2021-05-20 10:49:33 +00:00
|
|
|
// Copyright 2009-2021 Intel Corporation
|
2020-12-19 13:50:20 +00:00
|
|
|
// SPDX-License-Identifier: Apache-2.0
|
|
|
|
|
|
|
|
#pragma once
|
|
|
|
|
|
|
|
#include "../common/ray.h"
|
|
|
|
#include "quad_intersector.h"
|
|
|
|
#include "curve_intersector_precalculations.h"
|
|
|
|
|
|
|
|
#define Bezier1Intersector1 RibbonCurve1Intersector1
|
|
|
|
#define Bezier1IntersectorK RibbonCurve1IntersectorK
|
|
|
|
|
|
|
|
namespace embree
|
|
|
|
{
|
|
|
|
namespace isa
|
|
|
|
{
|
|
|
|
template<typename NativeCurve3ff, int M>
|
|
|
|
struct RibbonHit
|
|
|
|
{
|
|
|
|
__forceinline RibbonHit() {}
|
|
|
|
|
|
|
|
__forceinline RibbonHit(const vbool<M>& valid, const vfloat<M>& U, const vfloat<M>& V, const vfloat<M>& T, const int i, const int N,
|
|
|
|
const NativeCurve3ff& curve3D)
|
|
|
|
: U(U), V(V), T(T), i(i), N(N), curve3D(curve3D), valid(valid) {}
|
|
|
|
|
|
|
|
__forceinline void finalize()
|
|
|
|
{
|
|
|
|
vu = (vfloat<M>(step)+U+vfloat<M>(float(i)))*(1.0f/float(N));
|
|
|
|
vv = V;
|
|
|
|
vt = T;
|
|
|
|
}
|
|
|
|
|
|
|
|
__forceinline Vec2f uv (const size_t i) const { return Vec2f(vu[i],vv[i]); }
|
|
|
|
__forceinline float t (const size_t i) const { return vt[i]; }
|
2021-05-20 10:49:33 +00:00
|
|
|
__forceinline Vec3fa Ng(const size_t i) const { return curve3D.eval_du(vu[i]); }
|
|
|
|
|
|
|
|
__forceinline Vec2vf<M> uv() const { return Vec2vf<M>(vu,vv); }
|
|
|
|
__forceinline vfloat<M> t () const { return vt; }
|
|
|
|
__forceinline Vec3vf<M> Ng() const { return (Vec3vf<M>) curve3D.template veval_du<M>(vu); }
|
2020-12-19 13:50:20 +00:00
|
|
|
|
|
|
|
public:
|
|
|
|
vfloat<M> U;
|
|
|
|
vfloat<M> V;
|
|
|
|
vfloat<M> T;
|
|
|
|
int i, N;
|
|
|
|
NativeCurve3ff curve3D;
|
|
|
|
|
|
|
|
public:
|
|
|
|
vbool<M> valid;
|
|
|
|
vfloat<M> vu;
|
|
|
|
vfloat<M> vv;
|
|
|
|
vfloat<M> vt;
|
|
|
|
};
|
|
|
|
|
|
|
|
/* calculate squared distance of point p0 to line p1->p2 */
|
|
|
|
__forceinline std::pair<vfloatx,vfloatx> sqr_point_line_distance(const Vec2vfx& p0, const Vec2vfx& p1, const Vec2vfx& p2)
|
|
|
|
{
|
|
|
|
const vfloatx num = det(p2-p1,p1-p0);
|
|
|
|
const vfloatx den2 = dot(p2-p1,p2-p1);
|
|
|
|
return std::make_pair(num*num,den2);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* performs culling against a cylinder */
|
|
|
|
__forceinline vboolx cylinder_culling_test(const Vec2vfx& p0, const Vec2vfx& p1, const Vec2vfx& p2, const vfloatx& r)
|
|
|
|
{
|
|
|
|
const std::pair<vfloatx,vfloatx> d = sqr_point_line_distance(p0,p1,p2);
|
|
|
|
return d.first <= r*r*d.second;
|
|
|
|
}
|
|
|
|
|
|
|
|
template<typename NativeCurve3ff, typename Epilog>
|
|
|
|
__forceinline bool intersect_ribbon(const Vec3fa& ray_org, const Vec3fa& ray_dir, const float ray_tnear, const float& ray_tfar,
|
|
|
|
const LinearSpace3fa& ray_space, const float& depth_scale,
|
|
|
|
const NativeCurve3ff& curve3D, const int N,
|
|
|
|
const Epilog& epilog)
|
|
|
|
{
|
|
|
|
/* transform control points into ray space */
|
|
|
|
const NativeCurve3ff curve2D = curve3D.xfm_pr(ray_space,ray_org);
|
|
|
|
float eps = 4.0f*float(ulp)*reduce_max(max(abs(curve2D.v0),abs(curve2D.v1),abs(curve2D.v2),abs(curve2D.v3)));
|
|
|
|
|
|
|
|
/* evaluate the bezier curve */
|
|
|
|
bool ishit = false;
|
|
|
|
vboolx valid = vfloatx(step) < vfloatx(float(N));
|
|
|
|
const Vec4vfx p0 = curve2D.template eval0<VSIZEX>(0,N);
|
|
|
|
const Vec4vfx p1 = curve2D.template eval1<VSIZEX>(0,N);
|
|
|
|
valid &= cylinder_culling_test(zero,Vec2vfx(p0.x,p0.y),Vec2vfx(p1.x,p1.y),max(p0.w,p1.w));
|
|
|
|
|
|
|
|
if (any(valid))
|
|
|
|
{
|
|
|
|
Vec3vfx dp0dt = curve2D.template derivative0<VSIZEX>(0,N);
|
|
|
|
Vec3vfx dp1dt = curve2D.template derivative1<VSIZEX>(0,N);
|
|
|
|
dp0dt = select(reduce_max(abs(dp0dt)) < vfloatx(eps),Vec3vfx(p1-p0),dp0dt);
|
|
|
|
dp1dt = select(reduce_max(abs(dp1dt)) < vfloatx(eps),Vec3vfx(p1-p0),dp1dt);
|
|
|
|
const Vec3vfx n0(dp0dt.y,-dp0dt.x,0.0f);
|
|
|
|
const Vec3vfx n1(dp1dt.y,-dp1dt.x,0.0f);
|
|
|
|
const Vec3vfx nn0 = normalize(n0);
|
|
|
|
const Vec3vfx nn1 = normalize(n1);
|
|
|
|
const Vec3vfx lp0 = madd(p0.w,nn0,Vec3vfx(p0));
|
|
|
|
const Vec3vfx lp1 = madd(p1.w,nn1,Vec3vfx(p1));
|
|
|
|
const Vec3vfx up0 = nmadd(p0.w,nn0,Vec3vfx(p0));
|
|
|
|
const Vec3vfx up1 = nmadd(p1.w,nn1,Vec3vfx(p1));
|
|
|
|
|
|
|
|
vfloatx vu,vv,vt;
|
2021-05-20 10:49:33 +00:00
|
|
|
vboolx valid0 = intersect_quad_backface_culling<VSIZEX>(valid,zero,Vec3fa(0,0,1),ray_tnear,ray_tfar,lp0,lp1,up1,up0,vu,vv,vt);
|
2020-12-19 13:50:20 +00:00
|
|
|
|
|
|
|
if (any(valid0))
|
|
|
|
{
|
|
|
|
/* ignore self intersections */
|
|
|
|
if (EMBREE_CURVE_SELF_INTERSECTION_AVOIDANCE_FACTOR != 0.0f) {
|
|
|
|
vfloatx r = lerp(p0.w, p1.w, vu);
|
|
|
|
valid0 &= vt > float(EMBREE_CURVE_SELF_INTERSECTION_AVOIDANCE_FACTOR)*r*depth_scale;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (any(valid0))
|
|
|
|
{
|
|
|
|
vv = madd(2.0f,vv,vfloatx(-1.0f));
|
|
|
|
RibbonHit<NativeCurve3ff,VSIZEX> bhit(valid0,vu,vv,vt,0,N,curve3D);
|
|
|
|
ishit |= epilog(bhit.valid,bhit);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (unlikely(VSIZEX < N))
|
|
|
|
{
|
|
|
|
/* process SIMD-size many segments per iteration */
|
|
|
|
for (int i=VSIZEX; i<N; i+=VSIZEX)
|
|
|
|
{
|
|
|
|
/* evaluate the bezier curve */
|
|
|
|
vboolx valid = vintx(i)+vintx(step) < vintx(N);
|
|
|
|
const Vec4vfx p0 = curve2D.template eval0<VSIZEX>(i,N);
|
|
|
|
const Vec4vfx p1 = curve2D.template eval1<VSIZEX>(i,N);
|
|
|
|
valid &= cylinder_culling_test(zero,Vec2vfx(p0.x,p0.y),Vec2vfx(p1.x,p1.y),max(p0.w,p1.w));
|
|
|
|
if (none(valid)) continue;
|
|
|
|
|
|
|
|
Vec3vfx dp0dt = curve2D.template derivative0<VSIZEX>(i,N);
|
|
|
|
Vec3vfx dp1dt = curve2D.template derivative1<VSIZEX>(i,N);
|
|
|
|
dp0dt = select(reduce_max(abs(dp0dt)) < vfloatx(eps),Vec3vfx(p1-p0),dp0dt);
|
|
|
|
dp1dt = select(reduce_max(abs(dp1dt)) < vfloatx(eps),Vec3vfx(p1-p0),dp1dt);
|
|
|
|
const Vec3vfx n0(dp0dt.y,-dp0dt.x,0.0f);
|
|
|
|
const Vec3vfx n1(dp1dt.y,-dp1dt.x,0.0f);
|
|
|
|
const Vec3vfx nn0 = normalize(n0);
|
|
|
|
const Vec3vfx nn1 = normalize(n1);
|
|
|
|
const Vec3vfx lp0 = madd(p0.w,nn0,Vec3vfx(p0));
|
|
|
|
const Vec3vfx lp1 = madd(p1.w,nn1,Vec3vfx(p1));
|
|
|
|
const Vec3vfx up0 = nmadd(p0.w,nn0,Vec3vfx(p0));
|
|
|
|
const Vec3vfx up1 = nmadd(p1.w,nn1,Vec3vfx(p1));
|
|
|
|
|
|
|
|
vfloatx vu,vv,vt;
|
2021-05-20 10:49:33 +00:00
|
|
|
vboolx valid0 = intersect_quad_backface_culling<VSIZEX>(valid,zero,Vec3fa(0,0,1),ray_tnear,ray_tfar,lp0,lp1,up1,up0,vu,vv,vt);
|
2020-12-19 13:50:20 +00:00
|
|
|
|
|
|
|
if (any(valid0))
|
|
|
|
{
|
|
|
|
/* ignore self intersections */
|
|
|
|
if (EMBREE_CURVE_SELF_INTERSECTION_AVOIDANCE_FACTOR != 0.0f) {
|
|
|
|
vfloatx r = lerp(p0.w, p1.w, vu);
|
|
|
|
valid0 &= vt > float(EMBREE_CURVE_SELF_INTERSECTION_AVOIDANCE_FACTOR)*r*depth_scale;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (any(valid0))
|
|
|
|
{
|
|
|
|
vv = madd(2.0f,vv,vfloatx(-1.0f));
|
|
|
|
RibbonHit<NativeCurve3ff,VSIZEX> bhit(valid0,vu,vv,vt,i,N,curve3D);
|
|
|
|
ishit |= epilog(bhit.valid,bhit);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return ishit;
|
|
|
|
}
|
|
|
|
|
|
|
|
template<template<typename Ty> class NativeCurve>
|
|
|
|
struct RibbonCurve1Intersector1
|
|
|
|
{
|
|
|
|
typedef NativeCurve<Vec3ff> NativeCurve3ff;
|
|
|
|
|
|
|
|
template<typename Epilog>
|
|
|
|
__forceinline bool intersect(const CurvePrecalculations1& pre, Ray& ray,
|
|
|
|
IntersectContext* context,
|
|
|
|
const CurveGeometry* geom, const unsigned int primID,
|
|
|
|
const Vec3ff& v0, const Vec3ff& v1, const Vec3ff& v2, const Vec3ff& v3,
|
|
|
|
const Epilog& epilog)
|
|
|
|
{
|
|
|
|
const int N = geom->tessellationRate;
|
|
|
|
NativeCurve3ff curve(v0,v1,v2,v3);
|
|
|
|
curve = enlargeRadiusToMinWidth(context,geom,ray.org,curve);
|
|
|
|
return intersect_ribbon<NativeCurve3ff>(ray.org,ray.dir,ray.tnear(),ray.tfar,
|
|
|
|
pre.ray_space,pre.depth_scale,
|
|
|
|
curve,N,
|
|
|
|
epilog);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
template<template<typename Ty> class NativeCurve, int K>
|
|
|
|
struct RibbonCurve1IntersectorK
|
|
|
|
{
|
|
|
|
typedef NativeCurve<Vec3ff> NativeCurve3ff;
|
|
|
|
|
|
|
|
template<typename Epilog>
|
|
|
|
__forceinline bool intersect(const CurvePrecalculationsK<K>& pre, RayK<K>& ray, size_t k,
|
|
|
|
IntersectContext* context,
|
|
|
|
const CurveGeometry* geom, const unsigned int primID,
|
|
|
|
const Vec3ff& v0, const Vec3ff& v1, const Vec3ff& v2, const Vec3ff& v3,
|
|
|
|
const Epilog& epilog)
|
|
|
|
{
|
|
|
|
const int N = geom->tessellationRate;
|
|
|
|
const Vec3fa ray_org(ray.org.x[k],ray.org.y[k],ray.org.z[k]);
|
|
|
|
const Vec3fa ray_dir(ray.dir.x[k],ray.dir.y[k],ray.dir.z[k]);
|
|
|
|
NativeCurve3ff curve(v0,v1,v2,v3);
|
|
|
|
curve = enlargeRadiusToMinWidth(context,geom,ray_org,curve);
|
|
|
|
return intersect_ribbon<NativeCurve3ff>(ray_org,ray_dir,ray.tnear()[k],ray.tfar[k],
|
|
|
|
pre.ray_space[k],pre.depth_scale[k],
|
|
|
|
curve,N,
|
|
|
|
epilog);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
}
|
|
|
|
}
|