godot/thirdparty/embree/kernels/bvh/bvh_builder_sah_mb.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

714 lines
31 KiB
C++
Raw Normal View History

// Copyright 2009-2021 Intel Corporation
2021-04-20 16:38:09 +00:00
// SPDX-License-Identifier: Apache-2.0
#include "bvh.h"
#include "bvh_builder.h"
#include "../builders/bvh_builder_msmblur.h"
#include "../builders/primrefgen.h"
#include "../builders/splitter.h"
#include "../geometry/linei.h"
#include "../geometry/triangle.h"
#include "../geometry/trianglev.h"
#include "../geometry/trianglev_mb.h"
#include "../geometry/trianglei.h"
#include "../geometry/quadv.h"
#include "../geometry/quadi.h"
#include "../geometry/object.h"
#include "../geometry/instance.h"
2024-02-24 11:40:55 +00:00
#include "../geometry/instance_array.h"
2021-04-20 16:38:09 +00:00
#include "../geometry/subgrid.h"
#include "../common/state.h"
// FIXME: remove after removing BVHNBuilderMBlurRootTimeSplitsSAH
#include "../../common/algorithms/parallel_for_for.h"
#include "../../common/algorithms/parallel_for_for_prefix_sum.h"
namespace embree
{
namespace isa
{
#if 0
template<int N, typename Primitive>
struct CreateMBlurLeaf
{
typedef BVHN<N> BVH;
typedef typename BVH::NodeRef NodeRef;
typedef typename BVH::NodeRecordMB NodeRecordMB;
__forceinline CreateMBlurLeaf (BVH* bvh, PrimRef* prims, size_t time) : bvh(bvh), prims(prims), time(time) {}
__forceinline NodeRecordMB operator() (const PrimRef* prims, const range<size_t>& set, const FastAllocator::CachedAllocator& alloc) const
{
size_t items = Primitive::blocks(set.size());
size_t start = set.begin();
for (size_t i=start; i<end; i++) assert((*current.prims.prims)[start].geomID() == (*current.prims.prims)[i].geomID()); // assert that all geomIDs are identical
Primitive* accel = (Primitive*) alloc.malloc1(items*sizeof(Primitive),BVH::byteAlignment);
NodeRef node = bvh->encodeLeaf((char*)accel,items);
LBBox3fa allBounds = empty;
for (size_t i=0; i<items; i++)
allBounds.extend(accel[i].fillMB(prims, start, set.end(), bvh->scene, time));
return NodeRecordMB(node,allBounds);
}
BVH* bvh;
PrimRef* prims;
size_t time;
};
#endif
template<int N, typename Mesh, typename Primitive>
struct CreateMSMBlurLeaf
{
typedef BVHN<N> BVH;
typedef typename BVH::NodeRef NodeRef;
typedef typename BVH::NodeRecordMB4D NodeRecordMB4D;
__forceinline CreateMSMBlurLeaf (BVH* bvh) : bvh(bvh) {}
__forceinline const NodeRecordMB4D operator() (const BVHBuilderMSMBlur::BuildRecord& current, const FastAllocator::CachedAllocator& alloc) const
{
size_t items = Primitive::blocks(current.prims.size());
size_t start = current.prims.begin();
size_t end = current.prims.end();
for (size_t i=start; i<end; i++) assert((*current.prims.prims)[start].geomID() == (*current.prims.prims)[i].geomID()); // assert that all geomIDs are identical
Primitive* accel = (Primitive*) alloc.malloc1(items*sizeof(Primitive),BVH::byteNodeAlignment);
NodeRef node = bvh->encodeLeaf((char*)accel,items);
LBBox3fa allBounds = empty;
for (size_t i=0; i<items; i++)
allBounds.extend(accel[i].fillMB(current.prims.prims->data(), start, current.prims.end(), bvh->scene, current.prims.time_range));
return NodeRecordMB4D(node,allBounds,current.prims.time_range);
}
BVH* bvh;
};
/* Motion blur BVH with 4D nodes and internal time splits */
template<int N, typename Mesh, typename Primitive>
struct BVHNBuilderMBlurSAH : public Builder
{
typedef BVHN<N> BVH;
typedef typename BVHN<N>::NodeRef NodeRef;
typedef typename BVHN<N>::NodeRecordMB NodeRecordMB;
typedef typename BVHN<N>::AABBNodeMB AABBNodeMB;
BVH* bvh;
Scene* scene;
const size_t sahBlockSize;
const float intCost;
const size_t minLeafSize;
const size_t maxLeafSize;
const Geometry::GTypeMask gtype_;
BVHNBuilderMBlurSAH (BVH* bvh, Scene* scene, const size_t sahBlockSize, const float intCost, const size_t minLeafSize, const size_t maxLeafSize, const Geometry::GTypeMask gtype)
: bvh(bvh), scene(scene), sahBlockSize(sahBlockSize), intCost(intCost), minLeafSize(minLeafSize), maxLeafSize(min(maxLeafSize,Primitive::max_size()*BVH::maxLeafBlocks)), gtype_(gtype) {}
void build()
{
/* skip build for empty scene */
const size_t numPrimitives = scene->getNumPrimitives(gtype_,true);
if (numPrimitives == 0) { bvh->clear(); return; }
double t0 = bvh->preBuild(TOSTRING(isa) "::BVH" + toString(N) + "BuilderMBlurSAH");
#if PROFILE
profile(2,PROFILE_RUNS,numPrimitives,[&] (ProfileTimer& timer) {
#endif
//const size_t numTimeSteps = scene->getNumTimeSteps<typename Mesh::type_t,true>();
//const size_t numTimeSegments = numTimeSteps-1; assert(numTimeSteps > 1);
/*if (numTimeSegments == 1)
buildSingleSegment(numPrimitives);
else*/
buildMultiSegment(numPrimitives);
#if PROFILE
});
#endif
/* clear temporary data for static geometry */
bvh->cleanup();
bvh->postBuild(t0);
}
#if 0 // No longer compatible when time_ranges are present for geometries. Would have to create temporal nodes sometimes, and put only a single geometry into leaf.
void buildSingleSegment(size_t numPrimitives)
{
/* create primref array */
mvector<PrimRef> prims(scene->device,numPrimitives);
const PrimInfo pinfo = createPrimRefArrayMBlur(scene,gtype_,numPrimitives,prims,bvh->scene->progressInterface,0);
2021-04-20 16:38:09 +00:00
/* early out if no valid primitives */
if (pinfo.size() == 0) { bvh->clear(); return; }
/* estimate acceleration structure size */
const size_t node_bytes = pinfo.size()*sizeof(AABBNodeMB)/(4*N);
const size_t leaf_bytes = size_t(1.2*Primitive::blocks(pinfo.size())*sizeof(Primitive));
bvh->alloc.init_estimate(node_bytes+leaf_bytes);
/* settings for BVH build */
GeneralBVHBuilder::Settings settings;
settings.branchingFactor = N;
settings.maxDepth = BVH::maxBuildDepthLeaf;
settings.logBlockSize = bsr(sahBlockSize);
settings.minLeafSize = min(minLeafSize,maxLeafSize);
settings.maxLeafSize = maxLeafSize;
settings.travCost = travCost;
settings.intCost = intCost;
settings.singleThreadThreshold = bvh->alloc.fixSingleThreadThreshold(N,DEFAULT_SINGLE_THREAD_THRESHOLD,pinfo.size(),node_bytes+leaf_bytes);
/* build hierarchy */
auto root = BVHBuilderBinnedSAH::build<NodeRecordMB>
(typename BVH::CreateAlloc(bvh),typename BVH::AABBNodeMB::Create(),typename BVH::AABBNodeMB::Set(),
CreateMBlurLeaf<N,Primitive>(bvh,prims.data(),0),bvh->scene->progressInterface,
prims.data(),pinfo,settings);
bvh->set(root.ref,root.lbounds,pinfo.size());
}
#endif
void buildMultiSegment(size_t numPrimitives)
{
/* create primref array */
mvector<PrimRefMB> prims(scene->device,numPrimitives);
PrimInfoMB pinfo = createPrimRefArrayMSMBlur(scene,gtype_,numPrimitives,prims,bvh->scene->progressInterface);
2021-04-20 16:38:09 +00:00
/* early out if no valid primitives */
if (pinfo.size() == 0) { bvh->clear(); return; }
/* estimate acceleration structure size */
const size_t node_bytes = pinfo.num_time_segments*sizeof(AABBNodeMB)/(4*N);
const size_t leaf_bytes = size_t(1.2*Primitive::blocks(pinfo.num_time_segments)*sizeof(Primitive));
bvh->alloc.init_estimate(node_bytes+leaf_bytes);
/* settings for BVH build */
BVHBuilderMSMBlur::Settings settings;
settings.branchingFactor = N;
settings.maxDepth = BVH::maxDepth;
settings.logBlockSize = bsr(sahBlockSize);
settings.minLeafSize = min(minLeafSize,maxLeafSize);
settings.maxLeafSize = maxLeafSize;
settings.travCost = travCost;
settings.intCost = intCost;
settings.singleLeafTimeSegment = Primitive::singleTimeSegment;
settings.singleThreadThreshold = bvh->alloc.fixSingleThreadThreshold(N,DEFAULT_SINGLE_THREAD_THRESHOLD,pinfo.size(),node_bytes+leaf_bytes);
/* build hierarchy */
auto root =
BVHBuilderMSMBlur::build<NodeRef>(prims,pinfo,scene->device,
RecalculatePrimRef<Mesh>(scene),
typename BVH::CreateAlloc(bvh),
typename BVH::AABBNodeMB4D::Create(),
typename BVH::AABBNodeMB4D::Set(),
CreateMSMBlurLeaf<N,Mesh,Primitive>(bvh),
bvh->scene->progressInterface,
settings);
bvh->set(root.ref,root.lbounds,pinfo.num_time_segments);
}
void clear() {
}
};
/************************************************************************************/
/************************************************************************************/
/************************************************************************************/
/************************************************************************************/
struct GridRecalculatePrimRef
{
Scene* scene;
const SubGridBuildData * const sgrids;
__forceinline GridRecalculatePrimRef (Scene* scene, const SubGridBuildData * const sgrids)
: scene(scene), sgrids(sgrids) {}
__forceinline PrimRefMB operator() (const PrimRefMB& prim, const BBox1f time_range) const
{
const unsigned int geomID = prim.geomID();
const GridMesh* mesh = scene->get<GridMesh>(geomID);
const unsigned int buildID = prim.primID();
const SubGridBuildData &subgrid = sgrids[buildID];
const unsigned int primID = subgrid.primID;
const size_t x = subgrid.x();
const size_t y = subgrid.y();
const LBBox3fa lbounds = mesh->linearBounds(mesh->grid(primID),x,y,time_range);
const unsigned num_time_segments = mesh->numTimeSegments();
const range<int> tbounds = mesh->timeSegmentRange(time_range);
return PrimRefMB (lbounds, tbounds.size(), mesh->time_range, num_time_segments, geomID, buildID);
}
__forceinline LBBox3fa linearBounds(const PrimRefMB& prim, const BBox1f time_range) const {
const unsigned int geomID = prim.geomID();
const GridMesh* mesh = scene->get<GridMesh>(geomID);
const unsigned int buildID = prim.primID();
const SubGridBuildData &subgrid = sgrids[buildID];
const unsigned int primID = subgrid.primID;
const size_t x = subgrid.x();
const size_t y = subgrid.y();
return mesh->linearBounds(mesh->grid(primID),x,y,time_range);
}
};
template<int N>
struct CreateMSMBlurLeafGrid
{
typedef BVHN<N> BVH;
typedef typename BVH::NodeRef NodeRef;
typedef typename BVH::NodeRecordMB4D NodeRecordMB4D;
__forceinline CreateMSMBlurLeafGrid (Scene* scene, BVH* bvh, const SubGridBuildData * const sgrids) : scene(scene), bvh(bvh), sgrids(sgrids) {}
__forceinline const NodeRecordMB4D operator() (const BVHBuilderMSMBlur::BuildRecord& current, const FastAllocator::CachedAllocator& alloc) const
{
const size_t items = current.prims.size();
const size_t start = current.prims.begin();
const PrimRefMB* prims = current.prims.prims->data();
/* collect all subsets with unique geomIDs */
assert(items <= N);
unsigned int geomIDs[N];
unsigned int num_geomIDs = 1;
geomIDs[0] = prims[start].geomID();
for (size_t i=1;i<items;i++)
{
bool found = false;
const unsigned int new_geomID = prims[start+i].geomID();
for (size_t j=0;j<num_geomIDs;j++)
if (new_geomID == geomIDs[j])
{ found = true; break; }
if (!found)
geomIDs[num_geomIDs++] = new_geomID;
}
/* allocate all leaf memory in one single block */
SubGridMBQBVHN<N>* accel = (SubGridMBQBVHN<N>*) alloc.malloc1(num_geomIDs*sizeof(SubGridMBQBVHN<N>),BVH::byteAlignment);
typename BVH::NodeRef node = bvh->encodeLeaf((char*)accel,num_geomIDs);
LBBox3fa allBounds = empty;
for (size_t g=0;g<num_geomIDs;g++)
{
const GridMesh* __restrict__ const mesh = scene->get<GridMesh>(geomIDs[g]);
unsigned int x[N];
unsigned int y[N];
unsigned int primID[N];
BBox3fa bounds0[N];
BBox3fa bounds1[N];
unsigned int pos = 0;
for (size_t i=0;i<items;i++)
{
if (unlikely(prims[start+i].geomID() != geomIDs[g])) continue;
const SubGridBuildData &sgrid_bd = sgrids[prims[start+i].primID()];
x[pos] = sgrid_bd.sx;
y[pos] = sgrid_bd.sy;
primID[pos] = sgrid_bd.primID;
const size_t x = sgrid_bd.x();
const size_t y = sgrid_bd.y();
LBBox3fa newBounds = mesh->linearBounds(mesh->grid(sgrid_bd.primID),x,y,current.prims.time_range);
allBounds.extend(newBounds);
bounds0[pos] = newBounds.bounds0;
bounds1[pos] = newBounds.bounds1;
pos++;
}
assert(pos <= N);
new (&accel[g]) SubGridMBQBVHN<N>(x,y,primID,bounds0,bounds1,geomIDs[g],current.prims.time_range.lower,1.0f/current.prims.time_range.size(),pos);
}
return NodeRecordMB4D(node,allBounds,current.prims.time_range);
}
Scene *scene;
BVH* bvh;
const SubGridBuildData * const sgrids;
};
#if 0
template<int N>
struct CreateLeafGridMB
{
typedef BVHN<N> BVH;
typedef typename BVH::NodeRef NodeRef;
typedef typename BVH::NodeRecordMB NodeRecordMB;
__forceinline CreateLeafGridMB (Scene* scene, BVH* bvh, const SubGridBuildData * const sgrids)
: scene(scene), bvh(bvh), sgrids(sgrids) {}
__forceinline NodeRecordMB operator() (const PrimRef* prims, const range<size_t>& set, const FastAllocator::CachedAllocator& alloc) const
{
const size_t items = set.size();
const size_t start = set.begin();
/* collect all subsets with unique geomIDs */
assert(items <= N);
unsigned int geomIDs[N];
unsigned int num_geomIDs = 1;
geomIDs[0] = prims[start].geomID();
for (size_t i=1;i<items;i++)
{
bool found = false;
const unsigned int new_geomID = prims[start+i].geomID();
for (size_t j=0;j<num_geomIDs;j++)
if (new_geomID == geomIDs[j])
{ found = true; break; }
if (!found)
geomIDs[num_geomIDs++] = new_geomID;
}
/* allocate all leaf memory in one single block */
SubGridMBQBVHN<N>* accel = (SubGridMBQBVHN<N>*) alloc.malloc1(num_geomIDs*sizeof(SubGridMBQBVHN<N>),BVH::byteAlignment);
typename BVH::NodeRef node = bvh->encodeLeaf((char*)accel,num_geomIDs);
LBBox3fa allBounds = empty;
for (size_t g=0;g<num_geomIDs;g++)
{
const GridMesh* __restrict__ const mesh = scene->get<GridMesh>(geomIDs[g]);
unsigned int x[N];
unsigned int y[N];
unsigned int primID[N];
BBox3fa bounds0[N];
BBox3fa bounds1[N];
unsigned int pos = 0;
for (size_t i=0;i<items;i++)
{
if (unlikely(prims[start+i].geomID() != geomIDs[g])) continue;
const SubGridBuildData &sgrid_bd = sgrids[prims[start+i].primID()];
x[pos] = sgrid_bd.sx;
y[pos] = sgrid_bd.sy;
primID[pos] = sgrid_bd.primID;
const size_t x = sgrid_bd.x();
const size_t y = sgrid_bd.y();
bool MAYBE_UNUSED valid0 = mesh->buildBounds(mesh->grid(sgrid_bd.primID),x,y,0,bounds0[pos]);
bool MAYBE_UNUSED valid1 = mesh->buildBounds(mesh->grid(sgrid_bd.primID),x,y,1,bounds1[pos]);
assert(valid0);
assert(valid1);
allBounds.extend(LBBox3fa(bounds0[pos],bounds1[pos]));
pos++;
}
new (&accel[g]) SubGridMBQBVHN<N>(x,y,primID,bounds0,bounds1,geomIDs[g],0.0f,1.0f,pos);
}
return NodeRecordMB(node,allBounds);
}
Scene *scene;
BVH* bvh;
const SubGridBuildData * const sgrids;
};
#endif
/* Motion blur BVH with 4D nodes and internal time splits */
template<int N>
struct BVHNBuilderMBlurSAHGrid : public Builder
{
typedef BVHN<N> BVH;
typedef typename BVHN<N>::NodeRef NodeRef;
typedef typename BVHN<N>::NodeRecordMB NodeRecordMB;
typedef typename BVHN<N>::AABBNodeMB AABBNodeMB;
BVH* bvh;
Scene* scene;
const size_t sahBlockSize;
const float intCost;
const size_t minLeafSize;
const size_t maxLeafSize;
mvector<SubGridBuildData> sgrids;
BVHNBuilderMBlurSAHGrid (BVH* bvh, Scene* scene, const size_t sahBlockSize, const float intCost, const size_t minLeafSize, const size_t maxLeafSize)
: bvh(bvh), scene(scene), sahBlockSize(sahBlockSize), intCost(intCost), minLeafSize(minLeafSize), maxLeafSize(min(maxLeafSize,BVH::maxLeafBlocks)), sgrids(scene->device,0) {}
PrimInfo createPrimRefArrayMBlurGrid(Scene* scene, mvector<PrimRef>& prims, BuildProgressMonitor& progressMonitor, size_t itime)
{
/* first run to get #primitives */
ParallelForForPrefixSumState<PrimInfo> pstate;
Scene::Iterator<GridMesh,true> iter(scene);
pstate.init(iter,size_t(1024));
/* iterate over all meshes in the scene */
PrimInfo pinfo = parallel_for_for_prefix_sum0( pstate, iter, PrimInfo(empty), [&](GridMesh* mesh, const range<size_t>& r, size_t k, size_t geomID) -> PrimInfo {
PrimInfo pinfo(empty);
for (size_t j=r.begin(); j<r.end(); j++)
{
if (!mesh->valid(j,range<size_t>(0,1))) continue;
BBox3fa bounds = empty;
const PrimRef prim(bounds,unsigned(geomID),unsigned(j));
pinfo.add_center2(prim,mesh->getNumSubGrids(j));
}
return pinfo;
}, [](const PrimInfo& a, const PrimInfo& b) -> PrimInfo { return PrimInfo::merge(a,b); });
size_t numPrimitives = pinfo.size();
if (numPrimitives == 0) return pinfo;
/* resize arrays */
sgrids.resize(numPrimitives);
prims.resize(numPrimitives);
/* second run to fill primrefs and SubGridBuildData arrays */
pinfo = parallel_for_for_prefix_sum1( pstate, iter, PrimInfo(empty), [&](GridMesh* mesh, const range<size_t>& r, size_t k, size_t geomID, const PrimInfo& base) -> PrimInfo {
k = base.size();
size_t p_index = k;
PrimInfo pinfo(empty);
for (size_t j=r.begin(); j<r.end(); j++)
{
const GridMesh::Grid &g = mesh->grid(j);
if (!mesh->valid(j,range<size_t>(0,1))) continue;
for (unsigned int y=0; y<g.resY-1u; y+=2)
for (unsigned int x=0; x<g.resX-1u; x+=2)
{
BBox3fa bounds = empty;
if (!mesh->buildBounds(g,x,y,itime,bounds)) continue; // get bounds of subgrid
const PrimRef prim(bounds,unsigned(geomID),unsigned(p_index));
pinfo.add_center2(prim);
sgrids[p_index] = SubGridBuildData(x | g.get3x3FlagsX(x), y | g.get3x3FlagsY(y), unsigned(j));
prims[p_index++] = prim;
}
}
return pinfo;
}, [](const PrimInfo& a, const PrimInfo& b) -> PrimInfo { return PrimInfo::merge(a,b); });
assert(pinfo.size() == numPrimitives);
return pinfo;
}
PrimInfoMB createPrimRefArrayMSMBlurGrid(Scene* scene, mvector<PrimRefMB>& prims, BuildProgressMonitor& progressMonitor, BBox1f t0t1 = BBox1f(0.0f,1.0f))
{
/* first run to get #primitives */
ParallelForForPrefixSumState<PrimInfoMB> pstate;
Scene::Iterator<GridMesh,true> iter(scene);
pstate.init(iter,size_t(1024));
/* iterate over all meshes in the scene */
PrimInfoMB pinfoMB = parallel_for_for_prefix_sum0( pstate, iter, PrimInfoMB(empty), [&](GridMesh* mesh, const range<size_t>& r, size_t k, size_t /*geomID*/) -> PrimInfoMB {
PrimInfoMB pinfoMB(empty);
for (size_t j=r.begin(); j<r.end(); j++)
{
if (!mesh->valid(j, mesh->timeSegmentRange(t0t1))) continue;
LBBox3fa bounds(empty);
PrimInfoMB gridMB(0,mesh->getNumSubGrids(j));
pinfoMB.merge(gridMB);
}
return pinfoMB;
}, [](const PrimInfoMB& a, const PrimInfoMB& b) -> PrimInfoMB { return PrimInfoMB::merge2(a,b); });
size_t numPrimitives = pinfoMB.size();
if (numPrimitives == 0) return pinfoMB;
/* resize arrays */
sgrids.resize(numPrimitives);
prims.resize(numPrimitives);
/* second run to fill primrefs and SubGridBuildData arrays */
pinfoMB = parallel_for_for_prefix_sum1( pstate, iter, PrimInfoMB(empty), [&](GridMesh* mesh, const range<size_t>& r, size_t k, size_t geomID, const PrimInfoMB& base) -> PrimInfoMB {
k = base.size();
size_t p_index = k;
PrimInfoMB pinfoMB(empty);
for (size_t j=r.begin(); j<r.end(); j++)
{
if (!mesh->valid(j, mesh->timeSegmentRange(t0t1))) continue;
const GridMesh::Grid &g = mesh->grid(j);
for (unsigned int y=0; y<g.resY-1u; y+=2)
for (unsigned int x=0; x<g.resX-1u; x+=2)
{
const PrimRefMB prim(mesh->linearBounds(g,x,y,t0t1),mesh->numTimeSegments(),mesh->time_range,mesh->numTimeSegments(),unsigned(geomID),unsigned(p_index));
pinfoMB.add_primref(prim);
sgrids[p_index] = SubGridBuildData(x | g.get3x3FlagsX(x), y | g.get3x3FlagsY(y), unsigned(j));
prims[p_index++] = prim;
}
}
return pinfoMB;
}, [](const PrimInfoMB& a, const PrimInfoMB& b) -> PrimInfoMB { return PrimInfoMB::merge2(a,b); });
assert(pinfoMB.size() == numPrimitives);
pinfoMB.time_range = t0t1;
return pinfoMB;
}
void build()
{
/* skip build for empty scene */
const size_t numPrimitives = scene->getNumPrimitives(GridMesh::geom_type,true);
if (numPrimitives == 0) { bvh->clear(); return; }
double t0 = bvh->preBuild(TOSTRING(isa) "::BVH" + toString(N) + "BuilderMBlurSAHGrid");
//const size_t numTimeSteps = scene->getNumTimeSteps<GridMesh,true>();
//const size_t numTimeSegments = numTimeSteps-1; assert(numTimeSteps > 1);
//if (numTimeSegments == 1)
// buildSingleSegment(numPrimitives);
//else
buildMultiSegment(numPrimitives);
/* clear temporary data for static geometry */
bvh->cleanup();
bvh->postBuild(t0);
}
#if 0
void buildSingleSegment(size_t numPrimitives)
{
/* create primref array */
mvector<PrimRef> prims(scene->device,numPrimitives);
const PrimInfo pinfo = createPrimRefArrayMBlurGrid(scene,prims,bvh->scene->progressInterface,0);
/* early out if no valid primitives */
if (pinfo.size() == 0) { bvh->clear(); return; }
/* estimate acceleration structure size */
const size_t node_bytes = pinfo.size()*sizeof(AABBNodeMB)/(4*N);
//TODO: check leaf_bytes
const size_t leaf_bytes = size_t(1.2*(float)numPrimitives/N * sizeof(SubGridQBVHN<N>));
bvh->alloc.init_estimate(node_bytes+leaf_bytes);
/* settings for BVH build */
GeneralBVHBuilder::Settings settings;
settings.branchingFactor = N;
settings.maxDepth = BVH::maxBuildDepthLeaf;
settings.logBlockSize = bsr(sahBlockSize);
settings.minLeafSize = min(minLeafSize,maxLeafSize);
settings.maxLeafSize = maxLeafSize;
settings.travCost = travCost;
settings.intCost = intCost;
settings.singleThreadThreshold = bvh->alloc.fixSingleThreadThreshold(N,DEFAULT_SINGLE_THREAD_THRESHOLD,pinfo.size(),node_bytes+leaf_bytes);
/* build hierarchy */
auto root = BVHBuilderBinnedSAH::build<NodeRecordMB>
(typename BVH::CreateAlloc(bvh),
typename BVH::AABBNodeMB::Create(),
typename BVH::AABBNodeMB::Set(),
CreateLeafGridMB<N>(scene,bvh,sgrids.data()),
bvh->scene->progressInterface,
prims.data(),pinfo,settings);
bvh->set(root.ref,root.lbounds,pinfo.size());
}
#endif
void buildMultiSegment(size_t numPrimitives)
{
/* create primref array */
mvector<PrimRefMB> prims(scene->device,numPrimitives);
PrimInfoMB pinfo = createPrimRefArrayMSMBlurGrid(scene,prims,bvh->scene->progressInterface);
/* early out if no valid primitives */
if (pinfo.size() == 0) { bvh->clear(); return; }
GridRecalculatePrimRef recalculatePrimRef(scene,sgrids.data());
/* estimate acceleration structure size */
const size_t node_bytes = pinfo.num_time_segments*sizeof(AABBNodeMB)/(4*N);
//FIXME: check leaf_bytes
//const size_t leaf_bytes = size_t(1.2*Primitive::blocks(pinfo.num_time_segments)*sizeof(SubGridQBVHN<N>));
const size_t leaf_bytes = size_t(1.2*(float)numPrimitives/N * sizeof(SubGridQBVHN<N>));
bvh->alloc.init_estimate(node_bytes+leaf_bytes);
/* settings for BVH build */
BVHBuilderMSMBlur::Settings settings;
settings.branchingFactor = N;
settings.maxDepth = BVH::maxDepth;
settings.logBlockSize = bsr(sahBlockSize);
settings.minLeafSize = min(minLeafSize,maxLeafSize);
settings.maxLeafSize = maxLeafSize;
settings.travCost = travCost;
settings.intCost = intCost;
settings.singleLeafTimeSegment = false;
settings.singleThreadThreshold = bvh->alloc.fixSingleThreadThreshold(N,DEFAULT_SINGLE_THREAD_THRESHOLD,pinfo.size(),node_bytes+leaf_bytes);
/* build hierarchy */
auto root =
BVHBuilderMSMBlur::build<NodeRef>(prims,pinfo,scene->device,
recalculatePrimRef,
typename BVH::CreateAlloc(bvh),
typename BVH::AABBNodeMB4D::Create(),
typename BVH::AABBNodeMB4D::Set(),
CreateMSMBlurLeafGrid<N>(scene,bvh,sgrids.data()),
bvh->scene->progressInterface,
settings);
bvh->set(root.ref,root.lbounds,pinfo.num_time_segments);
}
void clear() {
}
};
/************************************************************************************/
/************************************************************************************/
/************************************************************************************/
/************************************************************************************/
#if defined(EMBREE_GEOMETRY_TRIANGLE)
Builder* BVH4Triangle4iMBSceneBuilderSAH (void* bvh, Scene* scene, size_t mode) { return new BVHNBuilderMBlurSAH<4,TriangleMesh,Triangle4i>((BVH4*)bvh,scene,4,1.0f,4,inf,Geometry::MTY_TRIANGLE_MESH); }
Builder* BVH4Triangle4vMBSceneBuilderSAH (void* bvh, Scene* scene, size_t mode) { return new BVHNBuilderMBlurSAH<4,TriangleMesh,Triangle4vMB>((BVH4*)bvh,scene,4,1.0f,4,inf,Geometry::MTY_TRIANGLE_MESH); }
#if defined(__AVX__)
Builder* BVH8Triangle4iMBSceneBuilderSAH (void* bvh, Scene* scene, size_t mode) { return new BVHNBuilderMBlurSAH<8,TriangleMesh,Triangle4i>((BVH8*)bvh,scene,4,1.0f,4,inf,Geometry::MTY_TRIANGLE_MESH); }
Builder* BVH8Triangle4vMBSceneBuilderSAH (void* bvh, Scene* scene, size_t mode) { return new BVHNBuilderMBlurSAH<8,TriangleMesh,Triangle4vMB>((BVH8*)bvh,scene,4,1.0f,4,inf,Geometry::MTY_TRIANGLE_MESH); }
#endif
#endif
#if defined(EMBREE_GEOMETRY_QUAD)
Builder* BVH4Quad4iMBSceneBuilderSAH (void* bvh, Scene* scene, size_t mode) { return new BVHNBuilderMBlurSAH<4,QuadMesh,Quad4i>((BVH4*)bvh,scene,4,1.0f,4,inf,Geometry::MTY_QUAD_MESH); }
#if defined(__AVX__)
Builder* BVH8Quad4iMBSceneBuilderSAH (void* bvh, Scene* scene, size_t mode) { return new BVHNBuilderMBlurSAH<8,QuadMesh,Quad4i>((BVH8*)bvh,scene,4,1.0f,4,inf,Geometry::MTY_QUAD_MESH); }
#endif
#endif
#if defined(EMBREE_GEOMETRY_USER)
Builder* BVH4VirtualMBSceneBuilderSAH (void* bvh, Scene* scene, size_t mode) {
int minLeafSize = scene->device->object_accel_mb_min_leaf_size;
int maxLeafSize = scene->device->object_accel_mb_max_leaf_size;
return new BVHNBuilderMBlurSAH<4,UserGeometry,Object>((BVH4*)bvh,scene,4,1.0f,minLeafSize,maxLeafSize,Geometry::MTY_USER_GEOMETRY);
}
#if defined(__AVX__)
Builder* BVH8VirtualMBSceneBuilderSAH (void* bvh, Scene* scene, size_t mode) {
int minLeafSize = scene->device->object_accel_mb_min_leaf_size;
int maxLeafSize = scene->device->object_accel_mb_max_leaf_size;
return new BVHNBuilderMBlurSAH<8,UserGeometry,Object>((BVH8*)bvh,scene,8,1.0f,minLeafSize,maxLeafSize,Geometry::MTY_USER_GEOMETRY);
}
#endif
#endif
#if defined(EMBREE_GEOMETRY_INSTANCE)
Builder* BVH4InstanceMBSceneBuilderSAH (void* bvh, Scene* scene, Geometry::GTypeMask gtype) { return new BVHNBuilderMBlurSAH<4,Instance,InstancePrimitive>((BVH4*)bvh,scene,4,1.0f,1,1,gtype); }
#if defined(__AVX__)
Builder* BVH8InstanceMBSceneBuilderSAH (void* bvh, Scene* scene, Geometry::GTypeMask gtype) { return new BVHNBuilderMBlurSAH<8,Instance,InstancePrimitive>((BVH8*)bvh,scene,8,1.0f,1,1,gtype); }
#endif
#endif
2024-02-24 11:40:55 +00:00
#if defined(EMBREE_GEOMETRY_INSTANCE_ARRAY)
Builder* BVH4InstanceArrayMBSceneBuilderSAH (void* bvh, Scene* scene, Geometry::GTypeMask gtype) { return new BVHNBuilderMBlurSAH<4,InstanceArray,InstanceArrayPrimitive>((BVH4*)bvh,scene,4,1.0f,1,1,gtype); }
#if defined(__AVX__)
Builder* BVH8InstanceArrayMBSceneBuilderSAH (void* bvh, Scene* scene, Geometry::GTypeMask gtype) { return new BVHNBuilderMBlurSAH<8,InstanceArray,InstanceArrayPrimitive>((BVH8*)bvh,scene,8,1.0f,1,1,gtype); }
#endif
#endif
2021-04-20 16:38:09 +00:00
#if defined(EMBREE_GEOMETRY_GRID)
Builder* BVH4GridMBSceneBuilderSAH (void* bvh, Scene* scene, size_t mode) { return new BVHNBuilderMBlurSAHGrid<4>((BVH4*)bvh,scene,4,1.0f,4,4); }
#if defined(__AVX__)
Builder* BVH8GridMBSceneBuilderSAH (void* bvh, Scene* scene, size_t mode) { return new BVHNBuilderMBlurSAHGrid<8>((BVH8*)bvh,scene,8,1.0f,8,8); }
#endif
#endif
}
}