godot/modules/navigation/nav_agent.cpp

345 lines
13 KiB
C++
Raw Normal View History

/**************************************************************************/
/* nav_agent.cpp */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
2017-02-28 12:10:29 +00:00
#include "nav_agent.h"
2017-02-28 12:10:29 +00:00
#include "nav_map.h"
NavAgent::NavAgent() {
}
void NavAgent::set_avoidance_enabled(bool p_enabled) {
avoidance_enabled = p_enabled;
_update_rvo_agent_properties();
}
void NavAgent::set_use_3d_avoidance(bool p_enabled) {
use_3d_avoidance = p_enabled;
_update_rvo_agent_properties();
}
void NavAgent::_update_rvo_agent_properties() {
if (use_3d_avoidance) {
rvo_agent_3d.neighborDist_ = neighbor_distance;
rvo_agent_3d.maxNeighbors_ = max_neighbors;
rvo_agent_3d.timeHorizon_ = time_horizon_agents;
rvo_agent_3d.timeHorizonObst_ = time_horizon_obstacles;
rvo_agent_3d.radius_ = radius;
rvo_agent_3d.maxSpeed_ = max_speed;
rvo_agent_3d.position_ = RVO3D::Vector3(position.x, position.y, position.z);
// Replacing the internal velocity directly causes major jitter / bugs due to unpredictable velocity jumps, left line here for testing.
//rvo_agent_3d.velocity_ = RVO3D::Vector3(velocity.x, velocity.y ,velocity.z);
rvo_agent_3d.prefVelocity_ = RVO3D::Vector3(velocity.x, velocity.y, velocity.z);
rvo_agent_3d.height_ = height;
rvo_agent_3d.avoidance_layers_ = avoidance_layers;
rvo_agent_3d.avoidance_mask_ = avoidance_mask;
rvo_agent_3d.avoidance_priority_ = avoidance_priority;
} else {
rvo_agent_2d.neighborDist_ = neighbor_distance;
rvo_agent_2d.maxNeighbors_ = max_neighbors;
rvo_agent_2d.timeHorizon_ = time_horizon_agents;
rvo_agent_2d.timeHorizonObst_ = time_horizon_obstacles;
rvo_agent_2d.radius_ = radius;
rvo_agent_2d.maxSpeed_ = max_speed;
rvo_agent_2d.position_ = RVO2D::Vector2(position.x, position.z);
rvo_agent_2d.elevation_ = position.y;
// Replacing the internal velocity directly causes major jitter / bugs due to unpredictable velocity jumps, left line here for testing.
//rvo_agent_2d.velocity_ = RVO2D::Vector2(velocity.x, velocity.z);
rvo_agent_2d.prefVelocity_ = RVO2D::Vector2(velocity.x, velocity.z);
rvo_agent_2d.height_ = height;
rvo_agent_2d.avoidance_layers_ = avoidance_layers;
rvo_agent_2d.avoidance_mask_ = avoidance_mask;
rvo_agent_2d.avoidance_priority_ = avoidance_priority;
}
if (map != nullptr) {
if (avoidance_enabled) {
map->set_agent_as_controlled(this);
} else {
map->remove_agent_as_controlled(this);
}
}
agent_dirty = true;
}
void NavAgent::set_map(NavMap *p_map) {
map = p_map;
agent_dirty = true;
}
bool NavAgent::is_map_changed() {
if (map) {
bool is_changed = map->get_map_update_id() != map_update_id;
map_update_id = map->get_map_update_id();
return is_changed;
} else {
return false;
}
}
void NavAgent::set_avoidance_callback(Callable p_callback) {
avoidance_callback = p_callback;
}
bool NavAgent::has_avoidance_callback() const {
return avoidance_callback.is_valid();
}
void NavAgent::dispatch_avoidance_callback() {
if (!avoidance_callback.is_valid()) {
return;
}
Vector3 new_velocity;
if (use_3d_avoidance) {
new_velocity = Vector3(rvo_agent_3d.velocity_.x(), rvo_agent_3d.velocity_.y(), rvo_agent_3d.velocity_.z());
} else {
new_velocity = Vector3(rvo_agent_2d.velocity_.x(), 0.0, rvo_agent_2d.velocity_.y());
}
if (clamp_speed) {
new_velocity = new_velocity.limit_length(max_speed);
}
// Invoke the callback with the new velocity.
Variant args[] = { new_velocity };
const Variant *args_p[] = { &args[0] };
Variant return_value;
Callable::CallError call_error;
avoidance_callback.callp(args_p, 1, return_value, call_error);
}
void NavAgent::set_neighbor_distance(real_t p_neighbor_distance) {
neighbor_distance = p_neighbor_distance;
if (use_3d_avoidance) {
rvo_agent_3d.neighborDist_ = neighbor_distance;
} else {
rvo_agent_2d.neighborDist_ = neighbor_distance;
}
agent_dirty = true;
}
void NavAgent::set_max_neighbors(int p_max_neighbors) {
max_neighbors = p_max_neighbors;
if (use_3d_avoidance) {
rvo_agent_3d.maxNeighbors_ = max_neighbors;
} else {
rvo_agent_2d.maxNeighbors_ = max_neighbors;
}
agent_dirty = true;
}
void NavAgent::set_time_horizon_agents(real_t p_time_horizon) {
time_horizon_agents = p_time_horizon;
if (use_3d_avoidance) {
rvo_agent_3d.timeHorizon_ = time_horizon_agents;
} else {
rvo_agent_2d.timeHorizon_ = time_horizon_agents;
}
agent_dirty = true;
}
void NavAgent::set_time_horizon_obstacles(real_t p_time_horizon) {
time_horizon_obstacles = p_time_horizon;
if (use_3d_avoidance) {
rvo_agent_3d.timeHorizonObst_ = time_horizon_obstacles;
} else {
rvo_agent_2d.timeHorizonObst_ = time_horizon_obstacles;
}
agent_dirty = true;
}
void NavAgent::set_radius(real_t p_radius) {
radius = p_radius;
if (use_3d_avoidance) {
rvo_agent_3d.radius_ = radius;
} else {
rvo_agent_2d.radius_ = radius;
}
agent_dirty = true;
}
void NavAgent::set_height(real_t p_height) {
height = p_height;
if (use_3d_avoidance) {
rvo_agent_3d.height_ = height;
} else {
rvo_agent_2d.height_ = height;
}
agent_dirty = true;
}
void NavAgent::set_max_speed(real_t p_max_speed) {
max_speed = p_max_speed;
if (avoidance_enabled) {
if (use_3d_avoidance) {
rvo_agent_3d.maxSpeed_ = max_speed;
} else {
rvo_agent_2d.maxSpeed_ = max_speed;
}
}
agent_dirty = true;
}
void NavAgent::set_position(const Vector3 p_position) {
position = p_position;
if (avoidance_enabled) {
if (use_3d_avoidance) {
rvo_agent_3d.position_ = RVO3D::Vector3(p_position.x, p_position.y, p_position.z);
} else {
rvo_agent_2d.elevation_ = p_position.y;
rvo_agent_2d.position_ = RVO2D::Vector2(p_position.x, p_position.z);
}
}
agent_dirty = true;
}
void NavAgent::set_target_position(const Vector3 p_target_position) {
target_position = p_target_position;
}
void NavAgent::set_velocity(const Vector3 p_velocity) {
// Sets the "wanted" velocity for an agent as a suggestion
// This velocity is not guaranteed, RVO simulation will only try to fulfill it
velocity = p_velocity;
if (avoidance_enabled) {
if (use_3d_avoidance) {
rvo_agent_3d.prefVelocity_ = RVO3D::Vector3(velocity.x, velocity.y, velocity.z);
} else {
rvo_agent_2d.prefVelocity_ = RVO2D::Vector2(velocity.x, velocity.z);
}
}
agent_dirty = true;
}
void NavAgent::set_velocity_forced(const Vector3 p_velocity) {
// This function replaces the internal rvo simulation velocity
// should only be used after the agent was teleported
// as it destroys consistency in movement in cramped situations
// use velocity instead to update with a safer "suggestion"
velocity_forced = p_velocity;
if (avoidance_enabled) {
if (use_3d_avoidance) {
rvo_agent_3d.velocity_ = RVO3D::Vector3(p_velocity.x, p_velocity.y, p_velocity.z);
} else {
rvo_agent_2d.velocity_ = RVO2D::Vector2(p_velocity.x, p_velocity.z);
}
}
agent_dirty = true;
}
void NavAgent::update() {
// Updates this agent with the calculated results from the rvo simulation
if (avoidance_enabled) {
if (use_3d_avoidance) {
velocity = Vector3(rvo_agent_3d.velocity_.x(), rvo_agent_3d.velocity_.y(), rvo_agent_3d.velocity_.z());
} else {
velocity = Vector3(rvo_agent_2d.velocity_.x(), 0.0, rvo_agent_2d.velocity_.y());
}
}
}
void NavAgent::set_avoidance_mask(uint32_t p_mask) {
avoidance_mask = p_mask;
if (use_3d_avoidance) {
rvo_agent_3d.avoidance_mask_ = avoidance_mask;
} else {
rvo_agent_2d.avoidance_mask_ = avoidance_mask;
}
agent_dirty = true;
}
void NavAgent::set_avoidance_layers(uint32_t p_layers) {
avoidance_layers = p_layers;
if (use_3d_avoidance) {
rvo_agent_3d.avoidance_layers_ = avoidance_layers;
} else {
rvo_agent_2d.avoidance_layers_ = avoidance_layers;
}
agent_dirty = true;
}
void NavAgent::set_avoidance_priority(real_t p_priority) {
ERR_FAIL_COND_MSG(p_priority < 0.0, "Avoidance priority must be between 0.0 and 1.0 inclusive.");
ERR_FAIL_COND_MSG(p_priority > 1.0, "Avoidance priority must be between 0.0 and 1.0 inclusive.");
avoidance_priority = p_priority;
if (use_3d_avoidance) {
rvo_agent_3d.avoidance_priority_ = avoidance_priority;
} else {
rvo_agent_2d.avoidance_priority_ = avoidance_priority;
}
agent_dirty = true;
};
bool NavAgent::check_dirty() {
const bool was_dirty = agent_dirty;
agent_dirty = false;
return was_dirty;
}
const Dictionary NavAgent::get_avoidance_data() const {
// Returns debug data from RVO simulation internals of this agent.
Dictionary _avoidance_data;
if (use_3d_avoidance) {
_avoidance_data["max_neighbors"] = int(rvo_agent_3d.maxNeighbors_);
_avoidance_data["max_speed"] = float(rvo_agent_3d.maxSpeed_);
_avoidance_data["neighbor_distance"] = float(rvo_agent_3d.neighborDist_);
_avoidance_data["new_velocity"] = Vector3(rvo_agent_3d.newVelocity_.x(), rvo_agent_3d.newVelocity_.y(), rvo_agent_3d.newVelocity_.z());
_avoidance_data["velocity"] = Vector3(rvo_agent_3d.velocity_.x(), rvo_agent_3d.velocity_.y(), rvo_agent_3d.velocity_.z());
_avoidance_data["position"] = Vector3(rvo_agent_3d.position_.x(), rvo_agent_3d.position_.y(), rvo_agent_3d.position_.z());
_avoidance_data["prefered_velocity"] = Vector3(rvo_agent_3d.prefVelocity_.x(), rvo_agent_3d.prefVelocity_.y(), rvo_agent_3d.prefVelocity_.z());
_avoidance_data["radius"] = float(rvo_agent_3d.radius_);
_avoidance_data["time_horizon_agents"] = float(rvo_agent_3d.timeHorizon_);
_avoidance_data["time_horizon_obstacles"] = 0.0;
_avoidance_data["height"] = float(rvo_agent_3d.height_);
_avoidance_data["avoidance_layers"] = int(rvo_agent_3d.avoidance_layers_);
_avoidance_data["avoidance_mask"] = int(rvo_agent_3d.avoidance_mask_);
_avoidance_data["avoidance_priority"] = float(rvo_agent_3d.avoidance_priority_);
} else {
_avoidance_data["max_neighbors"] = int(rvo_agent_2d.maxNeighbors_);
_avoidance_data["max_speed"] = float(rvo_agent_2d.maxSpeed_);
_avoidance_data["neighbor_distance"] = float(rvo_agent_2d.neighborDist_);
_avoidance_data["new_velocity"] = Vector3(rvo_agent_2d.newVelocity_.x(), 0.0, rvo_agent_2d.newVelocity_.y());
_avoidance_data["velocity"] = Vector3(rvo_agent_2d.velocity_.x(), 0.0, rvo_agent_2d.velocity_.y());
_avoidance_data["position"] = Vector3(rvo_agent_2d.position_.x(), 0.0, rvo_agent_2d.position_.y());
_avoidance_data["prefered_velocity"] = Vector3(rvo_agent_2d.prefVelocity_.x(), 0.0, rvo_agent_2d.prefVelocity_.y());
_avoidance_data["radius"] = float(rvo_agent_2d.radius_);
_avoidance_data["time_horizon_agents"] = float(rvo_agent_2d.timeHorizon_);
_avoidance_data["time_horizon_obstacles"] = float(rvo_agent_2d.timeHorizonObst_);
_avoidance_data["height"] = float(rvo_agent_2d.height_);
_avoidance_data["avoidance_layers"] = int(rvo_agent_2d.avoidance_layers_);
_avoidance_data["avoidance_mask"] = int(rvo_agent_2d.avoidance_mask_);
_avoidance_data["avoidance_priority"] = float(rvo_agent_2d.avoidance_priority_);
}
return _avoidance_data;
}