godot/drivers/gles3/rasterizer_storage_gles3.cpp

4831 lines
146 KiB
C++
Raw Normal View History

/*************************************************************************/
/* rasterizer_storage_gles3.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
//#define OPENGL_DISABLE_RENDER_TARGETS
#include "rasterizer_storage_gles3.h"
#ifdef GLES3_BACKEND_ENABLED
#include "core/config/project_settings.h"
#include "core/math/transform_3d.h"
#include "drivers/gles3/rasterizer_storage_common.h"
#include "rasterizer_canvas_gles3.h"
#include "rasterizer_scene_gles3.h"
#include "servers/rendering/shader_language.h"
GLuint RasterizerStorageGLES3::system_fbo = 0;
/* TEXTURE API */
#define _EXT_COMPRESSED_RGBA_S3TC_DXT1_EXT 0x83F1
#define _EXT_COMPRESSED_RGBA_S3TC_DXT3_EXT 0x83F2
#define _EXT_COMPRESSED_RGBA_S3TC_DXT5_EXT 0x83F3
#define _EXT_COMPRESSED_RED_RGTC1_EXT 0x8DBB
#define _EXT_COMPRESSED_RED_RGTC1 0x8DBB
#define _EXT_COMPRESSED_SIGNED_RED_RGTC1 0x8DBC
#define _EXT_COMPRESSED_RG_RGTC2 0x8DBD
#define _EXT_COMPRESSED_SIGNED_RG_RGTC2 0x8DBE
#define _EXT_COMPRESSED_SIGNED_RED_RGTC1_EXT 0x8DBC
#define _EXT_COMPRESSED_RED_GREEN_RGTC2_EXT 0x8DBD
#define _EXT_COMPRESSED_SIGNED_RED_GREEN_RGTC2_EXT 0x8DBE
#define _EXT_ETC1_RGB8_OES 0x8D64
#define _EXT_COMPRESSED_RGB_PVRTC_4BPPV1_IMG 0x8C00
#define _EXT_COMPRESSED_RGB_PVRTC_2BPPV1_IMG 0x8C01
#define _EXT_COMPRESSED_RGBA_PVRTC_4BPPV1_IMG 0x8C02
#define _EXT_COMPRESSED_RGBA_PVRTC_2BPPV1_IMG 0x8C03
#define _EXT_COMPRESSED_SRGB_PVRTC_2BPPV1_EXT 0x8A54
#define _EXT_COMPRESSED_SRGB_PVRTC_4BPPV1_EXT 0x8A55
#define _EXT_COMPRESSED_SRGB_ALPHA_PVRTC_2BPPV1_EXT 0x8A56
#define _EXT_COMPRESSED_SRGB_ALPHA_PVRTC_4BPPV1_EXT 0x8A57
#define _EXT_COMPRESSED_RGBA_BPTC_UNORM 0x8E8C
#define _EXT_COMPRESSED_SRGB_ALPHA_BPTC_UNORM 0x8E8D
#define _EXT_COMPRESSED_RGB_BPTC_SIGNED_FLOAT 0x8E8E
#define _EXT_COMPRESSED_RGB_BPTC_UNSIGNED_FLOAT 0x8E8F
#define _GL_TEXTURE_EXTERNAL_OES 0x8D65
#ifdef GLES_OVER_GL
#define _GL_HALF_FLOAT_OES 0x140B
#else
#define _GL_HALF_FLOAT_OES 0x8D61
#endif
#define _EXT_TEXTURE_CUBE_MAP_SEAMLESS 0x884F
#define _RED_OES 0x1903
#define _DEPTH_COMPONENT24_OES 0x81A6
#ifndef GLES_OVER_GL
#define glClearDepth glClearDepthf
#endif //!GLES_OVER_GL
void RasterizerStorageGLES3::bind_quad_array() const {
//glBindBuffer(GL_ARRAY_BUFFER, resources.quadie);
//glVertexAttribPointer(RS::ARRAY_VERTEX, 2, GL_FLOAT, GL_FALSE, sizeof(float) * 4, 0);
//glVertexAttribPointer(RS::ARRAY_TEX_UV, 2, GL_FLOAT, GL_FALSE, sizeof(float) * 4, CAST_INT_TO_UCHAR_PTR(8));
//glEnableVertexAttribArray(RS::ARRAY_VERTEX);
//glEnableVertexAttribArray(RS::ARRAY_TEX_UV);
}
bool RasterizerStorageGLES3::can_create_resources_async() const {
return false;
}
Ref<Image> RasterizerStorageGLES3::_get_gl_image_and_format(const Ref<Image> &p_image, Image::Format p_format, uint32_t p_flags, Image::Format &r_real_format, GLenum &r_gl_format, GLenum &r_gl_internal_format, GLenum &r_gl_type, bool &r_compressed, bool p_force_decompress) const {
r_gl_format = 0;
Ref<Image> image = p_image;
r_compressed = false;
r_real_format = p_format;
bool need_decompress = false;
switch (p_format) {
case Image::FORMAT_L8: {
#ifdef GLES_OVER_GL
r_gl_internal_format = GL_R8;
r_gl_format = GL_RED;
r_gl_type = GL_UNSIGNED_BYTE;
#else
r_gl_internal_format = GL_LUMINANCE;
r_gl_format = GL_LUMINANCE;
r_gl_type = GL_UNSIGNED_BYTE;
#endif
} break;
case Image::FORMAT_LA8: {
#ifdef GLES_OVER_GL
r_gl_internal_format = GL_RG8;
r_gl_format = GL_RG;
r_gl_type = GL_UNSIGNED_BYTE;
#else
r_gl_internal_format = GL_LUMINANCE_ALPHA;
r_gl_format = GL_LUMINANCE_ALPHA;
r_gl_type = GL_UNSIGNED_BYTE;
#endif
} break;
case Image::FORMAT_R8: {
r_gl_internal_format = GL_R8;
r_gl_format = GL_RED;
r_gl_type = GL_UNSIGNED_BYTE;
} break;
case Image::FORMAT_RG8: {
r_gl_internal_format = GL_RG8;
r_gl_format = GL_RG;
r_gl_type = GL_UNSIGNED_BYTE;
} break;
case Image::FORMAT_RGB8: {
r_gl_internal_format = GL_RGB8;
r_gl_format = GL_RGB;
r_gl_type = GL_UNSIGNED_BYTE;
//r_srgb = true;
} break;
case Image::FORMAT_RGBA8: {
r_gl_format = GL_RGBA;
r_gl_internal_format = GL_RGBA8;
r_gl_type = GL_UNSIGNED_BYTE;
//r_srgb = true;
} break;
case Image::FORMAT_RGBA4444: {
r_gl_internal_format = GL_RGBA4;
r_gl_format = GL_RGBA;
r_gl_type = GL_UNSIGNED_SHORT_4_4_4_4;
} break;
//case Image::FORMAT_RGBA5551: {
// r_gl_internal_format = GL_RGB5_A1;
// r_gl_format = GL_RGBA;
// r_gl_type = GL_UNSIGNED_SHORT_5_5_5_1;
//
//} break;
case Image::FORMAT_RF: {
r_gl_internal_format = GL_R32F;
r_gl_format = GL_RED;
r_gl_type = GL_FLOAT;
} break;
case Image::FORMAT_RGF: {
r_gl_internal_format = GL_RG32F;
r_gl_format = GL_RG;
r_gl_type = GL_FLOAT;
} break;
case Image::FORMAT_RGBF: {
r_gl_internal_format = GL_RGB32F;
r_gl_format = GL_RGB;
r_gl_type = GL_FLOAT;
} break;
case Image::FORMAT_RGBAF: {
r_gl_internal_format = GL_RGBA32F;
r_gl_format = GL_RGBA;
r_gl_type = GL_FLOAT;
} break;
case Image::FORMAT_RH: {
r_gl_internal_format = GL_R16F;
r_gl_format = GL_RED;
r_gl_type = GL_HALF_FLOAT;
} break;
case Image::FORMAT_RGH: {
r_gl_internal_format = GL_RG16F;
r_gl_format = GL_RG;
r_gl_type = GL_HALF_FLOAT;
} break;
case Image::FORMAT_RGBH: {
r_gl_internal_format = GL_RGB16F;
r_gl_format = GL_RGB;
r_gl_type = GL_HALF_FLOAT;
} break;
case Image::FORMAT_RGBAH: {
r_gl_internal_format = GL_RGBA16F;
r_gl_format = GL_RGBA;
r_gl_type = GL_HALF_FLOAT;
} break;
case Image::FORMAT_RGBE9995: {
r_gl_internal_format = GL_RGB9_E5;
r_gl_format = GL_RGB;
r_gl_type = GL_UNSIGNED_INT_5_9_9_9_REV;
} break;
case Image::FORMAT_DXT1: {
if (config.s3tc_supported) {
r_gl_internal_format = _EXT_COMPRESSED_RGBA_S3TC_DXT1_EXT;
r_gl_format = GL_RGBA;
r_gl_type = GL_UNSIGNED_BYTE;
r_compressed = true;
//r_srgb = true;
} else {
need_decompress = true;
}
} break;
case Image::FORMAT_DXT3: {
if (config.s3tc_supported) {
r_gl_internal_format = _EXT_COMPRESSED_RGBA_S3TC_DXT3_EXT;
r_gl_format = GL_RGBA;
r_gl_type = GL_UNSIGNED_BYTE;
r_compressed = true;
//r_srgb = true;
} else {
need_decompress = true;
}
} break;
case Image::FORMAT_DXT5: {
if (config.s3tc_supported) {
r_gl_internal_format = _EXT_COMPRESSED_RGBA_S3TC_DXT5_EXT;
r_gl_format = GL_RGBA;
r_gl_type = GL_UNSIGNED_BYTE;
r_compressed = true;
//r_srgb = true;
} else {
need_decompress = true;
}
} break;
case Image::FORMAT_RGTC_R: {
if (config.rgtc_supported) {
r_gl_internal_format = _EXT_COMPRESSED_RED_RGTC1_EXT;
r_gl_format = GL_RGBA;
r_gl_type = GL_UNSIGNED_BYTE;
r_compressed = true;
} else {
need_decompress = true;
}
} break;
case Image::FORMAT_RGTC_RG: {
if (config.rgtc_supported) {
r_gl_internal_format = _EXT_COMPRESSED_RED_GREEN_RGTC2_EXT;
r_gl_format = GL_RGBA;
r_gl_type = GL_UNSIGNED_BYTE;
r_compressed = true;
} else {
need_decompress = true;
}
} break;
case Image::FORMAT_BPTC_RGBA: {
if (config.bptc_supported) {
r_gl_internal_format = _EXT_COMPRESSED_RGBA_BPTC_UNORM;
r_gl_format = GL_RGBA;
r_gl_type = GL_UNSIGNED_BYTE;
r_compressed = true;
//r_srgb = true;
} else {
need_decompress = true;
}
} break;
case Image::FORMAT_BPTC_RGBF: {
if (config.bptc_supported) {
r_gl_internal_format = _EXT_COMPRESSED_RGB_BPTC_SIGNED_FLOAT;
r_gl_format = GL_RGB;
r_gl_type = GL_FLOAT;
r_compressed = true;
} else {
need_decompress = true;
}
} break;
case Image::FORMAT_BPTC_RGBFU: {
if (config.bptc_supported) {
r_gl_internal_format = _EXT_COMPRESSED_RGB_BPTC_UNSIGNED_FLOAT;
r_gl_format = GL_RGB;
r_gl_type = GL_FLOAT;
r_compressed = true;
} else {
need_decompress = true;
}
} break;
case Image::FORMAT_PVRTC1_2: {
if (config.pvrtc_supported) {
r_gl_internal_format = _EXT_COMPRESSED_RGB_PVRTC_2BPPV1_IMG;
r_gl_format = GL_RGBA;
r_gl_type = GL_UNSIGNED_BYTE;
r_compressed = true;
//r_srgb = true;
} else {
need_decompress = true;
}
} break;
case Image::FORMAT_PVRTC1_2A: {
if (config.pvrtc_supported) {
r_gl_internal_format = _EXT_COMPRESSED_RGBA_PVRTC_2BPPV1_IMG;
r_gl_format = GL_RGBA;
r_gl_type = GL_UNSIGNED_BYTE;
r_compressed = true;
//r_srgb = true;
} else {
need_decompress = true;
}
} break;
case Image::FORMAT_PVRTC1_4: {
if (config.pvrtc_supported) {
r_gl_internal_format = _EXT_COMPRESSED_RGB_PVRTC_4BPPV1_IMG;
r_gl_format = GL_RGBA;
r_gl_type = GL_UNSIGNED_BYTE;
r_compressed = true;
//r_srgb = true;
} else {
need_decompress = true;
}
} break;
case Image::FORMAT_PVRTC1_4A: {
if (config.pvrtc_supported) {
r_gl_internal_format = _EXT_COMPRESSED_RGBA_PVRTC_4BPPV1_IMG;
r_gl_format = GL_RGBA;
r_gl_type = GL_UNSIGNED_BYTE;
r_compressed = true;
//r_srgb = true;
} else {
need_decompress = true;
}
} break;
case Image::FORMAT_ETC: {
if (config.etc_supported) {
r_gl_internal_format = _EXT_ETC1_RGB8_OES;
r_gl_format = GL_RGBA;
r_gl_type = GL_UNSIGNED_BYTE;
r_compressed = true;
} else {
need_decompress = true;
}
} break;
/*
case Image::FORMAT_ETC2_R11: {
if (config.etc2_supported) {
r_gl_internal_format = _EXT_COMPRESSED_R11_EAC;
r_gl_format = GL_RED;
r_gl_type = GL_UNSIGNED_BYTE;
r_compressed = true;
} else {
need_decompress = true;
}
} break;
case Image::FORMAT_ETC2_R11S: {
if (config.etc2_supported) {
r_gl_internal_format = _EXT_COMPRESSED_SIGNED_R11_EAC;
r_gl_format = GL_RED;
r_gl_type = GL_UNSIGNED_BYTE;
r_compressed = true;
} else {
need_decompress = true;
}
} break;
case Image::FORMAT_ETC2_RG11: {
if (config.etc2_supported) {
r_gl_internal_format = _EXT_COMPRESSED_RG11_EAC;
r_gl_format = GL_RG;
r_gl_type = GL_UNSIGNED_BYTE;
r_compressed = true;
} else {
need_decompress = true;
}
} break;
case Image::FORMAT_ETC2_RG11S: {
if (config.etc2_supported) {
r_gl_internal_format = _EXT_COMPRESSED_SIGNED_RG11_EAC;
r_gl_format = GL_RG;
r_gl_type = GL_UNSIGNED_BYTE;
r_compressed = true;
} else {
need_decompress = true;
}
} break;
case Image::FORMAT_ETC2_RGB8: {
if (config.etc2_supported) {
r_gl_internal_format = _EXT_COMPRESSED_RGB8_ETC2;
r_gl_format = GL_RGB;
r_gl_type = GL_UNSIGNED_BYTE;
r_compressed = true;
//r_srgb = true;
} else {
need_decompress = true;
}
} break;
case Image::FORMAT_ETC2_RGBA8: {
if (config.etc2_supported) {
r_gl_internal_format = _EXT_COMPRESSED_RGBA8_ETC2_EAC;
r_gl_format = GL_RGBA;
r_gl_type = GL_UNSIGNED_BYTE;
r_compressed = true;
//r_srgb = true;
} else {
need_decompress = true;
}
} break;
case Image::FORMAT_ETC2_RGB8A1: {
if (config.etc2_supported) {
r_gl_internal_format = _EXT_COMPRESSED_RGB8_PUNCHTHROUGH_ALPHA1_ETC2;
r_gl_format = GL_RGBA;
r_gl_type = GL_UNSIGNED_BYTE;
r_compressed = true;
//r_srgb = true;
} else {
need_decompress = true;
}
} break;
*/
default: {
ERR_FAIL_V(Ref<Image>());
}
}
if (need_decompress || p_force_decompress) {
if (!image.is_null()) {
image = image->duplicate();
image->decompress();
ERR_FAIL_COND_V(image->is_compressed(), image);
switch (image->get_format()) {
case Image::FORMAT_RGB8: {
r_gl_format = GL_RGB;
r_gl_internal_format = GL_RGB;
r_gl_type = GL_UNSIGNED_BYTE;
r_real_format = Image::FORMAT_RGB8;
r_compressed = false;
} break;
case Image::FORMAT_RGBA8: {
r_gl_format = GL_RGBA;
r_gl_internal_format = GL_RGBA;
r_gl_type = GL_UNSIGNED_BYTE;
r_real_format = Image::FORMAT_RGBA8;
r_compressed = false;
} break;
default: {
image->convert(Image::FORMAT_RGBA8);
r_gl_format = GL_RGBA;
r_gl_internal_format = GL_RGBA;
r_gl_type = GL_UNSIGNED_BYTE;
r_real_format = Image::FORMAT_RGBA8;
r_compressed = false;
} break;
}
}
return image;
}
return p_image;
}
static const GLenum _cube_side_enum[6] = {
GL_TEXTURE_CUBE_MAP_NEGATIVE_X,
GL_TEXTURE_CUBE_MAP_POSITIVE_X,
GL_TEXTURE_CUBE_MAP_NEGATIVE_Y,
GL_TEXTURE_CUBE_MAP_POSITIVE_Y,
GL_TEXTURE_CUBE_MAP_NEGATIVE_Z,
GL_TEXTURE_CUBE_MAP_POSITIVE_Z,
};
RID RasterizerStorageGLES3::texture_allocate() {
RID id = texture_create();
ERR_FAIL_COND_V(id == RID(), id);
return id;
}
void RasterizerStorageGLES3::texture_2d_initialize(RID p_texture, const Ref<Image> &p_image) {
Texture *tex = texture_owner.get_or_null(p_texture);
ERR_FAIL_COND(!tex);
int w = p_image->get_width();
int h = p_image->get_height();
_texture_allocate_internal(p_texture, w, h, 1, p_image->get_format(), RenderingDevice::TEXTURE_TYPE_2D, 0);
texture_set_data(p_texture, p_image);
}
void RasterizerStorageGLES3::texture_2d_layered_initialize(RID p_texture, const Vector<Ref<Image>> &p_layers, RS::TextureLayeredType p_layered_type) {
}
void RasterizerStorageGLES3::texture_3d_initialize(RID p_texture, Image::Format, int p_width, int p_height, int p_depth, bool p_mipmaps, const Vector<Ref<Image>> &p_data) {
}
void RasterizerStorageGLES3::texture_proxy_initialize(RID p_texture, RID p_base) {
texture_set_proxy(p_texture, p_base);
}
//RID RasterizerStorageGLES3::texture_2d_create(const Ref<Image> &p_image) {
// RID id = texture_create();
// ERR_FAIL_COND_V(id == RID(), id);
// int w = p_image->get_width();
// int h = p_image->get_height();
// texture_allocate(id, w, h, 1, p_image->get_format(), RenderingDevice::TEXTURE_TYPE_2D, 0);
// texture_set_data(id, p_image);
// return id;
//}
//RID RasterizerStorageGLES3::texture_2d_layered_create(const Vector<Ref<Image>> &p_layers, RS::TextureLayeredType p_layered_type) {
// return RID();
//}
//void RasterizerStorageGLES3::texture_2d_update_immediate(RID p_texture, const Ref<Image> &p_image, int p_layer) {
// // only 1 layer so far
// texture_set_data(p_texture, p_image);
//}
void RasterizerStorageGLES3::texture_2d_update(RID p_texture, const Ref<Image> &p_image, int p_layer) {
// only 1 layer so far
texture_set_data(p_texture, p_image);
}
void RasterizerStorageGLES3::texture_2d_placeholder_initialize(RID p_texture) {
}
void RasterizerStorageGLES3::texture_2d_layered_placeholder_initialize(RID p_texture, RenderingServer::TextureLayeredType p_layered_type) {
}
void RasterizerStorageGLES3::texture_3d_placeholder_initialize(RID p_texture) {
}
Ref<Image> RasterizerStorageGLES3::texture_2d_get(RID p_texture) const {
Texture *tex = texture_owner.get_or_null(p_texture);
ERR_FAIL_COND_V(!tex, Ref<Image>());
/*
#ifdef TOOLS_ENABLED
if (tex->image_cache_2d.is_valid()) {
return tex->image_cache_2d;
}
#endif
Vector<uint8_t> data = RD::get_singleton()->texture_get_data(tex->rd_texture, 0);
ERR_FAIL_COND_V(data.size() == 0, Ref<Image>());
Ref<Image> image;
image.instance();
image->create(tex->width, tex->height, tex->mipmaps > 1, tex->validated_format, data);
ERR_FAIL_COND_V(image->empty(), Ref<Image>());
if (tex->format != tex->validated_format) {
image->convert(tex->format);
}
#ifdef TOOLS_ENABLED
if (Engine::get_singleton()->is_editor_hint()) {
tex->image_cache_2d = image;
}
#endif
*/
ERR_FAIL_COND_V(!tex->images.size(), Ref<Image>());
return tex->images[0];
// return image;
// return Ref<Image>();
}
void RasterizerStorageGLES3::texture_replace(RID p_texture, RID p_by_texture) {
Texture *tex_to = texture_owner.get_or_null(p_texture);
ERR_FAIL_COND(!tex_to);
Texture *tex_from = texture_owner.get_or_null(p_by_texture);
ERR_FAIL_COND(!tex_from);
tex_to->destroy();
tex_to->copy_from(*tex_from);
// copy image data and upload to GL
tex_to->images.resize(tex_from->images.size());
for (int n = 0; n < tex_from->images.size(); n++) {
texture_set_data(p_texture, tex_from->images[n], n);
}
free(p_by_texture);
}
bool RasterizerStorageGLES3::_is_main_thread() {
//#if defined DEBUG_ENABLED && defined TOOLS_ENABLED
// must be called from main thread in OpenGL
bool is_main_thread = _main_thread_id == Thread::get_caller_id();
//#endif
return is_main_thread;
}
RID RasterizerStorageGLES3::texture_create() {
ERR_FAIL_COND_V(!_is_main_thread(), RID());
Texture *texture = memnew(Texture);
ERR_FAIL_COND_V(!texture, RID());
glGenTextures(1, &texture->tex_id);
texture->active = false;
texture->total_data_size = 0;
return texture_owner.make_rid(texture);
}
void RasterizerStorageGLES3::_texture_allocate_internal(RID p_texture, int p_width, int p_height, int p_depth_3d, Image::Format p_format, RenderingDevice::TextureType p_type, uint32_t p_flags) {
// GLenum format;
// GLenum internal_format;
// GLenum type;
// bool compressed = false;
if (p_flags & TEXTURE_FLAG_USED_FOR_STREAMING) {
p_flags &= ~TEXTURE_FLAG_MIPMAPS; // no mipies for video
}
Texture *texture = texture_owner.get_or_null(p_texture);
ERR_FAIL_COND(!texture);
texture->width = p_width;
texture->height = p_height;
texture->format = p_format;
texture->flags = p_flags;
texture->stored_cube_sides = 0;
texture->type = p_type;
switch (p_type) {
case RenderingDevice::TEXTURE_TYPE_2D: {
texture->target = GL_TEXTURE_2D;
texture->images.resize(1);
} break;
// case RenderingDevice::TEXTURE_TYPE_EXTERNAL: {
//#ifdef ANDROID_ENABLED
// texture->target = _GL_TEXTURE_EXTERNAL_OES;
//#else
// texture->target = GL_TEXTURE_2D;
//#endif
// texture->images.resize(0);
// } break;
case RenderingDevice::TEXTURE_TYPE_CUBE: {
texture->target = GL_TEXTURE_CUBE_MAP;
texture->images.resize(6);
} break;
case RenderingDevice::TEXTURE_TYPE_2D_ARRAY:
case RenderingDevice::TEXTURE_TYPE_3D: {
texture->target = GL_TEXTURE_3D;
ERR_PRINT("3D textures and Texture Arrays are not supported in OpenGL. Please switch to the Vulkan backend.");
return;
} break;
default: {
ERR_PRINT("Unknown texture type!");
return;
}
}
#if 0
// if (p_type != RS::TEXTURE_TYPE_EXTERNAL) {
if (p_type == RenderingDevice::TEXTURE_TYPE_2D) {
texture->alloc_width = texture->width;
texture->alloc_height = texture->height;
texture->resize_to_po2 = false;
if (!config.support_npot_repeat_mipmap) {
int po2_width = next_power_of_2(p_width);
int po2_height = next_power_of_2(p_height);
bool is_po2 = p_width == po2_width && p_height == po2_height;
if (!is_po2 && (p_flags & TEXTURE_FLAG_REPEAT || p_flags & TEXTURE_FLAG_MIPMAPS)) {
if (p_flags & TEXTURE_FLAG_USED_FOR_STREAMING) {
//not supported
ERR_PRINT("Streaming texture for non power of 2 or has mipmaps on this hardware: " + texture->path + "'. Mipmaps and repeat disabled.");
texture->flags &= ~(TEXTURE_FLAG_REPEAT | TEXTURE_FLAG_MIPMAPS);
} else {
texture->alloc_height = po2_height;
texture->alloc_width = po2_width;
texture->resize_to_po2 = true;
}
}
}
GLenum format;
GLenum internal_format;
GLenum type;
bool compressed = false;
Image::Format real_format;
_get_gl_image_and_format(Ref<Image>(),
texture->format,
texture->flags,
real_format,
format,
internal_format,
type,
compressed,
texture->resize_to_po2);
texture->gl_format_cache = format;
texture->gl_type_cache = type;
texture->gl_internal_format_cache = internal_format;
texture->data_size = 0;
texture->mipmaps = 1;
texture->compressed = compressed;
}
#endif
glActiveTexture(GL_TEXTURE0);
glBindTexture(texture->target, texture->tex_id);
// if (p_type == RS::TEXTURE_TYPE_EXTERNAL) {
// glTexParameteri(texture->target, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
// glTexParameteri(texture->target, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
// glTexParameteri(texture->target, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
// glTexParameteri(texture->target, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
// } else if (p_flags & TEXTURE_FLAG_USED_FOR_STREAMING) {
// //prealloc if video
// glTexImage2D(texture->target, 0, internal_format, texture->alloc_width, texture->alloc_height, 0, format, type, NULL);
// }
texture->active = true;
}
void RasterizerStorageGLES3::texture_set_data(RID p_texture, const Ref<Image> &p_image, int p_layer) {
Texture *texture = texture_owner.get_or_null(p_texture);
ERR_FAIL_COND(!_is_main_thread());
ERR_FAIL_COND(!texture);
if (texture->target == GL_TEXTURE_3D) {
// Target is set to a 3D texture or array texture, exit early to avoid spamming errors
return;
}
ERR_FAIL_COND(!texture->active);
ERR_FAIL_COND(texture->render_target);
ERR_FAIL_COND(p_image.is_null());
ERR_FAIL_COND(texture->format != p_image->get_format());
ERR_FAIL_COND(!p_image->get_width());
ERR_FAIL_COND(!p_image->get_height());
// ERR_FAIL_COND(texture->type == RS::TEXTURE_TYPE_EXTERNAL);
GLenum type;
GLenum format;
GLenum internal_format;
bool compressed = false;
if (config.keep_original_textures && !(texture->flags & TEXTURE_FLAG_USED_FOR_STREAMING)) {
texture->images.write[p_layer] = p_image;
}
// print_line("texture_set_data width " + itos (p_image->get_width()) + " height " + itos(p_image->get_height()));
Image::Format real_format;
Ref<Image> img = _get_gl_image_and_format(p_image, p_image->get_format(), texture->flags, real_format, format, internal_format, type, compressed, texture->resize_to_po2);
if (texture->resize_to_po2) {
if (p_image->is_compressed()) {
ERR_PRINT("Texture '" + texture->path + "' is required to be a power of 2 because it uses either mipmaps or repeat, so it was decompressed. This will hurt performance and memory usage.");
}
if (img == p_image) {
img = img->duplicate();
}
img->resize_to_po2(false);
}
if (config.shrink_textures_x2 && (p_image->has_mipmaps() || !p_image->is_compressed()) && !(texture->flags & TEXTURE_FLAG_USED_FOR_STREAMING)) {
texture->alloc_height = MAX(1, texture->alloc_height / 2);
texture->alloc_width = MAX(1, texture->alloc_width / 2);
if (texture->alloc_width == img->get_width() / 2 && texture->alloc_height == img->get_height() / 2) {
img->shrink_x2();
} else if (img->get_format() <= Image::FORMAT_RGBA8) {
img->resize(texture->alloc_width, texture->alloc_height, Image::INTERPOLATE_BILINEAR);
}
}
GLenum blit_target = (texture->target == GL_TEXTURE_CUBE_MAP) ? _cube_side_enum[p_layer] : GL_TEXTURE_2D;
texture->data_size = img->get_data().size();
Vector<uint8_t> read = img->get_data();
glActiveTexture(GL_TEXTURE0);
glBindTexture(texture->target, texture->tex_id);
texture->ignore_mipmaps = compressed && !img->has_mipmaps();
// set filtering and repeat state
_texture_set_state_from_flags(texture);
//set swizle for older format compatibility
#ifdef GLES_OVER_GL
switch (texture->format) {
case Image::FORMAT_L8: {
glTexParameteri(texture->target, GL_TEXTURE_SWIZZLE_R, GL_RED);
glTexParameteri(texture->target, GL_TEXTURE_SWIZZLE_G, GL_RED);
glTexParameteri(texture->target, GL_TEXTURE_SWIZZLE_B, GL_RED);
glTexParameteri(texture->target, GL_TEXTURE_SWIZZLE_A, GL_ONE);
} break;
case Image::FORMAT_LA8: {
glTexParameteri(texture->target, GL_TEXTURE_SWIZZLE_R, GL_RED);
glTexParameteri(texture->target, GL_TEXTURE_SWIZZLE_G, GL_RED);
glTexParameteri(texture->target, GL_TEXTURE_SWIZZLE_B, GL_RED);
glTexParameteri(texture->target, GL_TEXTURE_SWIZZLE_A, GL_GREEN);
} break;
default: {
glTexParameteri(texture->target, GL_TEXTURE_SWIZZLE_R, GL_RED);
glTexParameteri(texture->target, GL_TEXTURE_SWIZZLE_G, GL_GREEN);
glTexParameteri(texture->target, GL_TEXTURE_SWIZZLE_B, GL_BLUE);
glTexParameteri(texture->target, GL_TEXTURE_SWIZZLE_A, GL_ALPHA);
} break;
}
#endif
int mipmaps = ((texture->flags & TEXTURE_FLAG_MIPMAPS) && img->has_mipmaps()) ? img->get_mipmap_count() + 1 : 1;
int w = img->get_width();
int h = img->get_height();
int tsize = 0;
for (int i = 0; i < mipmaps; i++) {
int size, ofs;
img->get_mipmap_offset_and_size(i, ofs, size);
if (compressed) {
glPixelStorei(GL_UNPACK_ALIGNMENT, 4);
int bw = w;
int bh = h;
glCompressedTexImage2D(blit_target, i, internal_format, bw, bh, 0, size, &read[ofs]);
} else {
glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
if (texture->flags & TEXTURE_FLAG_USED_FOR_STREAMING) {
glTexSubImage2D(blit_target, i, 0, 0, w, h, format, type, &read[ofs]);
} else {
glTexImage2D(blit_target, i, internal_format, w, h, 0, format, type, &read[ofs]);
}
}
tsize += size;
w = MAX(1, w >> 1);
h = MAX(1, h >> 1);
}
info.texture_mem -= texture->total_data_size;
texture->total_data_size = tsize;
info.texture_mem += texture->total_data_size;
// printf("texture: %i x %i - size: %i - total: %i\n", texture->width, texture->height, tsize, info.texture_mem);
texture->stored_cube_sides |= (1 << p_layer);
if ((texture->flags & TEXTURE_FLAG_MIPMAPS) && mipmaps == 1 && !texture->ignore_mipmaps && (texture->type != RenderingDevice::TEXTURE_TYPE_CUBE || texture->stored_cube_sides == (1 << 6) - 1)) {
//generate mipmaps if they were requested and the image does not contain them
glGenerateMipmap(texture->target);
}
texture->mipmaps = mipmaps;
}
void RasterizerStorageGLES3::texture_set_data_partial(RID p_texture, const Ref<Image> &p_image, int src_x, int src_y, int src_w, int src_h, int dst_x, int dst_y, int p_dst_mip, int p_layer) {
// TODO
ERR_PRINT("Not implemented (ask Karroffel to do it :p)");
}
/*
Ref<Image> RasterizerStorageGLES3::texture_get_data(RID p_texture, int p_layer) const {
Texture *texture = texture_owner.get_or_null(p_texture);
ERR_FAIL_COND_V(!texture, Ref<Image>());
ERR_FAIL_COND_V(!texture->active, Ref<Image>());
ERR_FAIL_COND_V(texture->data_size == 0 && !texture->render_target, Ref<Image>());
if (texture->type == RS::TEXTURE_TYPE_CUBEMAP && p_layer < 6 && p_layer >= 0 && !texture->images[p_layer].is_null()) {
return texture->images[p_layer];
}
#ifdef GLES_OVER_GL
Image::Format real_format;
GLenum gl_format;
GLenum gl_internal_format;
GLenum gl_type;
bool compressed;
_get_gl_image_and_format(Ref<Image>(), texture->format, texture->flags, real_format, gl_format, gl_internal_format, gl_type, compressed, false);
PoolVector<uint8_t> data;
int data_size = Image::get_image_data_size(texture->alloc_width, texture->alloc_height, real_format, texture->mipmaps > 1);
data.resize(data_size * 2); //add some memory at the end, just in case for buggy drivers
PoolVector<uint8_t>::Write wb = data.write();
glActiveTexture(GL_TEXTURE0);
glBindTexture(texture->target, texture->tex_id);
glBindBuffer(GL_PIXEL_PACK_BUFFER, 0);
for (int i = 0; i < texture->mipmaps; i++) {
int ofs = Image::get_image_mipmap_offset(texture->alloc_width, texture->alloc_height, real_format, i);
if (texture->compressed) {
glPixelStorei(GL_PACK_ALIGNMENT, 4);
glGetCompressedTexImage(texture->target, i, &wb[ofs]);
} else {
glPixelStorei(GL_PACK_ALIGNMENT, 1);
glGetTexImage(texture->target, i, texture->gl_format_cache, texture->gl_type_cache, &wb[ofs]);
}
}
wb.release();
data.resize(data_size);
Image *img = memnew(Image(texture->alloc_width, texture->alloc_height, texture->mipmaps > 1, real_format, data));
return Ref<Image>(img);
#else
Image::Format real_format;
GLenum gl_format;
GLenum gl_internal_format;
GLenum gl_type;
bool compressed;
_get_gl_image_and_format(Ref<Image>(), texture->format, texture->flags, real_format, gl_format, gl_internal_format, gl_type, compressed, texture->resize_to_po2);
PoolVector<uint8_t> data;
int data_size = Image::get_image_data_size(texture->alloc_width, texture->alloc_height, Image::FORMAT_RGBA8, false);
data.resize(data_size * 2); //add some memory at the end, just in case for buggy drivers
PoolVector<uint8_t>::Write wb = data.write();
GLuint temp_framebuffer;
glGenFramebuffers(1, &temp_framebuffer);
GLuint temp_color_texture;
glGenTextures(1, &temp_color_texture);
glBindFramebuffer(GL_FRAMEBUFFER, temp_framebuffer);
glBindTexture(GL_TEXTURE_2D, temp_color_texture);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, texture->alloc_width, texture->alloc_height, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, temp_color_texture, 0);
glDepthMask(GL_FALSE);
glDisable(GL_DEPTH_TEST);
glDisable(GL_CULL_FACE);
glDisable(GL_BLEND);
glDepthFunc(GL_LEQUAL);
glColorMask(1, 1, 1, 1);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, texture->tex_id);
glViewport(0, 0, texture->alloc_width, texture->alloc_height);
shaders.copy.bind();
glClearColor(0.0, 0.0, 0.0, 0.0);
glClear(GL_COLOR_BUFFER_BIT);
bind_quad_array();
glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
glBindBuffer(GL_ARRAY_BUFFER, 0);
glReadPixels(0, 0, texture->alloc_width, texture->alloc_height, GL_RGBA, GL_UNSIGNED_BYTE, &wb[0]);
glDeleteTextures(1, &temp_color_texture);
glBindFramebuffer(GL_FRAMEBUFFER, 0);
glDeleteFramebuffers(1, &temp_framebuffer);
wb.release();
data.resize(data_size);
Image *img = memnew(Image(texture->alloc_width, texture->alloc_height, false, Image::FORMAT_RGBA8, data));
if (!texture->compressed) {
img->convert(real_format);
}
return Ref<Image>(img);
#endif
}
*/
void RasterizerStorageGLES3::_texture_set_state_from_flags(Texture *p_tex) {
if ((p_tex->flags & TEXTURE_FLAG_MIPMAPS) && !p_tex->ignore_mipmaps)
if (p_tex->flags & TEXTURE_FLAG_FILTER) {
// these do not exactly correspond ...
p_tex->GLSetFilter(p_tex->target, RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS);
//texture->glTexParam_MinFilter(texture->target, config.use_fast_texture_filter ? GL_LINEAR_MIPMAP_NEAREST : GL_LINEAR_MIPMAP_LINEAR);
} else {
p_tex->GLSetFilter(p_tex->target, RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST_WITH_MIPMAPS);
//texture->glTexParam_MinFilter(texture->target, config.use_fast_texture_filter ? GL_NEAREST_MIPMAP_NEAREST : GL_NEAREST_MIPMAP_LINEAR);
}
else {
if (p_tex->flags & TEXTURE_FLAG_FILTER) {
p_tex->GLSetFilter(p_tex->target, RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR);
//texture->glTexParam_MinFilter(texture->target, GL_LINEAR);
} else {
p_tex->GLSetFilter(p_tex->target, RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST);
// texture->glTexParam_MinFilter(texture->target, GL_NEAREST);
}
}
if (((p_tex->flags & TEXTURE_FLAG_REPEAT) || (p_tex->flags & TEXTURE_FLAG_MIRRORED_REPEAT)) && p_tex->target != GL_TEXTURE_CUBE_MAP) {
if (p_tex->flags & TEXTURE_FLAG_MIRRORED_REPEAT) {
p_tex->GLSetRepeat(RS::CANVAS_ITEM_TEXTURE_REPEAT_MIRROR);
} else {
p_tex->GLSetRepeat(RS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED);
}
} else {
p_tex->GLSetRepeat(RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED);
}
}
void RasterizerStorageGLES3::texture_set_flags(RID p_texture, uint32_t p_flags) {
Texture *texture = texture_owner.get_or_null(p_texture);
ERR_FAIL_COND(!texture);
bool had_mipmaps = texture->flags & TEXTURE_FLAG_MIPMAPS;
texture->flags = p_flags;
glActiveTexture(GL_TEXTURE0);
glBindTexture(texture->target, texture->tex_id);
// set filtering and repeat state
_texture_set_state_from_flags(texture);
if ((texture->flags & TEXTURE_FLAG_MIPMAPS) && !texture->ignore_mipmaps) {
if (!had_mipmaps && texture->mipmaps == 1) {
glGenerateMipmap(texture->target);
}
}
}
uint32_t RasterizerStorageGLES3::texture_get_flags(RID p_texture) const {
Texture *texture = texture_owner.get_or_null(p_texture);
ERR_FAIL_COND_V(!texture, 0);
return texture->flags;
}
Image::Format RasterizerStorageGLES3::texture_get_format(RID p_texture) const {
Texture *texture = texture_owner.get_or_null(p_texture);
ERR_FAIL_COND_V(!texture, Image::FORMAT_L8);
return texture->format;
}
RenderingDevice::TextureType RasterizerStorageGLES3::texture_get_type(RID p_texture) const {
Texture *texture = texture_owner.get_or_null(p_texture);
ERR_FAIL_COND_V(!texture, RenderingDevice::TEXTURE_TYPE_2D);
return texture->type;
}
uint32_t RasterizerStorageGLES3::texture_get_texid(RID p_texture) const {
Texture *texture = texture_owner.get_or_null(p_texture);
ERR_FAIL_COND_V(!texture, 0);
return texture->tex_id;
}
void RasterizerStorageGLES3::texture_bind(RID p_texture, uint32_t p_texture_no) {
Texture *texture = texture_owner.get_or_null(p_texture);
ERR_FAIL_COND(!texture);
glActiveTexture(GL_TEXTURE0 + p_texture_no);
glBindTexture(texture->target, texture->tex_id);
}
uint32_t RasterizerStorageGLES3::texture_get_width(RID p_texture) const {
Texture *texture = texture_owner.get_or_null(p_texture);
ERR_FAIL_COND_V(!texture, 0);
return texture->width;
}
uint32_t RasterizerStorageGLES3::texture_get_height(RID p_texture) const {
Texture *texture = texture_owner.get_or_null(p_texture);
ERR_FAIL_COND_V(!texture, 0);
return texture->height;
}
uint32_t RasterizerStorageGLES3::texture_get_depth(RID p_texture) const {
Texture *texture = texture_owner.get_or_null(p_texture);
ERR_FAIL_COND_V(!texture, 0);
return texture->depth;
}
void RasterizerStorageGLES3::texture_set_size_override(RID p_texture, int p_width, int p_height) {
Texture *texture = texture_owner.get_or_null(p_texture);
ERR_FAIL_COND(!texture);
ERR_FAIL_COND(texture->render_target);
ERR_FAIL_COND(p_width <= 0 || p_width > 16384);
ERR_FAIL_COND(p_height <= 0 || p_height > 16384);
//real texture size is in alloc width and height
texture->width = p_width;
texture->height = p_height;
}
void RasterizerStorageGLES3::texture_set_path(RID p_texture, const String &p_path) {
Texture *texture = texture_owner.get_or_null(p_texture);
ERR_FAIL_COND(!texture);
texture->path = p_path;
}
String RasterizerStorageGLES3::texture_get_path(RID p_texture) const {
Texture *texture = texture_owner.get_or_null(p_texture);
ERR_FAIL_COND_V(!texture, "");
return texture->path;
}
void RasterizerStorageGLES3::texture_debug_usage(List<RS::TextureInfo> *r_info) {
List<RID> textures;
texture_owner.get_owned_list(&textures);
for (List<RID>::Element *E = textures.front(); E; E = E->next()) {
Texture *t = texture_owner.get_or_null(E->get());
if (!t)
continue;
RS::TextureInfo tinfo;
tinfo.path = t->path;
tinfo.format = t->format;
tinfo.width = t->alloc_width;
tinfo.height = t->alloc_height;
tinfo.depth = 0;
tinfo.bytes = t->total_data_size;
r_info->push_back(tinfo);
}
}
void RasterizerStorageGLES3::texture_set_shrink_all_x2_on_set_data(bool p_enable) {
config.shrink_textures_x2 = p_enable;
}
void RasterizerStorageGLES3::textures_keep_original(bool p_enable) {
config.keep_original_textures = p_enable;
}
Size2 RasterizerStorageGLES3::texture_size_with_proxy(RID p_texture) {
const Texture *texture = texture_owner.get_or_null(p_texture);
ERR_FAIL_COND_V(!texture, Size2());
if (texture->proxy) {
return Size2(texture->proxy->width, texture->proxy->height);
} else {
return Size2(texture->width, texture->height);
}
}
// example use in 3.2
// VS::get_singleton()->texture_set_proxy(default_texture->proxy, texture_rid);
// p_proxy is the source (pre-existing) texture?
// and p_texture is the one that is being made into a proxy?
//This naming is confusing. Comments!!!
// The naming of the parameters seemed to be reversed?
// The p_proxy is the source texture
// and p_texture is actually the proxy????
void RasterizerStorageGLES3::texture_set_proxy(RID p_texture, RID p_proxy) {
Texture *texture = texture_owner.get_or_null(p_texture);
ERR_FAIL_COND(!texture);
if (texture->proxy) {
texture->proxy->proxy_owners.erase(texture);
texture->proxy = NULL;
}
if (p_proxy.is_valid()) {
Texture *proxy = texture_owner.get_or_null(p_proxy);
ERR_FAIL_COND(!proxy);
ERR_FAIL_COND(proxy == texture);
proxy->proxy_owners.insert(texture);
texture->proxy = proxy;
}
}
void RasterizerStorageGLES3::texture_set_force_redraw_if_visible(RID p_texture, bool p_enable) {
Texture *texture = texture_owner.get_or_null(p_texture);
ERR_FAIL_COND(!texture);
texture->redraw_if_visible = p_enable;
}
void RasterizerStorageGLES3::texture_set_detect_3d_callback(RID p_texture, RS::TextureDetectCallback p_callback, void *p_userdata) {
Texture *texture = texture_owner.get_or_null(p_texture);
ERR_FAIL_COND(!texture);
texture->detect_3d = p_callback;
texture->detect_3d_ud = p_userdata;
}
void RasterizerStorageGLES3::texture_set_detect_srgb_callback(RID p_texture, RS::TextureDetectCallback p_callback, void *p_userdata) {
Texture *texture = texture_owner.get_or_null(p_texture);
ERR_FAIL_COND(!texture);
texture->detect_srgb = p_callback;
texture->detect_srgb_ud = p_userdata;
}
void RasterizerStorageGLES3::texture_set_detect_normal_callback(RID p_texture, RS::TextureDetectCallback p_callback, void *p_userdata) {
Texture *texture = texture_owner.get_or_null(p_texture);
ERR_FAIL_COND(!texture);
texture->detect_normal = p_callback;
texture->detect_normal_ud = p_userdata;
}
RID RasterizerStorageGLES3::texture_create_radiance_cubemap(RID p_source, int p_resolution) const {
return RID();
}
RID RasterizerStorageGLES3::canvas_texture_allocate() {
return RID();
}
void RasterizerStorageGLES3::canvas_texture_initialize(RID p_rid) {
}
void RasterizerStorageGLES3::canvas_texture_set_channel(RID p_canvas_texture, RS::CanvasTextureChannel p_channel, RID p_texture) {
}
void RasterizerStorageGLES3::canvas_texture_set_shading_parameters(RID p_canvas_texture, const Color &p_base_color, float p_shininess) {
}
void RasterizerStorageGLES3::canvas_texture_set_texture_filter(RID p_item, RS::CanvasItemTextureFilter p_filter) {
}
void RasterizerStorageGLES3::canvas_texture_set_texture_repeat(RID p_item, RS::CanvasItemTextureRepeat p_repeat) {
}
RID RasterizerStorageGLES3::sky_create() {
Sky *sky = memnew(Sky);
sky->radiance = 0;
return sky_owner.make_rid(sky);
}
void RasterizerStorageGLES3::sky_set_texture(RID p_sky, RID p_panorama, int p_radiance_size) {
Sky *sky = sky_owner.get_or_null(p_sky);
ERR_FAIL_COND(!sky);
if (sky->panorama.is_valid()) {
sky->panorama = RID();
glDeleteTextures(1, &sky->radiance);
sky->radiance = 0;
}
sky->panorama = p_panorama;
if (!sky->panorama.is_valid()) {
return; // the panorama was cleared
}
Texture *texture = texture_owner.get_or_null(sky->panorama);
if (!texture) {
sky->panorama = RID();
ERR_FAIL_COND(!texture);
}
// glBindVertexArray(0) and more
{
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
glDisable(GL_CULL_FACE);
glDisable(GL_DEPTH_TEST);
glDisable(GL_SCISSOR_TEST);
glDisable(GL_BLEND);
for (int i = 0; i < RS::ARRAY_MAX - 1; i++) {
//glDisableVertexAttribArray(i);
}
}
glActiveTexture(GL_TEXTURE0);
glBindTexture(texture->target, texture->tex_id);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); //need this for proper sampling
glActiveTexture(GL_TEXTURE1);
glBindTexture(GL_TEXTURE_2D, resources.radical_inverse_vdc_cache_tex);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
// New cubemap that will hold the mipmaps with different roughness values
glActiveTexture(GL_TEXTURE2);
glGenTextures(1, &sky->radiance);
glBindTexture(GL_TEXTURE_CUBE_MAP, sky->radiance);
int size = p_radiance_size / 2; //divide by two because its a cubemap (this is an approximation because GLES3 uses a dual paraboloid)
GLenum internal_format = GL_RGB;
GLenum format = GL_RGB;
GLenum type = GL_UNSIGNED_BYTE;
// Set the initial (empty) mipmaps
// Mobile hardware (PowerVR specially) prefers this approach,
// the previous approach with manual lod levels kills the game.
for (int i = 0; i < 6; i++) {
glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, internal_format, size, size, 0, format, type, NULL);
}
glGenerateMipmap(GL_TEXTURE_CUBE_MAP);
// No filters for now
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
// Framebuffer
bind_framebuffer(resources.mipmap_blur_fbo);
int mipmaps = 6;
int lod = 0;
int mm_level = mipmaps;
size = p_radiance_size / 2;
shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES3::USE_SOURCE_PANORAMA, true);
shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES3::USE_DIRECT_WRITE, true);
shaders.cubemap_filter.bind();
// third, render to the framebuffer using separate textures, then copy to mipmaps
while (size >= 1) {
//make framebuffer size the texture size, need to use a separate texture for compatibility
glActiveTexture(GL_TEXTURE3);
glBindTexture(GL_TEXTURE_2D, resources.mipmap_blur_color);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, size, size, 0, GL_RGB, GL_UNSIGNED_BYTE, NULL);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, resources.mipmap_blur_color, 0);
if (lod == 1) {
//bind panorama for smaller lods
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_CUBE_MAP, sky->radiance);
shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES3::USE_SOURCE_PANORAMA, false);
shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES3::USE_DIRECT_WRITE, false);
shaders.cubemap_filter.bind();
}
glViewport(0, 0, size, size);
bind_quad_array();
glActiveTexture(GL_TEXTURE2); //back to panorama
for (int i = 0; i < 6; i++) {
shaders.cubemap_filter.set_uniform(CubemapFilterShaderGLES3::FACE_ID, i);
float roughness = mm_level >= 0 ? lod / (float)(mipmaps - 1) : 1;
roughness = MIN(1.0, roughness); //keep max at 1
shaders.cubemap_filter.set_uniform(CubemapFilterShaderGLES3::ROUGHNESS, roughness);
shaders.cubemap_filter.set_uniform(CubemapFilterShaderGLES3::Z_FLIP, false);
//glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
glCopyTexSubImage2D(_cube_side_enum[i], lod, 0, 0, 0, 0, size, size);
}
size >>= 1;
mm_level--;
lod++;
}
shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES3::USE_SOURCE_PANORAMA, false);
shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES3::USE_DIRECT_WRITE, false);
// restore ranges
glActiveTexture(GL_TEXTURE2); //back to panorama
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glBindTexture(GL_TEXTURE_2D, 0);
glActiveTexture(GL_TEXTURE3); //back to panorama
glBindTexture(GL_TEXTURE_2D, 0);
glActiveTexture(GL_TEXTURE1);
glBindTexture(GL_TEXTURE_2D, 0);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, 0);
//reset flags on Sky Texture that may have changed
texture_set_flags(sky->panorama, texture->flags);
// Framebuffer did its job. thank mr framebuffer
glActiveTexture(GL_TEXTURE0); //back to panorama
bind_framebuffer_system();
}
/* SHADER API */
RID RasterizerStorageGLES3::shader_allocate() {
Shader *shader = memnew(Shader);
shader->mode = RS::SHADER_SPATIAL;
shader->shader = &scene->state.scene_shader;
RID rid = shader_owner.make_rid(shader);
_shader_make_dirty(shader);
shader->self = rid;
return rid;
}
void RasterizerStorageGLES3::shader_initialize(RID p_rid) {
// noop
}
//RID RasterizerStorageGLES3::shader_create() {
// Shader *shader = memnew(Shader);
// shader->mode = RS::SHADER_SPATIAL;
// shader->shader = &scene->state.scene_shader;
// RID rid = shader_owner.make_rid(shader);
// _shader_make_dirty(shader);
// shader->self = rid;
// return rid;
//}
void RasterizerStorageGLES3::_shader_make_dirty(Shader *p_shader) {
if (p_shader->dirty_list.in_list())
return;
_shader_dirty_list.add(&p_shader->dirty_list);
}
void RasterizerStorageGLES3::shader_set_code(RID p_shader, const String &p_code) {
Shader *shader = shader_owner.get_or_null(p_shader);
ERR_FAIL_COND(!shader);
shader->code = p_code;
String mode_string = ShaderLanguage::get_shader_type(p_code);
RS::ShaderMode mode;
if (mode_string == "canvas_item")
mode = RS::SHADER_CANVAS_ITEM;
else if (mode_string == "particles")
mode = RS::SHADER_PARTICLES;
else
mode = RS::SHADER_SPATIAL;
if (shader->custom_code_id && mode != shader->mode) {
shader->shader->free_custom_shader(shader->custom_code_id);
shader->custom_code_id = 0;
}
shader->mode = mode;
// TODO handle all shader types
if (mode == RS::SHADER_CANVAS_ITEM) {
shader->shader = &canvas->state.canvas_shader;
} else if (mode == RS::SHADER_SPATIAL) {
shader->shader = &scene->state.scene_shader;
} else {
return;
}
if (shader->custom_code_id == 0) {
shader->custom_code_id = shader->shader->create_custom_shader();
}
_shader_make_dirty(shader);
}
String RasterizerStorageGLES3::shader_get_code(RID p_shader) const {
const Shader *shader = shader_owner.get_or_null(p_shader);
ERR_FAIL_COND_V(!shader, "");
return shader->code;
}
void RasterizerStorageGLES3::_update_shader(Shader *p_shader) const {
_shader_dirty_list.remove(&p_shader->dirty_list);
p_shader->valid = false;
p_shader->uniforms.clear();
if (p_shader->code.is_empty()) {
return; //just invalid, but no error
}
ShaderCompilerGLES3::GeneratedCode gen_code;
ShaderCompilerGLES3::IdentifierActions *actions = NULL;
switch (p_shader->mode) {
case RS::SHADER_CANVAS_ITEM: {
p_shader->canvas_item.light_mode = Shader::CanvasItem::LIGHT_MODE_NORMAL;
p_shader->canvas_item.blend_mode = Shader::CanvasItem::BLEND_MODE_MIX;
p_shader->canvas_item.uses_screen_texture = false;
p_shader->canvas_item.uses_screen_uv = false;
p_shader->canvas_item.uses_time = false;
p_shader->canvas_item.uses_modulate = false;
p_shader->canvas_item.uses_color = false;
p_shader->canvas_item.uses_vertex = false;
p_shader->canvas_item.batch_flags = 0;
p_shader->canvas_item.uses_world_matrix = false;
p_shader->canvas_item.uses_extra_matrix = false;
p_shader->canvas_item.uses_projection_matrix = false;
p_shader->canvas_item.uses_instance_custom = false;
shaders.actions_canvas.render_mode_values["blend_add"] = Pair<int *, int>(&p_shader->canvas_item.blend_mode, Shader::CanvasItem::BLEND_MODE_ADD);
shaders.actions_canvas.render_mode_values["blend_mix"] = Pair<int *, int>(&p_shader->canvas_item.blend_mode, Shader::CanvasItem::BLEND_MODE_MIX);
shaders.actions_canvas.render_mode_values["blend_sub"] = Pair<int *, int>(&p_shader->canvas_item.blend_mode, Shader::CanvasItem::BLEND_MODE_SUB);
shaders.actions_canvas.render_mode_values["blend_mul"] = Pair<int *, int>(&p_shader->canvas_item.blend_mode, Shader::CanvasItem::BLEND_MODE_MUL);
shaders.actions_canvas.render_mode_values["blend_premul_alpha"] = Pair<int *, int>(&p_shader->canvas_item.blend_mode, Shader::CanvasItem::BLEND_MODE_PMALPHA);
shaders.actions_canvas.render_mode_values["unshaded"] = Pair<int *, int>(&p_shader->canvas_item.light_mode, Shader::CanvasItem::LIGHT_MODE_UNSHADED);
shaders.actions_canvas.render_mode_values["light_only"] = Pair<int *, int>(&p_shader->canvas_item.light_mode, Shader::CanvasItem::LIGHT_MODE_LIGHT_ONLY);
shaders.actions_canvas.usage_flag_pointers["SCREEN_UV"] = &p_shader->canvas_item.uses_screen_uv;
shaders.actions_canvas.usage_flag_pointers["SCREEN_PIXEL_SIZE"] = &p_shader->canvas_item.uses_screen_uv;
shaders.actions_canvas.usage_flag_pointers["SCREEN_TEXTURE"] = &p_shader->canvas_item.uses_screen_texture;
shaders.actions_canvas.usage_flag_pointers["TIME"] = &p_shader->canvas_item.uses_time;
shaders.actions_canvas.usage_flag_pointers["MODULATE"] = &p_shader->canvas_item.uses_modulate;
shaders.actions_canvas.usage_flag_pointers["COLOR"] = &p_shader->canvas_item.uses_color;
shaders.actions_canvas.usage_flag_pointers["VERTEX"] = &p_shader->canvas_item.uses_vertex;
shaders.actions_canvas.usage_flag_pointers["WORLD_MATRIX"] = &p_shader->canvas_item.uses_world_matrix;
shaders.actions_canvas.usage_flag_pointers["EXTRA_MATRIX"] = &p_shader->canvas_item.uses_extra_matrix;
shaders.actions_canvas.usage_flag_pointers["PROJECTION_MATRIX"] = &p_shader->canvas_item.uses_projection_matrix;
shaders.actions_canvas.usage_flag_pointers["INSTANCE_CUSTOM"] = &p_shader->canvas_item.uses_instance_custom;
actions = &shaders.actions_canvas;
actions->uniforms = &p_shader->uniforms;
} break;
case RS::SHADER_SPATIAL: {
p_shader->spatial.blend_mode = Shader::Spatial::BLEND_MODE_MIX;
p_shader->spatial.depth_draw_mode = Shader::Spatial::DEPTH_DRAW_OPAQUE;
p_shader->spatial.cull_mode = Shader::Spatial::CULL_MODE_BACK;
p_shader->spatial.uses_alpha = false;
p_shader->spatial.uses_alpha_scissor = false;
p_shader->spatial.uses_discard = false;
p_shader->spatial.unshaded = false;
p_shader->spatial.no_depth_test = false;
p_shader->spatial.uses_sss = false;
p_shader->spatial.uses_time = false;
p_shader->spatial.uses_vertex_lighting = false;
p_shader->spatial.uses_screen_texture = false;
p_shader->spatial.uses_depth_texture = false;
p_shader->spatial.uses_vertex = false;
p_shader->spatial.uses_tangent = false;
p_shader->spatial.uses_ensure_correct_normals = false;
p_shader->spatial.writes_modelview_or_projection = false;
p_shader->spatial.uses_world_coordinates = false;
shaders.actions_scene.render_mode_values["blend_add"] = Pair<int *, int>(&p_shader->spatial.blend_mode, Shader::Spatial::BLEND_MODE_ADD);
shaders.actions_scene.render_mode_values["blend_mix"] = Pair<int *, int>(&p_shader->spatial.blend_mode, Shader::Spatial::BLEND_MODE_MIX);
shaders.actions_scene.render_mode_values["blend_sub"] = Pair<int *, int>(&p_shader->spatial.blend_mode, Shader::Spatial::BLEND_MODE_SUB);
shaders.actions_scene.render_mode_values["blend_mul"] = Pair<int *, int>(&p_shader->spatial.blend_mode, Shader::Spatial::BLEND_MODE_MUL);
shaders.actions_scene.render_mode_values["depth_draw_opaque"] = Pair<int *, int>(&p_shader->spatial.depth_draw_mode, Shader::Spatial::DEPTH_DRAW_OPAQUE);
shaders.actions_scene.render_mode_values["depth_draw_always"] = Pair<int *, int>(&p_shader->spatial.depth_draw_mode, Shader::Spatial::DEPTH_DRAW_ALWAYS);
shaders.actions_scene.render_mode_values["depth_draw_never"] = Pair<int *, int>(&p_shader->spatial.depth_draw_mode, Shader::Spatial::DEPTH_DRAW_NEVER);
shaders.actions_scene.render_mode_values["depth_draw_alpha_prepass"] = Pair<int *, int>(&p_shader->spatial.depth_draw_mode, Shader::Spatial::DEPTH_DRAW_ALPHA_PREPASS);
shaders.actions_scene.render_mode_values["cull_front"] = Pair<int *, int>(&p_shader->spatial.cull_mode, Shader::Spatial::CULL_MODE_FRONT);
shaders.actions_scene.render_mode_values["cull_back"] = Pair<int *, int>(&p_shader->spatial.cull_mode, Shader::Spatial::CULL_MODE_BACK);
shaders.actions_scene.render_mode_values["cull_disabled"] = Pair<int *, int>(&p_shader->spatial.cull_mode, Shader::Spatial::CULL_MODE_DISABLED);
shaders.actions_scene.render_mode_flags["unshaded"] = &p_shader->spatial.unshaded;
shaders.actions_scene.render_mode_flags["depth_test_disable"] = &p_shader->spatial.no_depth_test;
shaders.actions_scene.render_mode_flags["vertex_lighting"] = &p_shader->spatial.uses_vertex_lighting;
shaders.actions_scene.render_mode_flags["world_vertex_coords"] = &p_shader->spatial.uses_world_coordinates;
shaders.actions_scene.render_mode_flags["ensure_correct_normals"] = &p_shader->spatial.uses_ensure_correct_normals;
shaders.actions_scene.usage_flag_pointers["ALPHA"] = &p_shader->spatial.uses_alpha;
shaders.actions_scene.usage_flag_pointers["ALPHA_SCISSOR"] = &p_shader->spatial.uses_alpha_scissor;
shaders.actions_scene.usage_flag_pointers["SSS_STRENGTH"] = &p_shader->spatial.uses_sss;
shaders.actions_scene.usage_flag_pointers["DISCARD"] = &p_shader->spatial.uses_discard;
shaders.actions_scene.usage_flag_pointers["SCREEN_TEXTURE"] = &p_shader->spatial.uses_screen_texture;
shaders.actions_scene.usage_flag_pointers["DEPTH_TEXTURE"] = &p_shader->spatial.uses_depth_texture;
shaders.actions_scene.usage_flag_pointers["TIME"] = &p_shader->spatial.uses_time;
// Use of any of these BUILTINS indicate the need for transformed tangents.
// This is needed to know when to transform tangents in software skinning.
shaders.actions_scene.usage_flag_pointers["TANGENT"] = &p_shader->spatial.uses_tangent;
shaders.actions_scene.usage_flag_pointers["NORMALMAP"] = &p_shader->spatial.uses_tangent;
shaders.actions_scene.write_flag_pointers["MODELVIEW_MATRIX"] = &p_shader->spatial.writes_modelview_or_projection;
shaders.actions_scene.write_flag_pointers["PROJECTION_MATRIX"] = &p_shader->spatial.writes_modelview_or_projection;
shaders.actions_scene.write_flag_pointers["VERTEX"] = &p_shader->spatial.uses_vertex;
actions = &shaders.actions_scene;
actions->uniforms = &p_shader->uniforms;
if (p_shader->spatial.uses_screen_texture && p_shader->spatial.uses_depth_texture) {
ERR_PRINT_ONCE("Using both SCREEN_TEXTURE and DEPTH_TEXTURE is not supported in OpenGL");
}
if (p_shader->spatial.uses_depth_texture && !config.support_depth_texture) {
ERR_PRINT_ONCE("Using DEPTH_TEXTURE is not permitted on this hardware, operation will fail.");
}
} break;
default: {
return;
} break;
}
Error err = shaders.compiler.compile(p_shader->mode, p_shader->code, actions, p_shader->path, gen_code);
if (err != OK) {
return;
}
p_shader->shader->set_custom_shader_code(p_shader->custom_code_id, gen_code.vertex, gen_code.vertex_global, gen_code.fragment, gen_code.light, gen_code.fragment_global, gen_code.uniforms, gen_code.texture_uniforms, gen_code.custom_defines);
p_shader->texture_count = gen_code.texture_uniforms.size();
p_shader->texture_hints = gen_code.texture_hints;
p_shader->uses_vertex_time = gen_code.uses_vertex_time;
p_shader->uses_fragment_time = gen_code.uses_fragment_time;
// some logic for batching
if (p_shader->mode == RS::SHADER_CANVAS_ITEM) {
if (p_shader->canvas_item.uses_modulate | p_shader->canvas_item.uses_color) {
p_shader->canvas_item.batch_flags |= RasterizerStorageCommon::PREVENT_COLOR_BAKING;
}
if (p_shader->canvas_item.uses_vertex) {
p_shader->canvas_item.batch_flags |= RasterizerStorageCommon::PREVENT_VERTEX_BAKING;
}
if (p_shader->canvas_item.uses_world_matrix | p_shader->canvas_item.uses_extra_matrix | p_shader->canvas_item.uses_projection_matrix | p_shader->canvas_item.uses_instance_custom) {
p_shader->canvas_item.batch_flags |= RasterizerStorageCommon::PREVENT_ITEM_JOINING;
}
}
p_shader->shader->set_custom_shader(p_shader->custom_code_id);
p_shader->shader->bind();
// cache uniform locations
for (SelfList<Material> *E = p_shader->materials.first(); E; E = E->next()) {
_material_make_dirty(E->self());
}
p_shader->valid = true;
p_shader->version++;
}
void RasterizerStorageGLES3::update_dirty_shaders() {
while (_shader_dirty_list.first()) {
_update_shader(_shader_dirty_list.first()->self());
}
}
void RasterizerStorageGLES3::shader_get_param_list(RID p_shader, List<PropertyInfo> *p_param_list) const {
Shader *shader = shader_owner.get_or_null(p_shader);
ERR_FAIL_COND(!shader);
if (shader->dirty_list.in_list()) {
_update_shader(shader);
}
Map<int, StringName> order;
for (Map<StringName, ShaderLanguage::ShaderNode::Uniform>::Element *E = shader->uniforms.front(); E; E = E->next()) {
if (E->get().texture_order >= 0) {
order[E->get().texture_order + 100000] = E->key();
} else {
order[E->get().order] = E->key();
}
}
for (Map<int, StringName>::Element *E = order.front(); E; E = E->next()) {
PropertyInfo pi;
ShaderLanguage::ShaderNode::Uniform &u = shader->uniforms[E->get()];
pi.name = E->get();
switch (u.type) {
case ShaderLanguage::TYPE_VOID: {
pi.type = Variant::NIL;
} break;
case ShaderLanguage::TYPE_BOOL: {
pi.type = Variant::BOOL;
} break;
// bool vectors
case ShaderLanguage::TYPE_BVEC2: {
pi.type = Variant::INT;
pi.hint = PROPERTY_HINT_FLAGS;
pi.hint_string = "x,y";
} break;
case ShaderLanguage::TYPE_BVEC3: {
pi.type = Variant::INT;
pi.hint = PROPERTY_HINT_FLAGS;
pi.hint_string = "x,y,z";
} break;
case ShaderLanguage::TYPE_BVEC4: {
pi.type = Variant::INT;
pi.hint = PROPERTY_HINT_FLAGS;
pi.hint_string = "x,y,z,w";
} break;
// int stuff
case ShaderLanguage::TYPE_UINT:
case ShaderLanguage::TYPE_INT: {
pi.type = Variant::INT;
if (u.hint == ShaderLanguage::ShaderNode::Uniform::HINT_RANGE) {
pi.hint = PROPERTY_HINT_RANGE;
pi.hint_string = rtos(u.hint_range[0]) + "," + rtos(u.hint_range[1]) + "," + rtos(u.hint_range[2]);
}
} break;
case ShaderLanguage::TYPE_IVEC2:
case ShaderLanguage::TYPE_UVEC2:
case ShaderLanguage::TYPE_IVEC3:
case ShaderLanguage::TYPE_UVEC3:
case ShaderLanguage::TYPE_IVEC4:
case ShaderLanguage::TYPE_UVEC4: {
// not sure what this should be in godot 4
// pi.type = Variant::POOL_INT_ARRAY;
pi.type = Variant::PACKED_INT32_ARRAY;
} break;
case ShaderLanguage::TYPE_FLOAT: {
pi.type = Variant::FLOAT;
if (u.hint == ShaderLanguage::ShaderNode::Uniform::HINT_RANGE) {
pi.hint = PROPERTY_HINT_RANGE;
pi.hint_string = rtos(u.hint_range[0]) + "," + rtos(u.hint_range[1]) + "," + rtos(u.hint_range[2]);
}
} break;
case ShaderLanguage::TYPE_VEC2: {
pi.type = Variant::VECTOR2;
} break;
case ShaderLanguage::TYPE_VEC3: {
pi.type = Variant::VECTOR3;
} break;
case ShaderLanguage::TYPE_VEC4: {
if (u.hint == ShaderLanguage::ShaderNode::Uniform::HINT_COLOR) {
pi.type = Variant::COLOR;
} else {
pi.type = Variant::PLANE;
}
} break;
case ShaderLanguage::TYPE_MAT2: {
pi.type = Variant::TRANSFORM2D;
} break;
case ShaderLanguage::TYPE_MAT3: {
pi.type = Variant::BASIS;
} break;
case ShaderLanguage::TYPE_MAT4: {
pi.type = Variant::TRANSFORM3D;
} break;
case ShaderLanguage::TYPE_SAMPLER2D:
// case ShaderLanguage::TYPE_SAMPLEREXT:
case ShaderLanguage::TYPE_ISAMPLER2D:
case ShaderLanguage::TYPE_USAMPLER2D: {
pi.type = Variant::OBJECT;
pi.hint = PROPERTY_HINT_RESOURCE_TYPE;
pi.hint_string = "Texture";
} break;
case ShaderLanguage::TYPE_SAMPLERCUBE: {
pi.type = Variant::OBJECT;
pi.hint = PROPERTY_HINT_RESOURCE_TYPE;
pi.hint_string = "CubeMap";
} break;
case ShaderLanguage::TYPE_SAMPLER2DARRAY:
case ShaderLanguage::TYPE_ISAMPLER2DARRAY:
case ShaderLanguage::TYPE_USAMPLER2DARRAY:
case ShaderLanguage::TYPE_SAMPLER3D:
case ShaderLanguage::TYPE_ISAMPLER3D:
case ShaderLanguage::TYPE_USAMPLER3D: {
// Not implemented in OpenGL
} break;
// new for godot 4
case ShaderLanguage::TYPE_SAMPLERCUBEARRAY:
case ShaderLanguage::TYPE_STRUCT:
case ShaderLanguage::TYPE_MAX: {
} break;
}
p_param_list->push_back(pi);
}
}
void RasterizerStorageGLES3::shader_set_default_texture_param(RID p_shader, const StringName &p_name, RID p_texture, int p_index) {
Shader *shader = shader_owner.get_or_null(p_shader);
ERR_FAIL_COND(!shader);
ERR_FAIL_COND(p_texture.is_valid() && !texture_owner.owns(p_texture));
if (!p_texture.is_valid()) {
if (shader->default_textures.has(p_name) && shader->default_textures[p_name].has(p_index)) {
shader->default_textures[p_name].erase(p_index);
if (shader->default_textures[p_name].is_empty()) {
shader->default_textures.erase(p_name);
}
}
} else {
if (!shader->default_textures.has(p_name)) {
shader->default_textures[p_name] = Map<int, RID>();
}
shader->default_textures[p_name][p_index] = p_texture;
}
_shader_make_dirty(shader);
}
RID RasterizerStorageGLES3::shader_get_default_texture_param(RID p_shader, const StringName &p_name, int p_index) const {
const Shader *shader = shader_owner.get_or_null(p_shader);
ERR_FAIL_COND_V(!shader, RID());
if (shader->default_textures.has(p_name) && shader->default_textures[p_name].has(p_index)) {
return shader->default_textures[p_name][p_index];
}
return RID();
}
void RasterizerStorageGLES3::shader_add_custom_define(RID p_shader, const String &p_define) {
Shader *shader = shader_owner.get_or_null(p_shader);
ERR_FAIL_COND(!shader);
shader->shader->add_custom_define(p_define);
_shader_make_dirty(shader);
}
void RasterizerStorageGLES3::shader_get_custom_defines(RID p_shader, Vector<String> *p_defines) const {
Shader *shader = shader_owner.get_or_null(p_shader);
ERR_FAIL_COND(!shader);
shader->shader->get_custom_defines(p_defines);
}
void RasterizerStorageGLES3::shader_remove_custom_define(RID p_shader, const String &p_define) {
Shader *shader = shader_owner.get_or_null(p_shader);
ERR_FAIL_COND(!shader);
shader->shader->remove_custom_define(p_define);
_shader_make_dirty(shader);
}
/* COMMON MATERIAL API */
void RasterizerStorageGLES3::_material_make_dirty(Material *p_material) const {
if (p_material->dirty_list.in_list())
return;
_material_dirty_list.add(&p_material->dirty_list);
}
RID RasterizerStorageGLES3::material_allocate() {
Material *material = memnew(Material);
return material_owner.make_rid(material);
}
void RasterizerStorageGLES3::material_initialize(RID p_rid) {
}
//RID RasterizerStorageGLES3::material_create() {
// Material *material = memnew(Material);
// return material_owner.make_rid(material);
//}
void RasterizerStorageGLES3::material_set_shader(RID p_material, RID p_shader) {
Material *material = material_owner.get_or_null(p_material);
ERR_FAIL_COND(!material);
Shader *shader = shader_owner.get_or_null(p_shader);
if (material->shader) {
// if a shader is present, remove the old shader
material->shader->materials.remove(&material->list);
}
material->shader = shader;
if (shader) {
shader->materials.add(&material->list);
}
_material_make_dirty(material);
}
RID RasterizerStorageGLES3::material_get_shader(RID p_material) const {
const Material *material = material_owner.get_or_null(p_material);
ERR_FAIL_COND_V(!material, RID());
if (material->shader) {
return material->shader->self;
}
return RID();
}
void RasterizerStorageGLES3::material_set_param(RID p_material, const StringName &p_param, const Variant &p_value) {
Material *material = material_owner.get_or_null(p_material);
ERR_FAIL_COND(!material);
if (p_value.get_type() == Variant::NIL) {
material->params.erase(p_param);
} else {
material->params[p_param] = p_value;
}
_material_make_dirty(material);
}
Variant RasterizerStorageGLES3::material_get_param(RID p_material, const StringName &p_param) const {
const Material *material = material_owner.get_or_null(p_material);
ERR_FAIL_COND_V(!material, RID());
if (material->params.has(p_param)) {
return material->params[p_param];
}
return material_get_param_default(p_material, p_param);
}
Variant RasterizerStorageGLES3::material_get_param_default(RID p_material, const StringName &p_param) const {
const Material *material = material_owner.get_or_null(p_material);
ERR_FAIL_COND_V(!material, Variant());
if (material->shader) {
if (material->shader->uniforms.has(p_param)) {
ShaderLanguage::ShaderNode::Uniform uniform = material->shader->uniforms[p_param];
Vector<ShaderLanguage::ConstantNode::Value> default_value = uniform.default_value;
return ShaderLanguage::constant_value_to_variant(default_value, uniform.type, uniform.hint);
}
}
return Variant();
}
void RasterizerStorageGLES3::material_set_line_width(RID p_material, float p_width) {
Material *material = material_owner.get_or_null(p_material);
ERR_FAIL_COND(!material);
material->line_width = p_width;
}
void RasterizerStorageGLES3::material_set_next_pass(RID p_material, RID p_next_material) {
Material *material = material_owner.get_or_null(p_material);
ERR_FAIL_COND(!material);
material->next_pass = p_next_material;
}
bool RasterizerStorageGLES3::material_is_animated(RID p_material) {
Material *material = material_owner.get_or_null(p_material);
ERR_FAIL_COND_V(!material, false);
if (material->dirty_list.in_list()) {
_update_material(material);
}
bool animated = material->is_animated_cache;
if (!animated && material->next_pass.is_valid()) {
animated = material_is_animated(material->next_pass);
}
return animated;
}
bool RasterizerStorageGLES3::material_casts_shadows(RID p_material) {
Material *material = material_owner.get_or_null(p_material);
ERR_FAIL_COND_V(!material, false);
if (material->dirty_list.in_list()) {
_update_material(material);
}
bool casts_shadows = material->can_cast_shadow_cache;
if (!casts_shadows && material->next_pass.is_valid()) {
casts_shadows = material_casts_shadows(material->next_pass);
}
return casts_shadows;
}
bool RasterizerStorageGLES3::material_uses_tangents(RID p_material) {
Material *material = material_owner.get_or_null(p_material);
ERR_FAIL_COND_V(!material, false);
if (!material->shader) {
return false;
}
if (material->shader->dirty_list.in_list()) {
_update_shader(material->shader);
}
return material->shader->spatial.uses_tangent;
}
bool RasterizerStorageGLES3::material_uses_ensure_correct_normals(RID p_material) {
Material *material = material_owner.get_or_null(p_material);
ERR_FAIL_COND_V(!material, false);
if (!material->shader) {
return false;
}
if (material->shader->dirty_list.in_list()) {
_update_shader(material->shader);
}
return material->shader->spatial.uses_ensure_correct_normals;
}
void RasterizerStorageGLES3::material_add_instance_owner(RID p_material, DependencyTracker *p_instance) {
/*
Material *material = material_owner.get_or_null(p_material);
ERR_FAIL_COND(!material);
Map<InstanceBaseDependency *, int>::Element *E = material->instance_owners.find(p_instance);
if (E) {
E->get()++;
} else {
material->instance_owners[p_instance] = 1;
}
*/
}
void RasterizerStorageGLES3::material_remove_instance_owner(RID p_material, DependencyTracker *p_instance) {
/*
Material *material = material_owner.get_or_null(p_material);
ERR_FAIL_COND(!material);
Map<InstanceBaseDependency *, int>::Element *E = material->instance_owners.find(p_instance);
ERR_FAIL_COND(!E);
E->get()--;
if (E->get() == 0) {
material->instance_owners.erase(E);
}
*/
}
void RasterizerStorageGLES3::material_set_render_priority(RID p_material, int priority) {
ERR_FAIL_COND(priority < RS::MATERIAL_RENDER_PRIORITY_MIN);
ERR_FAIL_COND(priority > RS::MATERIAL_RENDER_PRIORITY_MAX);
Material *material = material_owner.get_or_null(p_material);
ERR_FAIL_COND(!material);
material->render_priority = priority;
}
void RasterizerStorageGLES3::_update_material(Material *p_material) {
if (p_material->dirty_list.in_list()) {
_material_dirty_list.remove(&p_material->dirty_list);
}
if (p_material->shader && p_material->shader->dirty_list.in_list()) {
_update_shader(p_material->shader);
}
if (p_material->shader && !p_material->shader->valid) {
return;
}
{
bool can_cast_shadow = false;
bool is_animated = false;
if (p_material->shader && p_material->shader->mode == RS::SHADER_SPATIAL) {
if (p_material->shader->spatial.blend_mode == Shader::Spatial::BLEND_MODE_MIX &&
(!p_material->shader->spatial.uses_alpha || p_material->shader->spatial.depth_draw_mode == Shader::Spatial::DEPTH_DRAW_ALPHA_PREPASS)) {
can_cast_shadow = true;
}
if (p_material->shader->spatial.uses_discard && p_material->shader->uses_fragment_time) {
is_animated = true;
}
if (p_material->shader->spatial.uses_vertex && p_material->shader->uses_vertex_time) {
is_animated = true;
}
if (can_cast_shadow != p_material->can_cast_shadow_cache || is_animated != p_material->is_animated_cache) {
p_material->can_cast_shadow_cache = can_cast_shadow;
p_material->is_animated_cache = is_animated;
/*
for (Map<Geometry *, int>::Element *E = p_material->geometry_owners.front(); E; E = E->next()) {
E->key()->material_changed_notify();
}
for (Map<InstanceBaseDependency *, int>::Element *E = p_material->instance_owners.front(); E; E = E->next()) {
E->key()->base_changed(false, true);
}
*/
}
}
}
// uniforms and other things will be set in the use_material method in ShaderGLES3
if (p_material->shader && p_material->shader->texture_count > 0) {
p_material->textures.resize(p_material->shader->texture_count);
for (Map<StringName, ShaderLanguage::ShaderNode::Uniform>::Element *E = p_material->shader->uniforms.front(); E; E = E->next()) {
if (E->get().texture_order < 0)
continue; // not a texture, does not go here
RID texture;
Map<StringName, Variant>::Element *V = p_material->params.find(E->key());
if (V) {
texture = V->get();
}
if (!texture.is_valid()) {
Map<StringName, Map<int, RID>>::Element *W = p_material->shader->default_textures.find(E->key());
// TODO: make texture uniform array properly works with GLES3
if (W && W->get().has(0)) {
texture = W->get()[0];
}
}
p_material->textures.write[E->get().texture_order] = Pair<StringName, RID>(E->key(), texture);
}
} else {
p_material->textures.clear();
}
}
/*
void RasterizerStorageGLES3::_material_add_geometry(RID p_material, Geometry *p_geometry) {
Material *material = material_owner.get_or_null(p_material);
ERR_FAIL_COND(!material);
Map<Geometry *, int>::Element *I = material->geometry_owners.find(p_geometry);
if (I) {
I->get()++;
} else {
material->geometry_owners[p_geometry] = 1;
}
}
void RasterizerStorageGLES3::_material_remove_geometry(RID p_material, Geometry *p_geometry) {
Material *material = material_owner.get_or_null(p_material);
ERR_FAIL_COND(!material);
Map<Geometry *, int>::Element *I = material->geometry_owners.find(p_geometry);
ERR_FAIL_COND(!I);
I->get()--;
if (I->get() == 0) {
material->geometry_owners.erase(I);
}
}
*/
void RasterizerStorageGLES3::update_dirty_materials() {
while (_material_dirty_list.first()) {
Material *material = _material_dirty_list.first()->self();
_update_material(material);
}
}
/* MESH API */
RID RasterizerStorageGLES3::mesh_allocate() {
return RID();
}
void RasterizerStorageGLES3::mesh_initialize(RID p_rid) {
}
void RasterizerStorageGLES3::mesh_set_blend_shape_count(RID p_mesh, int p_blend_shape_count) {
}
bool RasterizerStorageGLES3::mesh_needs_instance(RID p_mesh, bool p_has_skeleton) {
return false;
}
RID RasterizerStorageGLES3::mesh_instance_create(RID p_base) {
return RID();
}
void RasterizerStorageGLES3::mesh_instance_set_skeleton(RID p_mesh_instance, RID p_skeleton) {
}
void RasterizerStorageGLES3::mesh_instance_set_blend_shape_weight(RID p_mesh_instance, int p_shape, float p_weight) {
}
void RasterizerStorageGLES3::mesh_instance_check_for_update(RID p_mesh_instance) {
}
void RasterizerStorageGLES3::update_mesh_instances() {
}
void RasterizerStorageGLES3::reflection_probe_set_lod_threshold(RID p_probe, float p_ratio) {
}
float RasterizerStorageGLES3::reflection_probe_get_lod_threshold(RID p_probe) const {
return 0.0;
}
void RasterizerStorageGLES3::mesh_add_surface(RID p_mesh, const RS::SurfaceData &p_surface) {
}
int RasterizerStorageGLES3::mesh_get_blend_shape_count(RID p_mesh) const {
return 0;
}
void RasterizerStorageGLES3::mesh_set_blend_shape_mode(RID p_mesh, RS::BlendShapeMode p_mode) {
}
RS::BlendShapeMode RasterizerStorageGLES3::mesh_get_blend_shape_mode(RID p_mesh) const {
return RS::BLEND_SHAPE_MODE_NORMALIZED;
}
void RasterizerStorageGLES3::mesh_surface_update_vertex_region(RID p_mesh, int p_surface, int p_offset, const Vector<uint8_t> &p_data) {
}
void RasterizerStorageGLES3::mesh_surface_update_attribute_region(RID p_mesh, int p_surface, int p_offset, const Vector<uint8_t> &p_data) {
}
void RasterizerStorageGLES3::mesh_surface_update_skin_region(RID p_mesh, int p_surface, int p_offset, const Vector<uint8_t> &p_data) {
}
void RasterizerStorageGLES3::mesh_surface_set_material(RID p_mesh, int p_surface, RID p_material) {
}
RID RasterizerStorageGLES3::mesh_surface_get_material(RID p_mesh, int p_surface) const {
return RID();
}
RS::SurfaceData RasterizerStorageGLES3::mesh_get_surface(RID p_mesh, int p_surface) const {
return RS::SurfaceData();
}
int RasterizerStorageGLES3::mesh_get_surface_count(RID p_mesh) const {
return 0;
}
void RasterizerStorageGLES3::mesh_set_custom_aabb(RID p_mesh, const AABB &p_aabb) {
}
AABB RasterizerStorageGLES3::mesh_get_custom_aabb(RID p_mesh) const {
return AABB();
}
AABB RasterizerStorageGLES3::mesh_get_aabb(RID p_mesh, RID p_skeleton) {
return AABB();
}
void RasterizerStorageGLES3::mesh_set_shadow_mesh(RID p_mesh, RID p_shadow_mesh) {
}
void RasterizerStorageGLES3::mesh_clear(RID p_mesh) {
}
/* MULTIMESH API */
RID RasterizerStorageGLES3::multimesh_allocate() {
return RID();
}
void RasterizerStorageGLES3::multimesh_initialize(RID p_rid) {
}
void RasterizerStorageGLES3::multimesh_allocate_data(RID p_multimesh, int p_instances, RS::MultimeshTransformFormat p_transform_format, bool p_use_colors, bool p_use_custom_data) {
}
int RasterizerStorageGLES3::multimesh_get_instance_count(RID p_multimesh) const {
return 0;
}
void RasterizerStorageGLES3::multimesh_set_mesh(RID p_multimesh, RID p_mesh) {
}
void RasterizerStorageGLES3::multimesh_instance_set_transform(RID p_multimesh, int p_index, const Transform3D &p_transform) {
}
void RasterizerStorageGLES3::multimesh_instance_set_transform_2d(RID p_multimesh, int p_index, const Transform2D &p_transform) {
}
void RasterizerStorageGLES3::multimesh_instance_set_color(RID p_multimesh, int p_index, const Color &p_color) {
}
void RasterizerStorageGLES3::multimesh_instance_set_custom_data(RID p_multimesh, int p_index, const Color &p_color) {
}
RID RasterizerStorageGLES3::multimesh_get_mesh(RID p_multimesh) const {
return RID();
}
AABB RasterizerStorageGLES3::multimesh_get_aabb(RID p_multimesh) const {
return AABB();
}
Transform3D RasterizerStorageGLES3::multimesh_instance_get_transform(RID p_multimesh, int p_index) const {
return Transform3D();
}
Transform2D RasterizerStorageGLES3::multimesh_instance_get_transform_2d(RID p_multimesh, int p_index) const {
return Transform2D();
}
Color RasterizerStorageGLES3::multimesh_instance_get_color(RID p_multimesh, int p_index) const {
return Color();
}
Color RasterizerStorageGLES3::multimesh_instance_get_custom_data(RID p_multimesh, int p_index) const {
return Color();
}
void RasterizerStorageGLES3::multimesh_set_buffer(RID p_multimesh, const Vector<float> &p_buffer) {
}
Vector<float> RasterizerStorageGLES3::multimesh_get_buffer(RID p_multimesh) const {
return Vector<float>();
}
void RasterizerStorageGLES3::multimesh_set_visible_instances(RID p_multimesh, int p_visible) {
}
int RasterizerStorageGLES3::multimesh_get_visible_instances(RID p_multimesh) const {
return 0;
}
/* SKELETON API */
RID RasterizerStorageGLES3::skeleton_allocate() {
return RID();
}
void RasterizerStorageGLES3::skeleton_initialize(RID p_rid) {
}
void RasterizerStorageGLES3::skeleton_allocate_data(RID p_skeleton, int p_bones, bool p_2d_skeleton) {
}
void RasterizerStorageGLES3::skeleton_set_base_transform_2d(RID p_skeleton, const Transform2D &p_base_transform) {
}
int RasterizerStorageGLES3::skeleton_get_bone_count(RID p_skeleton) const {
return 0;
}
void RasterizerStorageGLES3::skeleton_bone_set_transform(RID p_skeleton, int p_bone, const Transform3D &p_transform) {
}
Transform3D RasterizerStorageGLES3::skeleton_bone_get_transform(RID p_skeleton, int p_bone) const {
return Transform3D();
}
void RasterizerStorageGLES3::skeleton_bone_set_transform_2d(RID p_skeleton, int p_bone, const Transform2D &p_transform) {
}
Transform2D RasterizerStorageGLES3::skeleton_bone_get_transform_2d(RID p_skeleton, int p_bone) const {
return Transform2D();
}
/* Light API */
RID RasterizerStorageGLES3::directional_light_allocate() {
return RID();
}
void RasterizerStorageGLES3::directional_light_initialize(RID p_rid) {
}
RID RasterizerStorageGLES3::omni_light_allocate() {
return RID();
}
void RasterizerStorageGLES3::omni_light_initialize(RID p_rid) {
}
RID RasterizerStorageGLES3::spot_light_allocate() {
return RID();
}
void RasterizerStorageGLES3::spot_light_initialize(RID p_rid) {
}
RID RasterizerStorageGLES3::reflection_probe_allocate() {
return RID();
}
void RasterizerStorageGLES3::reflection_probe_initialize(RID p_rid) {
}
void RasterizerStorageGLES3::light_set_color(RID p_light, const Color &p_color) {
}
void RasterizerStorageGLES3::light_set_param(RID p_light, RS::LightParam p_param, float p_value) {
}
void RasterizerStorageGLES3::light_set_shadow(RID p_light, bool p_enabled) {
}
void RasterizerStorageGLES3::light_set_shadow_color(RID p_light, const Color &p_color) {
}
void RasterizerStorageGLES3::light_set_projector(RID p_light, RID p_texture) {
}
void RasterizerStorageGLES3::light_set_negative(RID p_light, bool p_enable) {
}
void RasterizerStorageGLES3::light_set_cull_mask(RID p_light, uint32_t p_mask) {
}
void RasterizerStorageGLES3::light_set_reverse_cull_face_mode(RID p_light, bool p_enabled) {
}
void RasterizerStorageGLES3::light_set_bake_mode(RID p_light, RS::LightBakeMode p_bake_mode) {
}
void RasterizerStorageGLES3::light_set_max_sdfgi_cascade(RID p_light, uint32_t p_cascade) {
}
void RasterizerStorageGLES3::light_omni_set_shadow_mode(RID p_light, RS::LightOmniShadowMode p_mode) {
}
void RasterizerStorageGLES3::light_directional_set_shadow_mode(RID p_light, RS::LightDirectionalShadowMode p_mode) {
}
void RasterizerStorageGLES3::light_directional_set_blend_splits(RID p_light, bool p_enable) {
}
bool RasterizerStorageGLES3::light_directional_get_blend_splits(RID p_light) const {
return false;
}
void RasterizerStorageGLES3::light_directional_set_sky_only(RID p_light, bool p_sky_only) {
}
bool RasterizerStorageGLES3::light_directional_is_sky_only(RID p_light) const {
return false;
}
RS::LightDirectionalShadowMode RasterizerStorageGLES3::light_directional_get_shadow_mode(RID p_light) {
return RS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL;
}
RS::LightOmniShadowMode RasterizerStorageGLES3::light_omni_get_shadow_mode(RID p_light) {
return RS::LIGHT_OMNI_SHADOW_DUAL_PARABOLOID;
}
bool RasterizerStorageGLES3::light_has_shadow(RID p_light) const {
return false;
}
bool RasterizerStorageGLES3::light_has_projector(RID p_light) const {
return false;
}
RS::LightType RasterizerStorageGLES3::light_get_type(RID p_light) const {
return RS::LIGHT_OMNI;
}
AABB RasterizerStorageGLES3::light_get_aabb(RID p_light) const {
return AABB();
}
float RasterizerStorageGLES3::light_get_param(RID p_light, RS::LightParam p_param) {
return 0.0;
}
Color RasterizerStorageGLES3::light_get_color(RID p_light) {
return Color();
}
RS::LightBakeMode RasterizerStorageGLES3::light_get_bake_mode(RID p_light) {
return RS::LIGHT_BAKE_DISABLED;
}
uint32_t RasterizerStorageGLES3::light_get_max_sdfgi_cascade(RID p_light) {
return 0;
}
uint64_t RasterizerStorageGLES3::light_get_version(RID p_light) const {
return 0;
}
/* PROBE API */
void RasterizerStorageGLES3::reflection_probe_set_update_mode(RID p_probe, RS::ReflectionProbeUpdateMode p_mode) {
}
void RasterizerStorageGLES3::reflection_probe_set_intensity(RID p_probe, float p_intensity) {
}
void RasterizerStorageGLES3::reflection_probe_set_ambient_mode(RID p_probe, RS::ReflectionProbeAmbientMode p_mode) {
}
void RasterizerStorageGLES3::reflection_probe_set_ambient_color(RID p_probe, const Color &p_color) {
}
void RasterizerStorageGLES3::reflection_probe_set_ambient_energy(RID p_probe, float p_energy) {
}
void RasterizerStorageGLES3::reflection_probe_set_max_distance(RID p_probe, float p_distance) {
}
void RasterizerStorageGLES3::reflection_probe_set_extents(RID p_probe, const Vector3 &p_extents) {
}
void RasterizerStorageGLES3::reflection_probe_set_origin_offset(RID p_probe, const Vector3 &p_offset) {
}
void RasterizerStorageGLES3::reflection_probe_set_as_interior(RID p_probe, bool p_enable) {
}
void RasterizerStorageGLES3::reflection_probe_set_enable_box_projection(RID p_probe, bool p_enable) {
}
void RasterizerStorageGLES3::reflection_probe_set_enable_shadows(RID p_probe, bool p_enable) {
}
void RasterizerStorageGLES3::reflection_probe_set_cull_mask(RID p_probe, uint32_t p_layers) {
}
void RasterizerStorageGLES3::reflection_probe_set_resolution(RID p_probe, int p_resolution) {
}
AABB RasterizerStorageGLES3::reflection_probe_get_aabb(RID p_probe) const {
return AABB();
}
RS::ReflectionProbeUpdateMode RasterizerStorageGLES3::reflection_probe_get_update_mode(RID p_probe) const {
return RenderingServer::REFLECTION_PROBE_UPDATE_ONCE;
}
uint32_t RasterizerStorageGLES3::reflection_probe_get_cull_mask(RID p_probe) const {
return 0;
}
Vector3 RasterizerStorageGLES3::reflection_probe_get_extents(RID p_probe) const {
return Vector3();
}
Vector3 RasterizerStorageGLES3::reflection_probe_get_origin_offset(RID p_probe) const {
return Vector3();
}
float RasterizerStorageGLES3::reflection_probe_get_origin_max_distance(RID p_probe) const {
return 0.0;
}
bool RasterizerStorageGLES3::reflection_probe_renders_shadows(RID p_probe) const {
return false;
}
void RasterizerStorageGLES3::base_update_dependency(RID p_base, DependencyTracker *p_instance) {
}
void RasterizerStorageGLES3::skeleton_update_dependency(RID p_base, DependencyTracker *p_instance) {
}
/* DECAL API */
RID RasterizerStorageGLES3::decal_allocate() {
return RID();
}
void RasterizerStorageGLES3::decal_initialize(RID p_rid) {
}
void RasterizerStorageGLES3::decal_set_extents(RID p_decal, const Vector3 &p_extents) {
}
void RasterizerStorageGLES3::decal_set_texture(RID p_decal, RS::DecalTexture p_type, RID p_texture) {
}
void RasterizerStorageGLES3::decal_set_emission_energy(RID p_decal, float p_energy) {
}
void RasterizerStorageGLES3::decal_set_albedo_mix(RID p_decal, float p_mix) {
}
void RasterizerStorageGLES3::decal_set_modulate(RID p_decal, const Color &p_modulate) {
}
void RasterizerStorageGLES3::decal_set_cull_mask(RID p_decal, uint32_t p_layers) {
}
void RasterizerStorageGLES3::decal_set_distance_fade(RID p_decal, bool p_enabled, float p_begin, float p_length) {
}
void RasterizerStorageGLES3::decal_set_fade(RID p_decal, float p_above, float p_below) {
}
void RasterizerStorageGLES3::decal_set_normal_fade(RID p_decal, float p_fade) {
}
AABB RasterizerStorageGLES3::decal_get_aabb(RID p_decal) const {
return AABB();
}
/* VOXEL GI API */
RID RasterizerStorageGLES3::voxel_gi_allocate() {
return RID();
}
void RasterizerStorageGLES3::voxel_gi_initialize(RID p_rid) {
}
void RasterizerStorageGLES3::voxel_gi_allocate_data(RID p_voxel_gi, const Transform3D &p_to_cell_xform, const AABB &p_aabb, const Vector3i &p_octree_size, const Vector<uint8_t> &p_octree_cells, const Vector<uint8_t> &p_data_cells, const Vector<uint8_t> &p_distance_field, const Vector<int> &p_level_counts) {
}
AABB RasterizerStorageGLES3::voxel_gi_get_bounds(RID p_voxel_gi) const {
return AABB();
}
Vector3i RasterizerStorageGLES3::voxel_gi_get_octree_size(RID p_voxel_gi) const {
return Vector3i();
}
Vector<uint8_t> RasterizerStorageGLES3::voxel_gi_get_octree_cells(RID p_voxel_gi) const {
return Vector<uint8_t>();
}
Vector<uint8_t> RasterizerStorageGLES3::voxel_gi_get_data_cells(RID p_voxel_gi) const {
return Vector<uint8_t>();
}
Vector<uint8_t> RasterizerStorageGLES3::voxel_gi_get_distance_field(RID p_voxel_gi) const {
return Vector<uint8_t>();
}
Vector<int> RasterizerStorageGLES3::voxel_gi_get_level_counts(RID p_voxel_gi) const {
return Vector<int>();
}
Transform3D RasterizerStorageGLES3::voxel_gi_get_to_cell_xform(RID p_voxel_gi) const {
return Transform3D();
}
void RasterizerStorageGLES3::voxel_gi_set_dynamic_range(RID p_voxel_gi, float p_range) {
}
float RasterizerStorageGLES3::voxel_gi_get_dynamic_range(RID p_voxel_gi) const {
return 0;
}
void RasterizerStorageGLES3::voxel_gi_set_propagation(RID p_voxel_gi, float p_range) {
}
float RasterizerStorageGLES3::voxel_gi_get_propagation(RID p_voxel_gi) const {
return 0;
}
void RasterizerStorageGLES3::voxel_gi_set_energy(RID p_voxel_gi, float p_range) {
}
float RasterizerStorageGLES3::voxel_gi_get_energy(RID p_voxel_gi) const {
return 0.0;
}
void RasterizerStorageGLES3::voxel_gi_set_bias(RID p_voxel_gi, float p_range) {
}
float RasterizerStorageGLES3::voxel_gi_get_bias(RID p_voxel_gi) const {
return 0.0;
}
void RasterizerStorageGLES3::voxel_gi_set_normal_bias(RID p_voxel_gi, float p_range) {
}
float RasterizerStorageGLES3::voxel_gi_get_normal_bias(RID p_voxel_gi) const {
return 0.0;
}
void RasterizerStorageGLES3::voxel_gi_set_interior(RID p_voxel_gi, bool p_enable) {
}
bool RasterizerStorageGLES3::voxel_gi_is_interior(RID p_voxel_gi) const {
return false;
}
void RasterizerStorageGLES3::voxel_gi_set_use_two_bounces(RID p_voxel_gi, bool p_enable) {
}
bool RasterizerStorageGLES3::voxel_gi_is_using_two_bounces(RID p_voxel_gi) const {
return false;
}
void RasterizerStorageGLES3::voxel_gi_set_anisotropy_strength(RID p_voxel_gi, float p_strength) {
}
float RasterizerStorageGLES3::voxel_gi_get_anisotropy_strength(RID p_voxel_gi) const {
return 0;
}
uint32_t RasterizerStorageGLES3::voxel_gi_get_version(RID p_voxel_gi) {
return 0;
}
/* LIGHTMAP CAPTURE */
RID RasterizerStorageGLES3::lightmap_allocate() {
return RID();
}
void RasterizerStorageGLES3::lightmap_initialize(RID p_rid) {
}
void RasterizerStorageGLES3::lightmap_set_textures(RID p_lightmap, RID p_light, bool p_uses_spherical_haromics) {
}
void RasterizerStorageGLES3::lightmap_set_probe_bounds(RID p_lightmap, const AABB &p_bounds) {
}
void RasterizerStorageGLES3::lightmap_set_probe_interior(RID p_lightmap, bool p_interior) {
}
void RasterizerStorageGLES3::lightmap_set_probe_capture_data(RID p_lightmap, const PackedVector3Array &p_points, const PackedColorArray &p_point_sh, const PackedInt32Array &p_tetrahedra, const PackedInt32Array &p_bsp_tree) {
}
PackedVector3Array RasterizerStorageGLES3::lightmap_get_probe_capture_points(RID p_lightmap) const {
return PackedVector3Array();
}
PackedColorArray RasterizerStorageGLES3::lightmap_get_probe_capture_sh(RID p_lightmap) const {
return PackedColorArray();
}
PackedInt32Array RasterizerStorageGLES3::lightmap_get_probe_capture_tetrahedra(RID p_lightmap) const {
return PackedInt32Array();
}
PackedInt32Array RasterizerStorageGLES3::lightmap_get_probe_capture_bsp_tree(RID p_lightmap) const {
return PackedInt32Array();
}
AABB RasterizerStorageGLES3::lightmap_get_aabb(RID p_lightmap) const {
return AABB();
}
void RasterizerStorageGLES3::lightmap_tap_sh_light(RID p_lightmap, const Vector3 &p_point, Color *r_sh) {
}
bool RasterizerStorageGLES3::lightmap_is_interior(RID p_lightmap) const {
return false;
}
void RasterizerStorageGLES3::lightmap_set_probe_capture_update_speed(float p_speed) {
}
float RasterizerStorageGLES3::lightmap_get_probe_capture_update_speed() const {
return 0;
}
/* OCCLUDER */
void RasterizerStorageGLES3::occluder_set_mesh(RID p_occluder, const PackedVector3Array &p_vertices, const PackedInt32Array &p_indices) {
}
/* PARTICLES */
RID RasterizerStorageGLES3::particles_allocate() {
return RID();
}
void RasterizerStorageGLES3::particles_initialize(RID p_rid) {
}
void RasterizerStorageGLES3::particles_set_mode(RID p_particles, RS::ParticlesMode p_mode) {
}
void RasterizerStorageGLES3::particles_emit(RID p_particles, const Transform3D &p_transform, const Vector3 &p_velocity, const Color &p_color, const Color &p_custom, uint32_t p_emit_flags) {
}
void RasterizerStorageGLES3::particles_set_emitting(RID p_particles, bool p_emitting) {
}
void RasterizerStorageGLES3::particles_set_amount(RID p_particles, int p_amount) {
}
void RasterizerStorageGLES3::particles_set_lifetime(RID p_particles, double p_lifetime) {
}
void RasterizerStorageGLES3::particles_set_one_shot(RID p_particles, bool p_one_shot) {
}
void RasterizerStorageGLES3::particles_set_pre_process_time(RID p_particles, double p_time) {
}
void RasterizerStorageGLES3::particles_set_explosiveness_ratio(RID p_particles, real_t p_ratio) {
}
void RasterizerStorageGLES3::particles_set_randomness_ratio(RID p_particles, real_t p_ratio) {
}
void RasterizerStorageGLES3::particles_set_custom_aabb(RID p_particles, const AABB &p_aabb) {
}
void RasterizerStorageGLES3::particles_set_speed_scale(RID p_particles, double p_scale) {
}
void RasterizerStorageGLES3::particles_set_use_local_coordinates(RID p_particles, bool p_enable) {
}
void RasterizerStorageGLES3::particles_set_process_material(RID p_particles, RID p_material) {
}
void RasterizerStorageGLES3::particles_set_fixed_fps(RID p_particles, int p_fps) {
}
void RasterizerStorageGLES3::particles_set_interpolate(RID p_particles, bool p_enable) {
}
void RasterizerStorageGLES3::particles_set_fractional_delta(RID p_particles, bool p_enable) {
}
void RasterizerStorageGLES3::particles_set_subemitter(RID p_particles, RID p_subemitter_particles) {
}
void RasterizerStorageGLES3::particles_set_view_axis(RID p_particles, const Vector3 &p_axis, const Vector3 &p_up_axis) {
}
void RasterizerStorageGLES3::particles_set_collision_base_size(RID p_particles, real_t p_size) {
}
void RasterizerStorageGLES3::particles_set_transform_align(RID p_particles, RS::ParticlesTransformAlign p_transform_align) {
}
void RasterizerStorageGLES3::particles_set_trails(RID p_particles, bool p_enable, double p_length) {
}
void RasterizerStorageGLES3::particles_set_trail_bind_poses(RID p_particles, const Vector<Transform3D> &p_bind_poses) {
}
void RasterizerStorageGLES3::particles_restart(RID p_particles) {
}
void RasterizerStorageGLES3::particles_set_draw_order(RID p_particles, RS::ParticlesDrawOrder p_order) {
}
void RasterizerStorageGLES3::particles_set_draw_passes(RID p_particles, int p_count) {
}
void RasterizerStorageGLES3::particles_set_draw_pass_mesh(RID p_particles, int p_pass, RID p_mesh) {
}
void RasterizerStorageGLES3::particles_request_process(RID p_particles) {
}
AABB RasterizerStorageGLES3::particles_get_current_aabb(RID p_particles) {
return AABB();
}
AABB RasterizerStorageGLES3::particles_get_aabb(RID p_particles) const {
return AABB();
}
void RasterizerStorageGLES3::particles_set_emission_transform(RID p_particles, const Transform3D &p_transform) {
}
bool RasterizerStorageGLES3::particles_get_emitting(RID p_particles) {
return false;
}
int RasterizerStorageGLES3::particles_get_draw_passes(RID p_particles) const {
return 0;
}
RID RasterizerStorageGLES3::particles_get_draw_pass_mesh(RID p_particles, int p_pass) const {
return RID();
}
void RasterizerStorageGLES3::particles_add_collision(RID p_particles, RID p_instance) {
}
void RasterizerStorageGLES3::particles_remove_collision(RID p_particles, RID p_instance) {
}
void RasterizerStorageGLES3::particles_set_canvas_sdf_collision(RID p_particles, bool p_enable, const Transform2D &p_xform, const Rect2 &p_to_screen, RID p_texture) {
}
void RasterizerStorageGLES3::update_particles() {
}
/* PARTICLES COLLISION */
RID RasterizerStorageGLES3::particles_collision_allocate() {
return RID();
}
void RasterizerStorageGLES3::particles_collision_initialize(RID p_rid) {
}
void RasterizerStorageGLES3::particles_collision_set_collision_type(RID p_particles_collision, RS::ParticlesCollisionType p_type) {
}
void RasterizerStorageGLES3::particles_collision_set_cull_mask(RID p_particles_collision, uint32_t p_cull_mask) {
}
void RasterizerStorageGLES3::particles_collision_set_sphere_radius(RID p_particles_collision, real_t p_radius) {
}
void RasterizerStorageGLES3::particles_collision_set_box_extents(RID p_particles_collision, const Vector3 &p_extents) {
}
void RasterizerStorageGLES3::particles_collision_set_attractor_strength(RID p_particles_collision, real_t p_strength) {
}
void RasterizerStorageGLES3::particles_collision_set_attractor_directionality(RID p_particles_collision, real_t p_directionality) {
}
void RasterizerStorageGLES3::particles_collision_set_attractor_attenuation(RID p_particles_collision, real_t p_curve) {
}
void RasterizerStorageGLES3::particles_collision_set_field_texture(RID p_particles_collision, RID p_texture) {
}
void RasterizerStorageGLES3::particles_collision_height_field_update(RID p_particles_collision) {
}
void RasterizerStorageGLES3::particles_collision_set_height_field_resolution(RID p_particles_collision, RS::ParticlesCollisionHeightfieldResolution p_resolution) {
}
AABB RasterizerStorageGLES3::particles_collision_get_aabb(RID p_particles_collision) const {
return AABB();
}
bool RasterizerStorageGLES3::particles_collision_is_heightfield(RID p_particles_collision) const {
return false;
}
RID RasterizerStorageGLES3::particles_collision_get_heightfield_framebuffer(RID p_particles_collision) const {
return RID();
}
RID RasterizerStorageGLES3::particles_collision_instance_create(RID p_collision) {
return RID();
}
void RasterizerStorageGLES3::particles_collision_instance_set_transform(RID p_collision_instance, const Transform3D &p_transform) {
}
void RasterizerStorageGLES3::particles_collision_instance_set_active(RID p_collision_instance, bool p_active) {
}
RID RasterizerStorageGLES3::fog_volume_allocate() {
return RID();
}
void RasterizerStorageGLES3::fog_volume_initialize(RID p_rid) {
}
void RasterizerStorageGLES3::fog_volume_set_shape(RID p_fog_volume, RS::FogVolumeShape p_shape) {
}
void RasterizerStorageGLES3::fog_volume_set_extents(RID p_fog_volume, const Vector3 &p_extents) {
}
void RasterizerStorageGLES3::fog_volume_set_material(RID p_fog_volume, RID p_material) {
}
AABB RasterizerStorageGLES3::fog_volume_get_aabb(RID p_fog_volume) const {
return AABB();
}
RS::FogVolumeShape RasterizerStorageGLES3::fog_volume_get_shape(RID p_fog_volume) const {
return RS::FOG_VOLUME_SHAPE_BOX;
}
/* VISIBILITY NOTIFIER */
RID RasterizerStorageGLES3::visibility_notifier_allocate() {
return RID();
}
void RasterizerStorageGLES3::visibility_notifier_initialize(RID p_notifier) {
}
void RasterizerStorageGLES3::visibility_notifier_set_aabb(RID p_notifier, const AABB &p_aabb) {
}
void RasterizerStorageGLES3::visibility_notifier_set_callbacks(RID p_notifier, const Callable &p_enter_callbable, const Callable &p_exit_callable) {
}
AABB RasterizerStorageGLES3::visibility_notifier_get_aabb(RID p_notifier) const {
return AABB();
}
void RasterizerStorageGLES3::visibility_notifier_call(RID p_notifier, bool p_enter, bool p_deferred) {
}
/* GLOBAL VARIABLES */
void RasterizerStorageGLES3::global_variable_add(const StringName &p_name, RS::GlobalVariableType p_type, const Variant &p_value) {
}
void RasterizerStorageGLES3::global_variable_remove(const StringName &p_name) {
}
Vector<StringName> RasterizerStorageGLES3::global_variable_get_list() const {
return Vector<StringName>();
}
void RasterizerStorageGLES3::global_variable_set(const StringName &p_name, const Variant &p_value) {
}
void RasterizerStorageGLES3::global_variable_set_override(const StringName &p_name, const Variant &p_value) {
}
Variant RasterizerStorageGLES3::global_variable_get(const StringName &p_name) const {
return Variant();
}
RS::GlobalVariableType RasterizerStorageGLES3::global_variable_get_type(const StringName &p_name) const {
return RS::GLOBAL_VAR_TYPE_MAX;
}
void RasterizerStorageGLES3::global_variables_load_settings(bool p_load_textures) {
}
void RasterizerStorageGLES3::global_variables_clear() {
}
int32_t RasterizerStorageGLES3::global_variables_instance_allocate(RID p_instance) {
return 0;
}
void RasterizerStorageGLES3::global_variables_instance_free(RID p_instance) {
}
void RasterizerStorageGLES3::global_variables_instance_update(RID p_instance, int p_index, const Variant &p_value) {
}
bool RasterizerStorageGLES3::particles_is_inactive(RID p_particles) const {
return false;
}
/* RENDER TARGET */
void RasterizerStorageGLES3::_set_current_render_target(RID p_render_target) {
#ifdef OPENGL_DISABLE_RENDER_TARGETS
return;
#endif
RenderTarget *rt = render_target_owner.get_or_null(p_render_target);
// FTODO
// if (!p_render_target.is_valid() && storage->frame.current_rt && storage->frame.clear_request) {
// // pending clear request. Do that first.
// glBindFramebuffer(GL_FRAMEBUFFER, storage->frame.current_rt->fbo);
// glClearColor(storage->frame.clear_request_color.r,
// storage->frame.clear_request_color.g,
// storage->frame.clear_request_color.b,
// storage->frame.clear_request_color.a);
// glClear(GL_COLOR_BUFFER_BIT);
// }
if (rt) {
if (rt->allocate_is_dirty) {
rt->allocate_is_dirty = false;
_render_target_allocate(rt);
}
// if (p_render_target.is_valid()) {
// RasterizerStorageGLES3::RenderTarget *rt = storage.render_target_owner.get_or_null(p_render_target);
frame.current_rt = rt;
ERR_FAIL_COND(!rt);
frame.clear_request = false;
glViewport(0, 0, rt->width, rt->height);
// print_line("_set_current_render_target w " + itos(rt->width) + " h " + itos(rt->height));
_dims.rt_width = rt->width;
_dims.rt_height = rt->height;
_dims.win_width = rt->width;
_dims.win_height = rt->height;
} else {
frame.current_rt = NULL;
frame.clear_request = false;
// FTODO
// glViewport(0, 0, OS::get_singleton()->get_window_size().width, OS::get_singleton()->get_window_size().height);
bind_framebuffer_system();
}
}
void RasterizerStorageGLES3::_render_target_allocate(RenderTarget *rt) {
#ifdef OPENGL_DISABLE_RENDER_TARGETS
return;
#endif
// do not allocate a render target with no size
if (rt->width <= 0 || rt->height <= 0)
return;
// do not allocate a render target that is attached to the screen
if (rt->flags[RENDER_TARGET_DIRECT_TO_SCREEN]) {
rt->fbo = RasterizerStorageGLES3::system_fbo;
return;
}
GLuint color_internal_format;
GLuint color_format;
GLuint color_type = GL_UNSIGNED_BYTE;
Image::Format image_format;
if (rt->flags[RendererStorage::RENDER_TARGET_TRANSPARENT]) {
#ifdef GLES_OVER_GL
color_internal_format = GL_RGBA8;
#else
color_internal_format = GL_RGBA;
#endif
color_format = GL_RGBA;
image_format = Image::FORMAT_RGBA8;
} else {
#ifdef GLES_OVER_GL
color_internal_format = GL_RGB8;
#else
color_internal_format = GL_RGB;
#endif
color_format = GL_RGB;
image_format = Image::FORMAT_RGB8;
}
rt->used_dof_blur_near = false;
rt->mip_maps_allocated = false;
{
/* Front FBO */
Texture *texture = texture_owner.get_or_null(rt->texture);
ERR_FAIL_COND(!texture);
// framebuffer
glGenFramebuffers(1, &rt->fbo);
bind_framebuffer(rt->fbo);
// color
glGenTextures(1, &rt->color);
glBindTexture(GL_TEXTURE_2D, rt->color);
glTexImage2D(GL_TEXTURE_2D, 0, color_internal_format, rt->width, rt->height, 0, color_format, color_type, NULL);
if (texture->flags & TEXTURE_FLAG_FILTER) {
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
} else {
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
}
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, rt->color, 0);
// depth
if (config.support_depth_texture) {
glGenTextures(1, &rt->depth);
glBindTexture(GL_TEXTURE_2D, rt->depth);
glTexImage2D(GL_TEXTURE_2D, 0, config.depth_internalformat, rt->width, rt->height, 0, GL_DEPTH_COMPONENT, config.depth_type, NULL);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, rt->depth, 0);
} else {
glGenRenderbuffers(1, &rt->depth);
glBindRenderbuffer(GL_RENDERBUFFER, rt->depth);
glRenderbufferStorage(GL_RENDERBUFFER, config.depth_buffer_internalformat, rt->width, rt->height);
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, rt->depth);
}
GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
if (status != GL_FRAMEBUFFER_COMPLETE) {
glDeleteFramebuffers(1, &rt->fbo);
if (config.support_depth_texture) {
glDeleteTextures(1, &rt->depth);
} else {
glDeleteRenderbuffers(1, &rt->depth);
}
glDeleteTextures(1, &rt->color);
rt->fbo = 0;
rt->width = 0;
rt->height = 0;
rt->color = 0;
rt->depth = 0;
texture->tex_id = 0;
texture->active = false;
WARN_PRINT("Could not create framebuffer!!");
return;
}
texture->format = image_format;
texture->gl_format_cache = color_format;
texture->gl_type_cache = GL_UNSIGNED_BYTE;
texture->gl_internal_format_cache = color_internal_format;
texture->tex_id = rt->color;
texture->width = rt->width;
texture->alloc_width = rt->width;
texture->height = rt->height;
texture->alloc_height = rt->height;
texture->active = true;
texture_set_flags(rt->texture, texture->flags);
}
/* BACK FBO */
/* For MSAA */
#ifndef JAVASCRIPT_ENABLED
if (rt->msaa >= RS::VIEWPORT_MSAA_2X && rt->msaa <= RS::VIEWPORT_MSAA_8X) {
rt->multisample_active = true;
static const int msaa_value[] = { 0, 2, 4, 8, 16 };
int msaa = msaa_value[rt->msaa];
int max_samples = 0;
glGetIntegerv(GL_MAX_SAMPLES, &max_samples);
if (msaa > max_samples) {
WARN_PRINT("MSAA must be <= GL_MAX_SAMPLES, falling-back to GL_MAX_SAMPLES = " + itos(max_samples));
msaa = max_samples;
}
//regular fbo
glGenFramebuffers(1, &rt->multisample_fbo);
bind_framebuffer(rt->multisample_fbo);
glGenRenderbuffers(1, &rt->multisample_depth);
glBindRenderbuffer(GL_RENDERBUFFER, rt->multisample_depth);
glRenderbufferStorageMultisample(GL_RENDERBUFFER, msaa, config.depth_buffer_internalformat, rt->width, rt->height);
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, rt->multisample_depth);
glGenRenderbuffers(1, &rt->multisample_color);
glBindRenderbuffer(GL_RENDERBUFFER, rt->multisample_color);
glRenderbufferStorageMultisample(GL_RENDERBUFFER, msaa, color_internal_format, rt->width, rt->height);
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_RENDERBUFFER, rt->multisample_color);
GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
if (status != GL_FRAMEBUFFER_COMPLETE) {
// Delete allocated resources and default to no MSAA
WARN_PRINT_ONCE("Cannot allocate back framebuffer for MSAA");
printf("err status: %x\n", status);
rt->multisample_active = false;
glDeleteFramebuffers(1, &rt->multisample_fbo);
rt->multisample_fbo = 0;
glDeleteRenderbuffers(1, &rt->multisample_depth);
rt->multisample_depth = 0;
glDeleteRenderbuffers(1, &rt->multisample_color);
rt->multisample_color = 0;
}
glBindRenderbuffer(GL_RENDERBUFFER, 0);
bind_framebuffer(0);
} else
#endif // JAVASCRIPT_ENABLED
{
rt->multisample_active = false;
}
glClearColor(0, 0, 0, 0);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
// copy texscreen buffers
// if (!(rt->flags[RendererStorage::RENDER_TARGET_NO_SAMPLING])) {
if (true) {
glGenTextures(1, &rt->copy_screen_effect.color);
glBindTexture(GL_TEXTURE_2D, rt->copy_screen_effect.color);
if (rt->flags[RendererStorage::RENDER_TARGET_TRANSPARENT]) {
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, rt->width, rt->height, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL);
} else {
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, rt->width, rt->height, 0, GL_RGB, GL_UNSIGNED_BYTE, NULL);
}
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glGenFramebuffers(1, &rt->copy_screen_effect.fbo);
bind_framebuffer(rt->copy_screen_effect.fbo);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, rt->copy_screen_effect.color, 0);
glClearColor(0, 0, 0, 0);
glClear(GL_COLOR_BUFFER_BIT);
GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
if (status != GL_FRAMEBUFFER_COMPLETE) {
_render_target_clear(rt);
ERR_FAIL_COND(status != GL_FRAMEBUFFER_COMPLETE);
}
}
// Allocate mipmap chains for post_process effects
// if (!rt->flags[RendererStorage::RENDER_TARGET_NO_3D] && rt->width >= 2 && rt->height >= 2) {
if (rt->width >= 2 && rt->height >= 2) {
for (int i = 0; i < 2; i++) {
ERR_FAIL_COND(rt->mip_maps[i].sizes.size());
int w = rt->width;
int h = rt->height;
if (i > 0) {
w >>= 1;
h >>= 1;
}
int level = 0;
int fb_w = w;
int fb_h = h;
while (true) {
RenderTarget::MipMaps::Size mm;
mm.width = w;
mm.height = h;
rt->mip_maps[i].sizes.push_back(mm);
w >>= 1;
h >>= 1;
if (w < 2 || h < 2)
break;
level++;
}
GLsizei width = fb_w;
GLsizei height = fb_h;
if (config.render_to_mipmap_supported) {
glGenTextures(1, &rt->mip_maps[i].color);
glBindTexture(GL_TEXTURE_2D, rt->mip_maps[i].color);
for (int l = 0; l < level + 1; l++) {
glTexImage2D(GL_TEXTURE_2D, l, color_internal_format, width, height, 0, color_format, color_type, NULL);
width = MAX(1, (width / 2));
height = MAX(1, (height / 2));
}
#ifdef GLES_OVER_GL
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_BASE_LEVEL, 0);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, level);
#endif
} else {
// Can't render to specific levels of a mipmap in ES 2.0 or Webgl so create a texture for each level
for (int l = 0; l < level + 1; l++) {
glGenTextures(1, &rt->mip_maps[i].sizes.write[l].color);
glBindTexture(GL_TEXTURE_2D, rt->mip_maps[i].sizes[l].color);
glTexImage2D(GL_TEXTURE_2D, 0, color_internal_format, width, height, 0, color_format, color_type, NULL);
width = MAX(1, (width / 2));
height = MAX(1, (height / 2));
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
}
}
glDisable(GL_SCISSOR_TEST);
glColorMask(1, 1, 1, 1);
glDepthMask(GL_TRUE);
for (int j = 0; j < rt->mip_maps[i].sizes.size(); j++) {
RenderTarget::MipMaps::Size &mm = rt->mip_maps[i].sizes.write[j];
glGenFramebuffers(1, &mm.fbo);
bind_framebuffer(mm.fbo);
if (config.render_to_mipmap_supported) {
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, rt->mip_maps[i].color, j);
} else {
glBindTexture(GL_TEXTURE_2D, rt->mip_maps[i].sizes[j].color);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, rt->mip_maps[i].sizes[j].color, 0);
}
bool used_depth = false;
if (j == 0 && i == 0) { //use always
if (config.support_depth_texture) {
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, rt->depth, 0);
} else {
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, rt->depth);
}
used_depth = true;
}
GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
if (status != GL_FRAMEBUFFER_COMPLETE) {
WARN_PRINT_ONCE("Cannot allocate mipmaps for 3D post processing effects");
bind_framebuffer_system();
return;
}
glClearColor(1.0, 0.0, 1.0, 0.0);
glClear(GL_COLOR_BUFFER_BIT);
if (used_depth) {
glClearDepth(1.0);
glClear(GL_DEPTH_BUFFER_BIT);
}
}
rt->mip_maps[i].levels = level;
if (config.render_to_mipmap_supported) {
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
}
}
rt->mip_maps_allocated = true;
}
bind_framebuffer_system();
}
void RasterizerStorageGLES3::_render_target_clear(RenderTarget *rt) {
#ifdef OPENGL_DISABLE_RENDER_TARGETS
return;
#endif
// there is nothing to clear when DIRECT_TO_SCREEN is used
if (rt->flags[RENDER_TARGET_DIRECT_TO_SCREEN])
return;
if (rt->fbo) {
glDeleteFramebuffers(1, &rt->fbo);
glDeleteTextures(1, &rt->color);
rt->fbo = 0;
}
if (rt->external.fbo != 0) {
// free this
glDeleteFramebuffers(1, &rt->external.fbo);
// clean up our texture
Texture *t = texture_owner.get_or_null(rt->external.texture);
t->alloc_height = 0;
t->alloc_width = 0;
t->width = 0;
t->height = 0;
t->active = false;
texture_owner.free(rt->external.texture);
memdelete(t);
rt->external.fbo = 0;
}
if (rt->depth) {
if (config.support_depth_texture) {
glDeleteTextures(1, &rt->depth);
} else {
glDeleteRenderbuffers(1, &rt->depth);
}
rt->depth = 0;
}
Texture *tex = texture_owner.get_or_null(rt->texture);
tex->alloc_height = 0;
tex->alloc_width = 0;
tex->width = 0;
tex->height = 0;
tex->active = false;
if (rt->copy_screen_effect.color) {
glDeleteFramebuffers(1, &rt->copy_screen_effect.fbo);
rt->copy_screen_effect.fbo = 0;
glDeleteTextures(1, &rt->copy_screen_effect.color);
rt->copy_screen_effect.color = 0;
}
for (int i = 0; i < 2; i++) {
if (rt->mip_maps[i].sizes.size()) {
for (int j = 0; j < rt->mip_maps[i].sizes.size(); j++) {
glDeleteFramebuffers(1, &rt->mip_maps[i].sizes[j].fbo);
glDeleteTextures(1, &rt->mip_maps[i].sizes[j].color);
}
glDeleteTextures(1, &rt->mip_maps[i].color);
rt->mip_maps[i].sizes.clear();
rt->mip_maps[i].levels = 0;
rt->mip_maps[i].color = 0;
}
}
if (rt->multisample_active) {
glDeleteFramebuffers(1, &rt->multisample_fbo);
rt->multisample_fbo = 0;
glDeleteRenderbuffers(1, &rt->multisample_depth);
rt->multisample_depth = 0;
glDeleteRenderbuffers(1, &rt->multisample_color);
rt->multisample_color = 0;
}
}
RID RasterizerStorageGLES3::render_target_create() {
#ifdef OPENGL_DISABLE_RENDER_TARGETS
// return RID();
#endif
RenderTarget *rt = memnew(RenderTarget);
Texture *t = memnew(Texture);
t->type = RenderingDevice::TEXTURE_TYPE_2D;
t->flags = 0;
t->width = 0;
t->height = 0;
t->alloc_height = 0;
t->alloc_width = 0;
t->format = Image::FORMAT_R8;
t->target = GL_TEXTURE_2D;
t->gl_format_cache = 0;
t->gl_internal_format_cache = 0;
t->gl_type_cache = 0;
t->data_size = 0;
t->total_data_size = 0;
t->ignore_mipmaps = false;
t->compressed = false;
t->mipmaps = 1;
t->active = true;
t->tex_id = 0;
t->render_target = rt;
rt->texture = texture_owner.make_rid(t);
return render_target_owner.make_rid(rt);
}
void RasterizerStorageGLES3::render_target_set_position(RID p_render_target, int p_x, int p_y) {
#ifdef OPENGL_DISABLE_RENDER_TARGETS
return;
#endif
RenderTarget *rt = render_target_owner.get_or_null(p_render_target);
ERR_FAIL_COND(!rt);
rt->x = p_x;
rt->y = p_y;
}
void RasterizerStorageGLES3::render_target_set_size(RID p_render_target, int p_width, int p_height, uint32_t p_view_count) {
#ifdef OPENGL_DISABLE_RENDER_TARGETS
return;
#endif
RenderTarget *rt = render_target_owner.get_or_null(p_render_target);
ERR_FAIL_COND(!rt);
if (p_width == rt->width && p_height == rt->height)
return;
_render_target_clear(rt);
rt->width = p_width;
rt->height = p_height;
// print_line("render_target_set_size " + itos(p_render_target.get_id()) + ", w " + itos(p_width) + " h " + itos(p_height));
rt->allocate_is_dirty = true;
//_render_target_allocate(rt);
}
RID RasterizerStorageGLES3::render_target_get_texture(RID p_render_target) {
#ifdef OPENGL_DISABLE_RENDER_TARGETS
return RID();
#endif
RenderTarget *rt = render_target_owner.get_or_null(p_render_target);
ERR_FAIL_COND_V(!rt, RID());
if (rt->external.fbo == 0) {
return rt->texture;
} else {
return rt->external.texture;
}
}
void RasterizerStorageGLES3::render_target_set_external_texture(RID p_render_target, unsigned int p_texture_id) {
#ifdef OPENGL_DISABLE_RENDER_TARGETS
return;
#endif
RenderTarget *rt = render_target_owner.get_or_null(p_render_target);
ERR_FAIL_COND(!rt);
if (p_texture_id == 0) {
if (rt->external.fbo != 0) {
// free this
glDeleteFramebuffers(1, &rt->external.fbo);
// and this
if (rt->external.depth != 0) {
glDeleteRenderbuffers(1, &rt->external.depth);
}
// clean up our texture
Texture *t = texture_owner.get_or_null(rt->external.texture);
t->alloc_height = 0;
t->alloc_width = 0;
t->width = 0;
t->height = 0;
t->active = false;
texture_owner.free(rt->external.texture);
memdelete(t);
rt->external.fbo = 0;
rt->external.color = 0;
rt->external.depth = 0;
}
} else {
Texture *t;
if (rt->external.fbo == 0) {
// create our fbo
glGenFramebuffers(1, &rt->external.fbo);
bind_framebuffer(rt->external.fbo);
// allocate a texture
t = memnew(Texture);
t->type = RenderingDevice::TEXTURE_TYPE_2D;
t->flags = 0;
t->width = 0;
t->height = 0;
t->alloc_height = 0;
t->alloc_width = 0;
t->format = Image::FORMAT_RGBA8;
t->target = GL_TEXTURE_2D;
t->gl_format_cache = 0;
t->gl_internal_format_cache = 0;
t->gl_type_cache = 0;
t->data_size = 0;
t->compressed = false;
t->srgb = false;
t->total_data_size = 0;
t->ignore_mipmaps = false;
t->mipmaps = 1;
t->active = true;
t->tex_id = 0;
t->render_target = rt;
rt->external.texture = texture_owner.make_rid(t);
} else {
// bind our frame buffer
bind_framebuffer(rt->external.fbo);
// find our texture
t = texture_owner.get_or_null(rt->external.texture);
}
// set our texture
t->tex_id = p_texture_id;
rt->external.color = p_texture_id;
// size shouldn't be different
t->width = rt->width;
t->height = rt->height;
t->alloc_height = rt->width;
t->alloc_width = rt->height;
// Switch our texture on our frame buffer
{
// set our texture as the destination for our framebuffer
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, p_texture_id, 0);
// seeing we're rendering into this directly, better also use our depth buffer, just use our existing one :)
if (config.support_depth_texture) {
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, rt->depth, 0);
} else {
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, rt->depth);
}
}
// check status and unbind
GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
bind_framebuffer_system();
if (status != GL_FRAMEBUFFER_COMPLETE) {
printf("framebuffer fail, status: %x\n", status);
}
ERR_FAIL_COND(status != GL_FRAMEBUFFER_COMPLETE);
}
}
void RasterizerStorageGLES3::render_target_set_flag(RID p_render_target, RenderTargetFlags p_flag, bool p_value) {
#ifdef OPENGL_DISABLE_RENDER_TARGETS
return;
#endif
RenderTarget *rt = render_target_owner.get_or_null(p_render_target);
ERR_FAIL_COND(!rt);
// When setting DIRECT_TO_SCREEN, you need to clear before the value is set, but allocate after as
// those functions change how they operate depending on the value of DIRECT_TO_SCREEN
if (p_flag == RENDER_TARGET_DIRECT_TO_SCREEN && p_value != rt->flags[RENDER_TARGET_DIRECT_TO_SCREEN]) {
_render_target_clear(rt);
rt->flags[p_flag] = p_value;
_render_target_allocate(rt);
}
rt->flags[p_flag] = p_value;
switch (p_flag) {
case RENDER_TARGET_TRANSPARENT:
/*
case RENDER_TARGET_HDR:
case RENDER_TARGET_NO_3D:
case RENDER_TARGET_NO_SAMPLING:
case RENDER_TARGET_NO_3D_EFFECTS: */
{
//must reset for these formats
_render_target_clear(rt);
_render_target_allocate(rt);
}
break;
default: {
}
}
}
bool RasterizerStorageGLES3::render_target_was_used(RID p_render_target) {
#ifdef OPENGL_DISABLE_RENDER_TARGETS
return false;
#endif
RenderTarget *rt = render_target_owner.get_or_null(p_render_target);
ERR_FAIL_COND_V(!rt, false);
return rt->used_in_frame;
}
void RasterizerStorageGLES3::render_target_clear_used(RID p_render_target) {
#ifdef OPENGL_DISABLE_RENDER_TARGETS
return;
#endif
RenderTarget *rt = render_target_owner.get_or_null(p_render_target);
ERR_FAIL_COND(!rt);
rt->used_in_frame = false;
}
void RasterizerStorageGLES3::render_target_set_msaa(RID p_render_target, RS::ViewportMSAA p_msaa) {
#ifdef OPENGL_DISABLE_RENDER_TARGETS
return;
#endif
RenderTarget *rt = render_target_owner.get_or_null(p_render_target);
ERR_FAIL_COND(!rt);
if (rt->msaa == p_msaa)
return;
_render_target_clear(rt);
rt->msaa = p_msaa;
_render_target_allocate(rt);
}
//RasterizerStorageGLES3::RenderTarget * RasterizerStorageGLES3::render_target_get(RID p_render_target)
//{
// return render_target_owner.get_or_null(p_render_target);
//}
void RasterizerStorageGLES3::render_target_set_use_fxaa(RID p_render_target, bool p_fxaa) {
#ifdef OPENGL_DISABLE_RENDER_TARGETS
return;
#endif
RenderTarget *rt = render_target_owner.get_or_null(p_render_target);
ERR_FAIL_COND(!rt);
rt->use_fxaa = p_fxaa;
}
void RasterizerStorageGLES3::render_target_set_use_debanding(RID p_render_target, bool p_debanding) {
#ifdef OPENGL_DISABLE_RENDER_TARGETS
return;
#endif
RenderTarget *rt = render_target_owner.get_or_null(p_render_target);
ERR_FAIL_COND(!rt);
if (p_debanding) {
WARN_PRINT_ONCE("Debanding is not supported in the OpenGL backend. Switch to the Vulkan backend and make sure HDR is enabled.");
}
rt->use_debanding = p_debanding;
}
void RasterizerStorageGLES3::render_target_request_clear(RID p_render_target, const Color &p_clear_color) {
#ifdef OPENGL_DISABLE_RENDER_TARGETS
return;
#endif
RenderTarget *rt = render_target_owner.get_or_null(p_render_target);
ERR_FAIL_COND(!rt);
rt->clear_requested = true;
rt->clear_color = p_clear_color;
// ERR_FAIL_COND(!frame.current_rt);
// frame.clear_request = true;
// frame.clear_request_color = p_color;
}
bool RasterizerStorageGLES3::render_target_is_clear_requested(RID p_render_target) {
#ifdef OPENGL_DISABLE_RENDER_TARGETS
return false;
#endif
RenderTarget *rt = render_target_owner.get_or_null(p_render_target);
ERR_FAIL_COND_V(!rt, false);
return rt->clear_requested;
}
Color RasterizerStorageGLES3::render_target_get_clear_request_color(RID p_render_target) {
#ifdef OPENGL_DISABLE_RENDER_TARGETS
return Color();
#endif
RenderTarget *rt = render_target_owner.get_or_null(p_render_target);
ERR_FAIL_COND_V(!rt, Color());
return rt->clear_color;
}
void RasterizerStorageGLES3::render_target_disable_clear_request(RID p_render_target) {
#ifdef OPENGL_DISABLE_RENDER_TARGETS
return;
#endif
RenderTarget *rt = render_target_owner.get_or_null(p_render_target);
ERR_FAIL_COND(!rt);
rt->clear_requested = false;
}
void RasterizerStorageGLES3::render_target_do_clear_request(RID p_render_target) {
#ifdef OPENGL_DISABLE_RENDER_TARGETS
return;
#endif
// NEW for GLES...
// This is being called at the wrong time. Instead it will be performed
// at canvas begin
return;
/*
RenderTarget *rt = render_target_owner.get_or_null(p_render_target);
ERR_FAIL_COND(!rt);
if (!rt->clear_requested) {
return;
}
const Color &c = rt->clear_color;
glClearColor(c.r, c.g, c.b, c.a);
// more bits?
glClear(GL_COLOR_BUFFER_BIT);
*/
}
void RasterizerStorageGLES3::render_target_set_sdf_size_and_scale(RID p_render_target, RS::ViewportSDFOversize p_size, RS::ViewportSDFScale p_scale) {
}
Rect2i RasterizerStorageGLES3::render_target_get_sdf_rect(RID p_render_target) const {
return Rect2i();
}
void RasterizerStorageGLES3::render_target_mark_sdf_enabled(RID p_render_target, bool p_enabled) {
}
/* CANVAS SHADOW */
RID RasterizerStorageGLES3::canvas_light_shadow_buffer_create(int p_width) {
CanvasLightShadow *cls = memnew(CanvasLightShadow);
if (p_width > config.max_texture_size)
p_width = config.max_texture_size;
cls->size = p_width;
cls->height = 16;
glActiveTexture(GL_TEXTURE0);
glGenFramebuffers(1, &cls->fbo);
bind_framebuffer(cls->fbo);
glGenRenderbuffers(1, &cls->depth);
glBindRenderbuffer(GL_RENDERBUFFER, cls->depth);
glRenderbufferStorage(GL_RENDERBUFFER, config.depth_buffer_internalformat, cls->size, cls->height);
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, cls->depth);
glGenTextures(1, &cls->distance);
glBindTexture(GL_TEXTURE_2D, cls->distance);
if (config.use_rgba_2d_shadows) {
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, cls->size, cls->height, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL);
} else {
#ifdef GLES_OVER_GL
glTexImage2D(GL_TEXTURE_2D, 0, GL_R32F, cls->size, cls->height, 0, _RED_OES, GL_FLOAT, NULL);
#else
glTexImage2D(GL_TEXTURE_2D, 0, GL_FLOAT, cls->size, cls->height, 0, _RED_OES, GL_FLOAT, NULL);
#endif
}
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, cls->distance, 0);
GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
//printf("errnum: %x\n",status);
bind_framebuffer_system();
if (status != GL_FRAMEBUFFER_COMPLETE) {
memdelete(cls);
ERR_FAIL_COND_V(status != GL_FRAMEBUFFER_COMPLETE, RID());
}
return canvas_light_shadow_owner.make_rid(cls);
}
/* LIGHT SHADOW MAPPING */
/*
RID RasterizerStorageGLES3::canvas_light_occluder_create() {
CanvasOccluder *co = memnew(CanvasOccluder);
co->index_id = 0;
co->vertex_id = 0;
co->len = 0;
return canvas_occluder_owner.make_rid(co);
}
void RasterizerStorageGLES3::canvas_light_occluder_set_polylines(RID p_occluder, const PoolVector<Vector2> &p_lines) {
CanvasOccluder *co = canvas_occluder_owner.get(p_occluder);
ERR_FAIL_COND(!co);
co->lines = p_lines;
if (p_lines.size() != co->len) {
if (co->index_id)
glDeleteBuffers(1, &co->index_id);
if (co->vertex_id)
glDeleteBuffers(1, &co->vertex_id);
co->index_id = 0;
co->vertex_id = 0;
co->len = 0;
}
if (p_lines.size()) {
PoolVector<float> geometry;
PoolVector<uint16_t> indices;
int lc = p_lines.size();
geometry.resize(lc * 6);
indices.resize(lc * 3);
PoolVector<float>::Write vw = geometry.write();
PoolVector<uint16_t>::Write iw = indices.write();
PoolVector<Vector2>::Read lr = p_lines.read();
const int POLY_HEIGHT = 16384;
for (int i = 0; i < lc / 2; i++) {
vw[i * 12 + 0] = lr[i * 2 + 0].x;
vw[i * 12 + 1] = lr[i * 2 + 0].y;
vw[i * 12 + 2] = POLY_HEIGHT;
vw[i * 12 + 3] = lr[i * 2 + 1].x;
vw[i * 12 + 4] = lr[i * 2 + 1].y;
vw[i * 12 + 5] = POLY_HEIGHT;
vw[i * 12 + 6] = lr[i * 2 + 1].x;
vw[i * 12 + 7] = lr[i * 2 + 1].y;
vw[i * 12 + 8] = -POLY_HEIGHT;
vw[i * 12 + 9] = lr[i * 2 + 0].x;
vw[i * 12 + 10] = lr[i * 2 + 0].y;
vw[i * 12 + 11] = -POLY_HEIGHT;
iw[i * 6 + 0] = i * 4 + 0;
iw[i * 6 + 1] = i * 4 + 1;
iw[i * 6 + 2] = i * 4 + 2;
iw[i * 6 + 3] = i * 4 + 2;
iw[i * 6 + 4] = i * 4 + 3;
iw[i * 6 + 5] = i * 4 + 0;
}
//if same buffer len is being set, just use BufferSubData to avoid a pipeline flush
if (!co->vertex_id) {
glGenBuffers(1, &co->vertex_id);
glBindBuffer(GL_ARRAY_BUFFER, co->vertex_id);
glBufferData(GL_ARRAY_BUFFER, lc * 6 * sizeof(real_t), vw.ptr(), GL_STATIC_DRAW);
} else {
glBindBuffer(GL_ARRAY_BUFFER, co->vertex_id);
glBufferSubData(GL_ARRAY_BUFFER, 0, lc * 6 * sizeof(real_t), vw.ptr());
}
glBindBuffer(GL_ARRAY_BUFFER, 0); //unbind
if (!co->index_id) {
glGenBuffers(1, &co->index_id);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, co->index_id);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, lc * 3 * sizeof(uint16_t), iw.ptr(), GL_DYNAMIC_DRAW);
} else {
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, co->index_id);
glBufferSubData(GL_ELEMENT_ARRAY_BUFFER, 0, lc * 3 * sizeof(uint16_t), iw.ptr());
}
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); //unbind
co->len = lc;
}
}
*/
RS::InstanceType RasterizerStorageGLES3::get_base_type(RID p_rid) const {
return RS::INSTANCE_NONE;
/*
if (mesh_owner.owns(p_rid)) {
return RS::INSTANCE_MESH;
} else if (light_owner.owns(p_rid)) {
return RS::INSTANCE_LIGHT;
} else if (multimesh_owner.owns(p_rid)) {
return RS::INSTANCE_MULTIMESH;
} else if (immediate_owner.owns(p_rid)) {
return RS::INSTANCE_IMMEDIATE;
} else if (reflection_probe_owner.owns(p_rid)) {
return RS::INSTANCE_REFLECTION_PROBE;
} else if (lightmap_capture_data_owner.owns(p_rid)) {
return RS::INSTANCE_LIGHTMAP_CAPTURE;
} else {
return RS::INSTANCE_NONE;
}
*/
}
bool RasterizerStorageGLES3::free(RID p_rid) {
if (render_target_owner.owns(p_rid)) {
RenderTarget *rt = render_target_owner.get_or_null(p_rid);
_render_target_clear(rt);
Texture *t = texture_owner.get_or_null(rt->texture);
if (t) {
texture_owner.free(rt->texture);
memdelete(t);
}
render_target_owner.free(p_rid);
memdelete(rt);
return true;
} else if (texture_owner.owns(p_rid)) {
Texture *t = texture_owner.get_or_null(p_rid);
// can't free a render target texture
ERR_FAIL_COND_V(t->render_target, true);
info.texture_mem -= t->total_data_size;
texture_owner.free(p_rid);
memdelete(t);
return true;
} else if (sky_owner.owns(p_rid)) {
Sky *sky = sky_owner.get_or_null(p_rid);
sky_set_texture(p_rid, RID(), 256);
sky_owner.free(p_rid);
memdelete(sky);
return true;
} else if (shader_owner.owns(p_rid)) {
Shader *shader = shader_owner.get_or_null(p_rid);
if (shader->shader && shader->custom_code_id) {
shader->shader->free_custom_shader(shader->custom_code_id);
}
if (shader->dirty_list.in_list()) {
_shader_dirty_list.remove(&shader->dirty_list);
}
while (shader->materials.first()) {
Material *m = shader->materials.first()->self();
m->shader = NULL;
_material_make_dirty(m);
shader->materials.remove(shader->materials.first());
}
shader_owner.free(p_rid);
memdelete(shader);
return true;
} else if (material_owner.owns(p_rid)) {
Material *m = material_owner.get_or_null(p_rid);
if (m->shader) {
m->shader->materials.remove(&m->list);
}
/*
for (Map<Geometry *, int>::Element *E = m->geometry_owners.front(); E; E = E->next()) {
Geometry *g = E->key();
g->material = RID();
}
for (Map<InstanceBaseDependency *, int>::Element *E = m->instance_owners.front(); E; E = E->next()) {
InstanceBaseDependency *ins = E->key();
if (ins->material_override == p_rid) {
ins->material_override = RID();
}
for (int i = 0; i < ins->materials.size(); i++) {
if (ins->materials[i] == p_rid) {
ins->materials.write[i] = RID();
}
}
}
*/
material_owner.free(p_rid);
memdelete(m);
return true;
} else {
return false;
}
/*
} else if (skeleton_owner.owns(p_rid)) {
Skeleton *s = skeleton_owner.get_or_null(p_rid);
if (s->update_list.in_list()) {
skeleton_update_list.remove(&s->update_list);
}
for (Set<InstanceBaseDependency *>::Element *E = s->instances.front(); E; E = E->next()) {
E->get()->skeleton = RID();
}
skeleton_allocate(p_rid, 0, false);
if (s->tex_id) {
glDeleteTextures(1, &s->tex_id);
}
skeleton_owner.free(p_rid);
memdelete(s);
return true;
} else if (mesh_owner.owns(p_rid)) {
Mesh *mesh = mesh_owner.get_or_null(p_rid);
mesh->instance_remove_deps();
mesh_clear(p_rid);
while (mesh->multimeshes.first()) {
MultiMesh *multimesh = mesh->multimeshes.first()->self();
multimesh->mesh = RID();
multimesh->dirty_aabb = true;
mesh->multimeshes.remove(mesh->multimeshes.first());
if (!multimesh->update_list.in_list()) {
multimesh_update_list.add(&multimesh->update_list);
}
}
mesh_owner.free(p_rid);
memdelete(mesh);
return true;
} else if (multimesh_owner.owns(p_rid)) {
MultiMesh *multimesh = multimesh_owner.get_or_null(p_rid);
multimesh->instance_remove_deps();
if (multimesh->mesh.is_valid()) {
Mesh *mesh = mesh_owner.get_or_null(multimesh->mesh);
if (mesh) {
mesh->multimeshes.remove(&multimesh->mesh_list);
}
}
multimesh_allocate(p_rid, 0, RS::MULTIMESH_TRANSFORM_3D, RS::MULTIMESH_COLOR_NONE);
update_dirty_multimeshes();
multimesh_owner.free(p_rid);
memdelete(multimesh);
return true;
} else if (immediate_owner.owns(p_rid)) {
Immediate *im = immediate_owner.get_or_null(p_rid);
im->instance_remove_deps();
immediate_owner.free(p_rid);
memdelete(im);
return true;
} else if (light_owner.owns(p_rid)) {
Light *light = light_owner.get_or_null(p_rid);
light->instance_remove_deps();
light_owner.free(p_rid);
memdelete(light);
return true;
} else if (reflection_probe_owner.owns(p_rid)) {
// delete the texture
ReflectionProbe *reflection_probe = reflection_probe_owner.get_or_null(p_rid);
reflection_probe->instance_remove_deps();
reflection_probe_owner.free(p_rid);
memdelete(reflection_probe);
return true;
} else if (lightmap_capture_data_owner.owns(p_rid)) {
// delete the texture
LightmapCapture *lightmap_capture = lightmap_capture_data_owner.get_or_null(p_rid);
lightmap_capture->instance_remove_deps();
lightmap_capture_data_owner.free(p_rid);
memdelete(lightmap_capture);
return true;
} else if (canvas_occluder_owner.owns(p_rid)) {
CanvasOccluder *co = canvas_occluder_owner.get_or_null(p_rid);
if (co->index_id)
glDeleteBuffers(1, &co->index_id);
if (co->vertex_id)
glDeleteBuffers(1, &co->vertex_id);
canvas_occluder_owner.free(p_rid);
memdelete(co);
return true;
} else if (canvas_light_shadow_owner.owns(p_rid)) {
CanvasLightShadow *cls = canvas_light_shadow_owner.get_or_null(p_rid);
glDeleteFramebuffers(1, &cls->fbo);
glDeleteRenderbuffers(1, &cls->depth);
glDeleteTextures(1, &cls->distance);
canvas_light_shadow_owner.free(p_rid);
memdelete(cls);
return true;
*/
}
bool RasterizerStorageGLES3::has_os_feature(const String &p_feature) const {
if (p_feature == "pvrtc")
return config.pvrtc_supported;
if (p_feature == "s3tc")
return config.s3tc_supported;
if (p_feature == "etc")
return config.etc_supported;
if (p_feature == "skinning_fallback")
return config.use_skeleton_software;
return false;
}
////////////////////////////////////////////
void RasterizerStorageGLES3::set_debug_generate_wireframes(bool p_generate) {
}
//void RasterizerStorageGLES3::render_info_begin_capture() {
// info.snap = info.render;
//}
//void RasterizerStorageGLES3::render_info_end_capture() {
// info.snap.object_count = info.render.object_count - info.snap.object_count;
// info.snap.draw_call_count = info.render.draw_call_count - info.snap.draw_call_count;
// info.snap.material_switch_count = info.render.material_switch_count - info.snap.material_switch_count;
// info.snap.surface_switch_count = info.render.surface_switch_count - info.snap.surface_switch_count;
// info.snap.shader_rebind_count = info.render.shader_rebind_count - info.snap.shader_rebind_count;
// info.snap.vertices_count = info.render.vertices_count - info.snap.vertices_count;
// info.snap._2d_item_count = info.render._2d_item_count - info.snap._2d_item_count;
// info.snap._2d_draw_call_count = info.render._2d_draw_call_count - info.snap._2d_draw_call_count;
//}
//int RasterizerStorageGLES3::get_captured_render_info(RS::RenderInfo p_info) {
// switch (p_info) {
// case RS::INFO_OBJECTS_IN_FRAME: {
// return info.snap.object_count;
// } break;
// case RS::INFO_VERTICES_IN_FRAME: {
// return info.snap.vertices_count;
// } break;
// case RS::INFO_MATERIAL_CHANGES_IN_FRAME: {
// return info.snap.material_switch_count;
// } break;
// case RS::INFO_SHADER_CHANGES_IN_FRAME: {
// return info.snap.shader_rebind_count;
// } break;
// case RS::INFO_SURFACE_CHANGES_IN_FRAME: {
// return info.snap.surface_switch_count;
// } break;
// case RS::INFO_DRAW_CALLS_IN_FRAME: {
// return info.snap.draw_call_count;
// } break;
// /*
// case RS::INFO_2D_ITEMS_IN_FRAME: {
// return info.snap._2d_item_count;
// } break;
// case RS::INFO_2D_DRAW_CALLS_IN_FRAME: {
// return info.snap._2d_draw_call_count;
// } break;
// */
// default: {
// return get_render_info(p_info);
// }
// }
//}
//int RasterizerStorageGLES3::get_render_info(RS::RenderInfo p_info) {
// switch (p_info) {
// case RS::INFO_OBJECTS_IN_FRAME:
// return info.render_final.object_count;
// case RS::INFO_VERTICES_IN_FRAME:
// return info.render_final.vertices_count;
// case RS::INFO_MATERIAL_CHANGES_IN_FRAME:
// return info.render_final.material_switch_count;
// case RS::INFO_SHADER_CHANGES_IN_FRAME:
// return info.render_final.shader_rebind_count;
// case RS::INFO_SURFACE_CHANGES_IN_FRAME:
// return info.render_final.surface_switch_count;
// case RS::INFO_DRAW_CALLS_IN_FRAME:
// return info.render_final.draw_call_count;
// /*
// case RS::INFO_2D_ITEMS_IN_FRAME:
// return info.render_final._2d_item_count;
// case RS::INFO_2D_DRAW_CALLS_IN_FRAME:
// return info.render_final._2d_draw_call_count;
//*/
// case RS::INFO_USAGE_VIDEO_MEM_TOTAL:
// return 0; //no idea
// case RS::INFO_VIDEO_MEM_USED:
// return info.vertex_mem + info.texture_mem;
// case RS::INFO_TEXTURE_MEM_USED:
// return info.texture_mem;
// case RS::INFO_VERTEX_MEM_USED:
// return info.vertex_mem;
// default:
// return 0; //no idea either
// }
//}
String RasterizerStorageGLES3::get_video_adapter_name() const {
return (const char *)glGetString(GL_RENDERER);
}
String RasterizerStorageGLES3::get_video_adapter_vendor() const {
return (const char *)glGetString(GL_VENDOR);
}
void RasterizerStorageGLES3::initialize() {
RasterizerStorageGLES3::system_fbo = 0;
{
const GLubyte *extension_string = glGetString(GL_EXTENSIONS);
Vector<String> extensions = String((const char *)extension_string).split(" ");
for (int i = 0; i < extensions.size(); i++) {
config.extensions.insert(extensions[i]);
}
}
// FTODO
config.keep_original_textures = true; // false
config.shrink_textures_x2 = false;
config.depth_internalformat = GL_DEPTH_COMPONENT;
config.depth_type = GL_UNSIGNED_INT;
#ifdef GLES_OVER_GL
config.float_texture_supported = true;
config.s3tc_supported = true;
config.pvrtc_supported = false;
config.etc_supported = false;
config.support_npot_repeat_mipmap = true;
config.depth_buffer_internalformat = GL_DEPTH_COMPONENT24;
#else
config.float_texture_supported = config.extensions.has("GL_ARB_texture_float") || config.extensions.has("GL_OES_texture_float");
config.s3tc_supported = config.extensions.has("GL_EXT_texture_compression_s3tc") || config.extensions.has("WEBGL_compressed_texture_s3tc");
config.etc_supported = config.extensions.has("GL_OES_compressed_ETC1_RGB8_texture") || config.extensions.has("WEBGL_compressed_texture_etc1");
config.pvrtc_supported = config.extensions.has("GL_IMG_texture_compression_pvrtc") || config.extensions.has("WEBGL_compressed_texture_pvrtc");
config.support_npot_repeat_mipmap = config.extensions.has("GL_OES_texture_npot");
#ifdef JAVASCRIPT_ENABLED
// RenderBuffer internal format must be 16 bits in WebGL,
// but depth_texture should default to 32 always
// if the implementation doesn't support 32, it should just quietly use 16 instead
// https://www.khronos.org/registry/webgl/extensions/WEBGL_depth_texture/
config.depth_buffer_internalformat = GL_DEPTH_COMPONENT16;
config.depth_type = GL_UNSIGNED_INT;
#else
// on mobile check for 24 bit depth support for RenderBufferStorage
if (config.extensions.has("GL_OES_depth24")) {
config.depth_buffer_internalformat = _DEPTH_COMPONENT24_OES;
config.depth_type = GL_UNSIGNED_INT;
} else {
config.depth_buffer_internalformat = GL_DEPTH_COMPONENT16;
config.depth_type = GL_UNSIGNED_SHORT;
}
#endif
#endif
#ifdef GLES_OVER_GL
//TODO: causes huge problems with desktop video drivers. Making false for now, needs to be true to render SCREEN_TEXTURE mipmaps
config.render_to_mipmap_supported = false;
#else
//check if mipmaps can be used for SCREEN_TEXTURE and Glow on Mobile and web platforms
config.render_to_mipmap_supported = config.extensions.has("GL_OES_fbo_render_mipmap") && config.extensions.has("GL_EXT_texture_lod");
#endif
#ifdef GLES_OVER_GL
config.use_rgba_2d_shadows = false;
config.support_depth_texture = true;
config.use_rgba_3d_shadows = false;
config.support_depth_cubemaps = true;
#else
config.use_rgba_2d_shadows = !(config.float_texture_supported && config.extensions.has("GL_EXT_texture_rg"));
config.support_depth_texture = config.extensions.has("GL_OES_depth_texture") || config.extensions.has("WEBGL_depth_texture");
config.use_rgba_3d_shadows = !config.support_depth_texture;
config.support_depth_cubemaps = config.extensions.has("GL_OES_depth_texture_cube_map");
#endif
#ifdef GLES_OVER_GL
config.support_32_bits_indices = true;
#else
config.support_32_bits_indices = config.extensions.has("GL_OES_element_index_uint");
#endif
#ifdef GLES_OVER_GL
config.support_write_depth = true;
#elif defined(JAVASCRIPT_ENABLED)
config.support_write_depth = false;
#else
config.support_write_depth = config.extensions.has("GL_EXT_frag_depth");
#endif
config.support_half_float_vertices = true;
//every platform should support this except web, iOS has issues with their support, so add option to disable
#ifdef JAVASCRIPT_ENABLED
config.support_half_float_vertices = false;
#endif
bool disable_half_float = false; //GLOBAL_GET("rendering/opengl/compatibility/disable_half_float");
if (disable_half_float) {
config.support_half_float_vertices = false;
}
config.etc_supported = config.extensions.has("GL_OES_compressed_ETC1_RGB8_texture");
config.latc_supported = config.extensions.has("GL_EXT_texture_compression_latc");
config.bptc_supported = config.extensions.has("GL_ARB_texture_compression_bptc");
config.pvrtc_supported = config.extensions.has("GL_IMG_texture_compression_pvrtc");
config.rgtc_supported = config.extensions.has("GL_EXT_texture_compression_rgtc") || config.extensions.has("GL_ARB_texture_compression_rgtc") || config.extensions.has("EXT_texture_compression_rgtc");
config.bptc_supported = config.extensions.has("GL_ARB_texture_compression_bptc") || config.extensions.has("EXT_texture_compression_bptc");
config.srgb_decode_supported = config.extensions.has("GL_EXT_texture_sRGB_decode");
//determine formats for depth textures (or renderbuffers)
if (config.support_depth_texture) {
// Will use texture for depth
// have to manually see if we can create a valid framebuffer texture using UNSIGNED_INT,
// as there is no extension to test for this.
GLuint fbo;
glGenFramebuffers(1, &fbo);
bind_framebuffer(fbo);
GLuint depth;
glGenTextures(1, &depth);
glBindTexture(GL_TEXTURE_2D, depth);
glTexImage2D(GL_TEXTURE_2D, 0, config.depth_internalformat, 32, 32, 0, GL_DEPTH_COMPONENT, config.depth_type, NULL);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, depth, 0);
GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
bind_framebuffer_system();
glDeleteFramebuffers(1, &fbo);
glBindTexture(GL_TEXTURE_2D, 0);
glDeleteTextures(1, &depth);
if (status != GL_FRAMEBUFFER_COMPLETE) {
// If it fails, test to see if it supports a framebuffer texture using UNSIGNED_SHORT
// This is needed because many OSX devices don't support either UNSIGNED_INT or UNSIGNED_SHORT
#ifdef GLES_OVER_GL
config.depth_internalformat = GL_DEPTH_COMPONENT16;
#else
// OES_depth_texture extension only specifies GL_DEPTH_COMPONENT.
config.depth_internalformat = GL_DEPTH_COMPONENT;
#endif
config.depth_type = GL_UNSIGNED_SHORT;
glGenFramebuffers(1, &fbo);
bind_framebuffer(fbo);
glGenTextures(1, &depth);
glBindTexture(GL_TEXTURE_2D, depth);
glTexImage2D(GL_TEXTURE_2D, 0, config.depth_internalformat, 32, 32, 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_SHORT, NULL);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, depth, 0);
status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
if (status != GL_FRAMEBUFFER_COMPLETE) {
//if it fails again depth textures aren't supported, use rgba shadows and renderbuffer for depth
config.support_depth_texture = false;
config.use_rgba_3d_shadows = true;
}
bind_framebuffer_system();
glDeleteFramebuffers(1, &fbo);
glBindTexture(GL_TEXTURE_2D, 0);
glDeleteTextures(1, &depth);
}
}
//picky requirements for these
config.support_shadow_cubemaps = config.support_depth_texture && config.support_write_depth && config.support_depth_cubemaps;
frame.count = 0;
frame.delta = 0;
frame.current_rt = NULL;
frame.clear_request = false;
glGetIntegerv(GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS, &config.max_vertex_texture_image_units);
glGetIntegerv(GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS, &config.max_texture_image_units);
glGetIntegerv(GL_MAX_TEXTURE_SIZE, &config.max_texture_size);
// the use skeleton software path should be used if either float texture is not supported,
// OR max_vertex_texture_image_units is zero
config.use_skeleton_software = (config.float_texture_supported == false) || (config.max_vertex_texture_image_units == 0);
shaders.copy.init();
shaders.cubemap_filter.init();
bool ggx_hq = false; //GLOBAL_GET("rendering/quality/reflections/high_quality_ggx");
shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES3::LOW_QUALITY, !ggx_hq);
{
// quad for copying stuff
glGenBuffers(1, &resources.quadie);
glBindBuffer(GL_ARRAY_BUFFER, resources.quadie);
{
const float qv[16] = {
-1,
-1,
0,
0,
-1,
1,
0,
1,
1,
1,
1,
1,
1,
-1,
1,
0,
};
glBufferData(GL_ARRAY_BUFFER, sizeof(float) * 16, qv, GL_STATIC_DRAW);
}
glBindBuffer(GL_ARRAY_BUFFER, 0);
}
{
//default textures
glGenTextures(1, &resources.white_tex);
unsigned char whitetexdata[8 * 8 * 3];
for (int i = 0; i < 8 * 8 * 3; i++) {
whitetexdata[i] = 255;
}
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, resources.white_tex);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 8, 8, 0, GL_RGB, GL_UNSIGNED_BYTE, whitetexdata);
glGenerateMipmap(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D, 0);
glGenTextures(1, &resources.black_tex);
unsigned char blacktexdata[8 * 8 * 3];
for (int i = 0; i < 8 * 8 * 3; i++) {
blacktexdata[i] = 0;
}
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, resources.black_tex);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 8, 8, 0, GL_RGB, GL_UNSIGNED_BYTE, blacktexdata);
glGenerateMipmap(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D, 0);
glGenTextures(1, &resources.normal_tex);
unsigned char normaltexdata[8 * 8 * 3];
for (int i = 0; i < 8 * 8 * 3; i += 3) {
normaltexdata[i + 0] = 128;
normaltexdata[i + 1] = 128;
normaltexdata[i + 2] = 255;
}
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, resources.normal_tex);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 8, 8, 0, GL_RGB, GL_UNSIGNED_BYTE, normaltexdata);
glGenerateMipmap(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D, 0);
glGenTextures(1, &resources.aniso_tex);
unsigned char anisotexdata[8 * 8 * 3];
for (int i = 0; i < 8 * 8 * 3; i += 3) {
anisotexdata[i + 0] = 255;
anisotexdata[i + 1] = 128;
anisotexdata[i + 2] = 0;
}
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, resources.aniso_tex);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 8, 8, 0, GL_RGB, GL_UNSIGNED_BYTE, anisotexdata);
glGenerateMipmap(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D, 0);
}
// skeleton buffer
{
resources.skeleton_transform_buffer_size = 0;
glGenBuffers(1, &resources.skeleton_transform_buffer);
}
// radical inverse vdc cache texture
// used for cubemap filtering
if (true /*||config.float_texture_supported*/) { //uint8 is similar and works everywhere
glGenTextures(1, &resources.radical_inverse_vdc_cache_tex);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, resources.radical_inverse_vdc_cache_tex);
uint8_t radical_inverse[512];
for (uint32_t i = 0; i < 512; i++) {
uint32_t bits = i;
bits = (bits << 16) | (bits >> 16);
bits = ((bits & 0x55555555) << 1) | ((bits & 0xAAAAAAAA) >> 1);
bits = ((bits & 0x33333333) << 2) | ((bits & 0xCCCCCCCC) >> 2);
bits = ((bits & 0x0F0F0F0F) << 4) | ((bits & 0xF0F0F0F0) >> 4);
bits = ((bits & 0x00FF00FF) << 8) | ((bits & 0xFF00FF00) >> 8);
float value = float(bits) * 2.3283064365386963e-10;
radical_inverse[i] = uint8_t(CLAMP(value * 255.0, 0, 255));
}
glTexImage2D(GL_TEXTURE_2D, 0, GL_LUMINANCE, 512, 1, 0, GL_LUMINANCE, GL_UNSIGNED_BYTE, radical_inverse);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); //need this for proper sampling
glBindTexture(GL_TEXTURE_2D, 0);
}
{
glGenFramebuffers(1, &resources.mipmap_blur_fbo);
glGenTextures(1, &resources.mipmap_blur_color);
}
#ifdef GLES_OVER_GL
//this needs to be enabled manually in OpenGL 2.1
if (config.extensions.has("GL_ARB_seamless_cube_map")) {
glEnable(_EXT_TEXTURE_CUBE_MAP_SEAMLESS);
}
glEnable(GL_POINT_SPRITE);
glEnable(GL_VERTEX_PROGRAM_POINT_SIZE);
#endif
config.force_vertex_shading = false; //GLOBAL_GET("rendering/quality/shading/force_vertex_shading");
config.use_fast_texture_filter = false; //GLOBAL_GET("rendering/quality/filters/use_nearest_mipmap_filter");
//config.should_orphan = GLOBAL_GET("rendering/options/api_usage_legacy/orphan_buffers");
}
void RasterizerStorageGLES3::finalize() {
}
void RasterizerStorageGLES3::_copy_screen() {
bind_quad_array();
glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
}
void RasterizerStorageGLES3::update_memory_info() {
}
uint64_t RasterizerStorageGLES3::get_rendering_info(RS::RenderingInfo p_info) {
return 0;
}
void RasterizerStorageGLES3::update_dirty_resources() {
update_dirty_shaders();
update_dirty_materials();
// update_dirty_skeletons();
// update_dirty_multimeshes();
}
RasterizerStorageGLES3::RasterizerStorageGLES3() {
RasterizerStorageGLES3::system_fbo = 0;
config.should_orphan = true;
}
#endif // GLES3_BACKEND_ENABLED