IS_SINGLE(b1)) {
// common ASCII character
} else if(U8_IS_TRAIL(b1) && length>=2) {
uint8_t b2=*(sourceLimit-2);
if(0xe0<=b2 && b2<0xf0 && U8_IS_VALID_LEAD3_AND_T1(b2, b1)) {
// truncated 3-byte sequence
sourceLimit-=2;
}
} else if(0xc2<=b1 && b1<0xf0) {
// truncated 2- or 3-byte sequence
--sourceLimit;
}
}
}
if(c!=0 && targetCapacity>0) {
utf8->toUnicodeStatus=0;
utf8->toULength=0;
goto moreBytes;
/* See note in ucnv_SBCSFromUTF8() about this goto. */
}
/* conversion loop */
while(source<sourceLimit) {
if(targetCapacity>0) {
b=*source++;
if(U8_IS_SINGLE(b)) {
/* convert ASCII */
if(IS_ASCII_ROUNDTRIP(b, asciiRoundtrips)) {
*target++=b;
--targetCapacity;
continue;
} else {
value=DBCS_RESULT_FROM_UTF8(mbcsIndex, results, 0, b);
if(value==0) {
c=b;
goto unassigned;
}
}
} else {
if(b>=0xe0) {
if( /* handle U+0800..U+D7FF inline */
b<=0xed && // do not assume maxFastUChar>0xd7ff
U8_IS_VALID_LEAD3_AND_T1(b, t1=source[0]) &&
(t2=(uint8_t)(source[1]-0x80)) <= 0x3f
) {
c=((b&0xf)<<6)|(t1&0x3f);
source+=2;
value=DBCS_RESULT_FROM_UTF8(mbcsIndex, results, c, t2);
if(value==0) {
c=(c<<6)|t2;
goto unassigned;
}
} else {
c=-1;
}
} else {
if( /* handle U+0080..U+07FF inline */
b>=0xc2 &&
(t1=(uint8_t)(*source-0x80)) <= 0x3f
) {
c=b&0x1f;
++source;
value=DBCS_RESULT_FROM_UTF8(mbcsIndex, results, c, t1);
if(value==0) {
c=(c<<6)|t1;
goto unassigned;
}
} else {
c=-1;
}
}
if(c<0) {
/* handle "complicated" and error cases, and continuing partial characters */
oldToULength=0;
toULength=1;
toULimit=U8_COUNT_BYTES_NON_ASCII(b);
c=b;
moreBytes:
while(toULength<toULimit) {
/*
* The sourceLimit may have been adjusted before the conversion loop
* to stop before a truncated sequence.
* Here we need to use the real limit in case we have two truncated
* sequences at the end.
* See ticket #7492.
*/
if(source<(uint8_t *)pToUArgs->sourceLimit) {
b=*source;
if(icu::UTF8::isValidTrail(c, b, toULength, toULimit)) {
++source;
++toULength;
c=(c<<6)+b;
} else {
break; /* sequence too short, stop with toULength<toULimit */
}
} else {
/* store the partial UTF-8 character, compatible with the regular UTF-8 converter */
source-=(toULength-oldToULength);
while(oldToULength<toULength) {
utf8->toUBytes[oldToULength++]=*source++;
}
utf8->toUnicodeStatus=c;
utf8->toULength=toULength;
utf8->mode=toULimit;
pToUArgs->source=(char *)source;
pFromUArgs->target=(char *)target;
return;
}
}
if(toULength==toULimit) {
c-=utf8_offsets[toULength];
if(toULength<=3) { /* BMP */
stage2Entry=MBCS_STAGE_2_FROM_U(table, c);
} else {
/* supplementary code point */
if(!hasSupplementary) {
/* BMP-only codepages are stored without stage 1 entries for supplementary code points */
stage2Entry=0;
} else {
stage2Entry=MBCS_STAGE_2_FROM_U(table, c);
}
}
} else {
/* error handling: illegal UTF-8 byte sequence */
source-=(toULength-oldToULength);
while(oldToULength<toULength) {
utf8->toUBytes[oldToULength++]=*source++;
}
utf8->toULength=toULength;
pToUArgs->source=(char *)source;
pFromUArgs->target=(char *)target;
*pErrorCode=U_ILLEGAL_CHAR_FOUND;
return;
}
/* get the bytes and the length for the output */
/* MBCS_OUTPUT_2 */
value=MBCS_VALUE_2_FROM_STAGE_2(results, stage2Entry, c);
/* is this code point assigned, or do we use fallbacks? */
if(!(MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c) ||
(UCNV_FROM_U_USE_FALLBACK(cnv, c) && value!=0))
) {
goto unassigned;
}
}
}
/* write the output character bytes from value and length */
/* from the first if in the loop we know that targetCapacity>0 */
if(value<=0xff) {
/* this is easy because we know that there is enough space */
*target++=(uint8_t)value;
--targetCapacity;
} else /* length==2 */ {
*target++=(uint8_t)(value>>8);
if(2<=targetCapacity) {
*target++=(uint8_t)value;
targetCapacity-=2;
} else {
cnv->charErrorBuffer[0]=(char)value;
cnv->charErrorBufferLength=1;
/* target overflow */
*pErrorCode=U_BUFFER_OVERFLOW_ERROR;
break;
}
}
continue;
unassigned:
{
/*
* Try an extension mapping.
* Pass in no source because we don't have UTF-16 input.
* If we have a partial match on c, we will return and revert
* to UTF-8->UTF-16->charset conversion.
*/
static const UChar nul=0;
const UChar *noSource=&nul;
c=_extFromU(cnv, cnv->sharedData,
c, &noSource, noSource,
&target, target+targetCapacity,
NULL, -1,
pFromUArgs->flush,
pErrorCode);
if(U_FAILURE(*pErrorCode)) {
/* not mappable or buffer overflow */
cnv->fromUChar32=c;
break;
} else if(cnv->preFromUFirstCP>=0) {
/*
* Partial match, return and revert to pivoting.
* In normal from-UTF-16 conversion, we would just continue
* but then exit the loop because the extension match would
* have consumed the source.
*/
*pErrorCode=U_USING_DEFAULT_WARNING;
break;
} else {
/* a mapping was written to the target, continue */
/* recalculate the targetCapacity after an extension mapping */
targetCapacity=(int32_t)(pFromUArgs->targetLimit-(char *)target);
continue;
}
}
} else {
/* target is full */
*pErrorCode=U_BUFFER_OVERFLOW_ERROR;
break;
}
}
/*
* The sourceLimit may have been adjusted before the conversion loop
* to stop before a truncated sequence.
* If so, then collect the truncated sequence now.
*/
if(U_SUCCESS(*pErrorCode) &&
cnv->preFromUFirstCP<0 &&
source<(sourceLimit=(uint8_t *)pToUArgs->sourceLimit)) {
c=utf8->toUBytes[0]=b=*source++;
toULength=1;
toULimit=U8_COUNT_BYTES(b);
while(source<sourceLimit) {
utf8->toUBytes[toULength++]=b=*source++;
c=(c<<6)+b;
}
utf8->toUnicodeStatus=c;
utf8->toULength=toULength;
utf8->mode=toULimit;
}
/* write back the updated pointers */
pToUArgs->source=(char *)source;
pFromUArgs->target=(char *)target;
}
/* miscellaneous ------------------------------------------------------------ */
static void U_CALLCONV
ucnv_MBCSGetStarters(const UConverter* cnv,
UBool starters[256],
UErrorCode *) {
const int32_t *state0;
int i;
state0=cnv->sharedData->mbcs.stateTable[cnv->sharedData->mbcs.dbcsOnlyState];
for(i=0; i<256; ++i) {
/* all bytes that cause a state transition from state 0 are lead bytes */
starters[i]= (UBool)MBCS_ENTRY_IS_TRANSITION(state0[i]);
}
}
/*
* This is an internal function that allows other converter implementations
* to check whether a byte is a lead byte.
*/
U_CFUNC UBool
ucnv_MBCSIsLeadByte(UConverterSharedData *sharedData, char byte) {
return (UBool)MBCS_ENTRY_IS_TRANSITION(sharedData->mbcs.stateTable[0][(uint8_t)byte]);
}
static void U_CALLCONV
ucnv_MBCSWriteSub(UConverterFromUnicodeArgs *pArgs,
int32_t offsetIndex,
UErrorCode *pErrorCode) {
UConverter *cnv=pArgs->converter;
char *p, *subchar;
char buffer[4];
int32_t length;
/* first, select between subChar and subChar1 */
if( cnv->subChar1!=0 &&
(cnv->sharedData->mbcs.extIndexes!=NULL ?
cnv->useSubChar1 :
(cnv->invalidUCharBuffer[0]<=0xff))
) {
/* select subChar1 if it is set (not 0) and the unmappable Unicode code point is up to U+00ff (IBM MBCS behavior) */
subchar=(char *)&cnv->subChar1;
length=1;
} else {
/* select subChar in all other cases */
subchar=(char *)cnv->subChars;
length=cnv->subCharLen;
}
/* reset the selector for the next code point */
2022-10-28 06:11:55 +00:00
cnv->useSubChar1=false;
if (cnv->sharedData->mbcs.outputType == MBCS_OUTPUT_2_SISO) {
p=buffer;
/* fromUnicodeStatus contains prevLength */
switch(length) {
case 1:
if(cnv->fromUnicodeStatus==2) {
/* DBCS mode and SBCS sub char: change to SBCS */
cnv->fromUnicodeStatus=1;
*p++=UCNV_SI;
}
*p++=subchar[0];
break;
case 2:
if(cnv->fromUnicodeStatus<=1) {
/* SBCS mode and DBCS sub char: change to DBCS */
cnv->fromUnicodeStatus=2;
*p++=UCNV_SO;
}
*p++=subchar[0];
*p++=subchar[1];
break;
default:
*pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
return;
}
subchar=buffer;
length=(int32_t)(p-buffer);
}
ucnv_cbFromUWriteBytes(pArgs, subchar, length, offsetIndex, pErrorCode);
}
U_CFUNC UConverterType
ucnv_MBCSGetType(const UConverter* converter) {
/* SBCS, DBCS, and EBCDIC_STATEFUL are replaced by MBCS, but here we cheat a little */
if(converter->sharedData->mbcs.countStates==1) {
return (UConverterType)UCNV_SBCS;
} else if((converter->sharedData->mbcs.outputType&0xff)==MBCS_OUTPUT_2_SISO) {
return (UConverterType)UCNV_EBCDIC_STATEFUL;
} else if(converter->sharedData->staticData->minBytesPerChar==2 && converter->sharedData->staticData->maxBytesPerChar==2) {
return (UConverterType)UCNV_DBCS;
}
return (UConverterType)UCNV_MBCS;
}
#endif /* #if !UCONFIG_NO_LEGACY_CONVERSION */