godot/thirdparty/bullet/LinearMath/btReducedVector.h

321 lines
7.3 KiB
C++
Raw Normal View History

//
// btReducedVectors.h
// BulletLinearMath
//
// Created by Xuchen Han on 4/4/20.
//
#ifndef btReducedVectors_h
#define btReducedVectors_h
#include "btVector3.h"
#include "btMatrix3x3.h"
#include "btAlignedObjectArray.h"
#include <stdio.h>
#include <vector>
#include <algorithm>
struct TwoInts
{
int a,b;
};
inline bool operator<(const TwoInts& A, const TwoInts& B)
{
return A.b < B.b;
}
// A helper vector type used for CG projections
class btReducedVector
{
public:
btAlignedObjectArray<int> m_indices;
btAlignedObjectArray<btVector3> m_vecs;
int m_sz; // all m_indices value < m_sz
public:
btReducedVector():m_sz(0)
{
m_indices.resize(0);
m_vecs.resize(0);
m_indices.clear();
m_vecs.clear();
}
btReducedVector(int sz): m_sz(sz)
{
m_indices.resize(0);
m_vecs.resize(0);
m_indices.clear();
m_vecs.clear();
}
btReducedVector(int sz, const btAlignedObjectArray<int>& indices, const btAlignedObjectArray<btVector3>& vecs): m_sz(sz), m_indices(indices), m_vecs(vecs)
{
}
void simplify()
{
btAlignedObjectArray<int> old_indices(m_indices);
btAlignedObjectArray<btVector3> old_vecs(m_vecs);
m_indices.resize(0);
m_vecs.resize(0);
m_indices.clear();
m_vecs.clear();
for (int i = 0; i < old_indices.size(); ++i)
{
if (old_vecs[i].length2() > SIMD_EPSILON)
{
m_indices.push_back(old_indices[i]);
m_vecs.push_back(old_vecs[i]);
}
}
}
btReducedVector operator+(const btReducedVector& other)
{
btReducedVector ret(m_sz);
int i=0, j=0;
while (i < m_indices.size() && j < other.m_indices.size())
{
if (m_indices[i] < other.m_indices[j])
{
ret.m_indices.push_back(m_indices[i]);
ret.m_vecs.push_back(m_vecs[i]);
++i;
}
else if (m_indices[i] > other.m_indices[j])
{
ret.m_indices.push_back(other.m_indices[j]);
ret.m_vecs.push_back(other.m_vecs[j]);
++j;
}
else
{
ret.m_indices.push_back(other.m_indices[j]);
ret.m_vecs.push_back(m_vecs[i] + other.m_vecs[j]);
++i; ++j;
}
}
while (i < m_indices.size())
{
ret.m_indices.push_back(m_indices[i]);
ret.m_vecs.push_back(m_vecs[i]);
++i;
}
while (j < other.m_indices.size())
{
ret.m_indices.push_back(other.m_indices[j]);
ret.m_vecs.push_back(other.m_vecs[j]);
++j;
}
ret.simplify();
return ret;
}
btReducedVector operator-()
{
btReducedVector ret(m_sz);
for (int i = 0; i < m_indices.size(); ++i)
{
ret.m_indices.push_back(m_indices[i]);
ret.m_vecs.push_back(-m_vecs[i]);
}
ret.simplify();
return ret;
}
btReducedVector operator-(const btReducedVector& other)
{
btReducedVector ret(m_sz);
int i=0, j=0;
while (i < m_indices.size() && j < other.m_indices.size())
{
if (m_indices[i] < other.m_indices[j])
{
ret.m_indices.push_back(m_indices[i]);
ret.m_vecs.push_back(m_vecs[i]);
++i;
}
else if (m_indices[i] > other.m_indices[j])
{
ret.m_indices.push_back(other.m_indices[j]);
ret.m_vecs.push_back(-other.m_vecs[j]);
++j;
}
else
{
ret.m_indices.push_back(other.m_indices[j]);
ret.m_vecs.push_back(m_vecs[i] - other.m_vecs[j]);
++i; ++j;
}
}
while (i < m_indices.size())
{
ret.m_indices.push_back(m_indices[i]);
ret.m_vecs.push_back(m_vecs[i]);
++i;
}
while (j < other.m_indices.size())
{
ret.m_indices.push_back(other.m_indices[j]);
ret.m_vecs.push_back(-other.m_vecs[j]);
++j;
}
ret.simplify();
return ret;
}
bool operator==(const btReducedVector& other) const
{
if (m_sz != other.m_sz)
return false;
if (m_indices.size() != other.m_indices.size())
return false;
for (int i = 0; i < m_indices.size(); ++i)
{
if (m_indices[i] != other.m_indices[i] || m_vecs[i] != other.m_vecs[i])
{
return false;
}
}
return true;
}
bool operator!=(const btReducedVector& other) const
{
return !(*this == other);
}
btReducedVector& operator=(const btReducedVector& other)
{
if (this == &other)
{
return *this;
}
m_sz = other.m_sz;
m_indices.copyFromArray(other.m_indices);
m_vecs.copyFromArray(other.m_vecs);
return *this;
}
btScalar dot(const btReducedVector& other) const
{
btScalar ret = 0;
int j = 0;
for (int i = 0; i < m_indices.size(); ++i)
{
while (j < other.m_indices.size() && other.m_indices[j] < m_indices[i])
{
++j;
}
if (j < other.m_indices.size() && other.m_indices[j] == m_indices[i])
{
ret += m_vecs[i].dot(other.m_vecs[j]);
// ++j;
}
}
return ret;
}
btScalar dot(const btAlignedObjectArray<btVector3>& other) const
{
btScalar ret = 0;
for (int i = 0; i < m_indices.size(); ++i)
{
ret += m_vecs[i].dot(other[m_indices[i]]);
}
return ret;
}
btScalar length2() const
{
return this->dot(*this);
}
void normalize();
// returns the projection of this onto other
btReducedVector proj(const btReducedVector& other) const;
bool testAdd() const;
bool testMinus() const;
bool testDot() const;
bool testMultiply() const;
void test() const;
void print() const
{
for (int i = 0; i < m_indices.size(); ++i)
{
printf("%d: (%f, %f, %f)/", m_indices[i], m_vecs[i][0],m_vecs[i][1],m_vecs[i][2]);
}
printf("\n");
}
void sort()
{
std::vector<TwoInts> tuples;
for (int i = 0; i < m_indices.size(); ++i)
{
TwoInts ti;
ti.a = i;
ti.b = m_indices[i];
tuples.push_back(ti);
}
std::sort(tuples.begin(), tuples.end());
btAlignedObjectArray<int> new_indices;
btAlignedObjectArray<btVector3> new_vecs;
for (size_t i = 0; i < tuples.size(); ++i)
{
new_indices.push_back(tuples[i].b);
new_vecs.push_back(m_vecs[tuples[i].a]);
}
m_indices = new_indices;
m_vecs = new_vecs;
}
};
SIMD_FORCE_INLINE btReducedVector operator*(const btReducedVector& v, btScalar s)
{
btReducedVector ret(v.m_sz);
for (int i = 0; i < v.m_indices.size(); ++i)
{
ret.m_indices.push_back(v.m_indices[i]);
ret.m_vecs.push_back(s*v.m_vecs[i]);
}
ret.simplify();
return ret;
}
SIMD_FORCE_INLINE btReducedVector operator*(btScalar s, const btReducedVector& v)
{
return v*s;
}
SIMD_FORCE_INLINE btReducedVector operator/(const btReducedVector& v, btScalar s)
{
return v * (1.0/s);
}
SIMD_FORCE_INLINE btReducedVector& operator/=(btReducedVector& v, btScalar s)
{
v = v/s;
return v;
}
SIMD_FORCE_INLINE btReducedVector& operator+=(btReducedVector& v1, const btReducedVector& v2)
{
v1 = v1+v2;
return v1;
}
SIMD_FORCE_INLINE btReducedVector& operator-=(btReducedVector& v1, const btReducedVector& v2)
{
v1 = v1-v2;
return v1;
}
#endif /* btReducedVectors_h */