Some improvements to is_equal_approx, restored Quat operator.
(cherry picked from commit dee98d3b6d
)
This commit is contained in:
parent
c76c33fb50
commit
0064d26517
|
@ -557,11 +557,23 @@ void Basis::set_euler_yxz(const Vector3 &p_euler) {
|
|||
*this = ymat * xmat * zmat;
|
||||
}
|
||||
|
||||
bool Basis::is_equal_approx(const Basis &a, const Basis &b) const {
|
||||
bool Basis::is_equal_approx(const Basis &a, const Basis &b,real_t p_epsilon) const {
|
||||
|
||||
for (int i = 0; i < 3; i++) {
|
||||
for (int j = 0; j < 3; j++) {
|
||||
if (!Math::is_equal_approx_ratio(a.elements[i][j], b.elements[i][j], UNIT_EPSILON))
|
||||
if (!Math::is_equal_approx(a.elements[i][j], b.elements[i][j], p_epsilon))
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool Basis::is_equal_approx_ratio(const Basis &a, const Basis &b,real_t p_epsilon) const {
|
||||
|
||||
for (int i = 0; i < 3; i++) {
|
||||
for (int j = 0; j < 3; j++) {
|
||||
if (!Math::is_equal_approx_ratio(a.elements[i][j], b.elements[i][j], p_epsilon))
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
@ -605,12 +617,14 @@ Basis::operator String() const {
|
|||
|
||||
Quat Basis::get_quat() const {
|
||||
|
||||
#ifdef MATH_CHECKS
|
||||
if (!is_rotation()) {
|
||||
ERR_EXPLAIN("Basis must be normalized in order to be casted to a Quaternion. Use get_rotation_quat() or call orthonormalized() instead.");
|
||||
ERR_FAIL_V(Quat());
|
||||
}
|
||||
#endif
|
||||
/* Allow getting a quaternion from an unnormalized transform */
|
||||
Basis m = *this;
|
||||
m.elements[0].normalize();
|
||||
m.elements[1].normalize();
|
||||
m.elements[2].normalize();
|
||||
|
||||
real_t trace = m.elements[0][0] + m.elements[1][1] + m.elements[2][2];
|
||||
real_t temp[4];
|
||||
|
||||
|
|
|
@ -133,7 +133,8 @@ public:
|
|||
return elements[0][2] * v[0] + elements[1][2] * v[1] + elements[2][2] * v[2];
|
||||
}
|
||||
|
||||
bool is_equal_approx(const Basis &a, const Basis &b) const;
|
||||
bool is_equal_approx(const Basis &a, const Basis &b, real_t p_epsilon=CMP_EPSILON) const;
|
||||
bool is_equal_approx_ratio(const Basis &a, const Basis &b, real_t p_epsilon=UNIT_EPSILON) const;
|
||||
|
||||
bool operator==(const Basis &p_matrix) const;
|
||||
bool operator!=(const Basis &p_matrix) const;
|
||||
|
|
|
@ -260,11 +260,11 @@ public:
|
|||
static float random(float from, float to);
|
||||
static real_t random(int from, int to) { return (real_t)random((real_t)from, (real_t)to); }
|
||||
|
||||
static _ALWAYS_INLINE_ bool is_equal_approx_ratio(real_t a, real_t b, real_t epsilon = CMP_EPSILON) {
|
||||
static _ALWAYS_INLINE_ bool is_equal_approx_ratio(real_t a, real_t b, real_t epsilon = CMP_EPSILON, real_t min_epsilon = CMP_EPSILON) {
|
||||
// this is an approximate way to check that numbers are close, as a ratio of their average size
|
||||
// helps compare approximate numbers that may be very big or very small
|
||||
real_t diff = abs(a - b);
|
||||
if (diff == 0.0) {
|
||||
if (diff == 0.0 || diff < min_epsilon) {
|
||||
return true;
|
||||
}
|
||||
real_t avg_size = (abs(a) + abs(b)) / 2.0;
|
||||
|
|
|
@ -775,6 +775,8 @@ struct _VariantCall {
|
|||
VCALL_PTR0R(Basis, get_orthogonal_index);
|
||||
VCALL_PTR0R(Basis, orthonormalized);
|
||||
VCALL_PTR2R(Basis, slerp);
|
||||
VCALL_PTR2R(Basis, is_equal_approx);
|
||||
VCALL_PTR0R(Basis, get_rotation_quat);
|
||||
|
||||
VCALL_PTR0R(Transform, inverse);
|
||||
VCALL_PTR0R(Transform, affine_inverse);
|
||||
|
@ -1846,6 +1848,8 @@ void register_variant_methods() {
|
|||
ADDFUNC1R(BASIS, VECTOR3, Basis, xform_inv, VECTOR3, "v", varray());
|
||||
ADDFUNC0R(BASIS, INT, Basis, get_orthogonal_index, varray());
|
||||
ADDFUNC2R(BASIS, BASIS, Basis, slerp, BASIS, "b", REAL, "t", varray());
|
||||
ADDFUNC2R(BASIS, BOOL, Basis, is_equal_approx, BASIS, "b", REAL, "epsilon", varray(CMP_EPSILON));
|
||||
ADDFUNC0R(BASIS, QUAT, Basis, get_rotation_quat, varray());
|
||||
|
||||
ADDFUNC0R(TRANSFORM, TRANSFORM, Transform, inverse, varray());
|
||||
ADDFUNC0R(TRANSFORM, TRANSFORM, Transform, affine_inverse, varray());
|
||||
|
|
Loading…
Reference in New Issue