Merge pull request #75940 from reduz/redone-message-queue

Redo of Message Queue
This commit is contained in:
Rémi Verschelde 2023-04-12 17:01:21 +02:00
commit 11798fa420
No known key found for this signature in database
GPG Key ID: C3336907360768E1
3 changed files with 354 additions and 198 deletions

View File

@ -35,94 +35,55 @@
#include "core/object/class_db.h"
#include "core/object/script_language.h"
MessageQueue *MessageQueue::singleton = nullptr;
MessageQueue *MessageQueue::get_singleton() {
return singleton;
void CallQueue::_add_page() {
if (pages_used == page_messages.size()) {
pages.push_back(allocator->alloc());
page_messages.push_back(0);
}
page_messages[pages_used] = 0;
pages_used++;
page_offset = 0;
}
Error MessageQueue::push_callp(ObjectID p_id, const StringName &p_method, const Variant **p_args, int p_argcount, bool p_show_error) {
Error CallQueue::push_callp(ObjectID p_id, const StringName &p_method, const Variant **p_args, int p_argcount, bool p_show_error) {
return push_callablep(Callable(p_id, p_method), p_args, p_argcount, p_show_error);
}
Error MessageQueue::push_set(ObjectID p_id, const StringName &p_prop, const Variant &p_value) {
_THREAD_SAFE_METHOD_
uint8_t room_needed = sizeof(Message) + sizeof(Variant);
if ((buffer_end + room_needed) >= buffer_size) {
String type;
if (ObjectDB::get_instance(p_id)) {
type = ObjectDB::get_instance(p_id)->get_class();
}
ERR_PRINT("Failed set: " + type + ":" + p_prop + " target ID: " + itos(p_id) + ". Message queue out of memory. Try increasing \"memory/limits/message_queue/max_size_kb\" in project settings.");
statistics();
return ERR_OUT_OF_MEMORY;
}
Message *msg = memnew_placement(&buffer[buffer_end], Message);
msg->args = 1;
msg->callable = Callable(p_id, p_prop);
msg->type = TYPE_SET;
buffer_end += sizeof(Message);
Variant *v = memnew_placement(&buffer[buffer_end], Variant);
buffer_end += sizeof(Variant);
*v = p_value;
return OK;
}
Error MessageQueue::push_notification(ObjectID p_id, int p_notification) {
_THREAD_SAFE_METHOD_
ERR_FAIL_COND_V(p_notification < 0, ERR_INVALID_PARAMETER);
uint8_t room_needed = sizeof(Message);
if ((buffer_end + room_needed) >= buffer_size) {
ERR_PRINT("Failed notification: " + itos(p_notification) + " target ID: " + itos(p_id) + ". Message queue out of memory. Try increasing \"memory/limits/message_queue/max_size_kb\" in project settings.");
statistics();
return ERR_OUT_OF_MEMORY;
}
Message *msg = memnew_placement(&buffer[buffer_end], Message);
msg->type = TYPE_NOTIFICATION;
msg->callable = Callable(p_id, CoreStringNames::get_singleton()->notification); //name is meaningless but callable needs it
//msg->target;
msg->notification = p_notification;
buffer_end += sizeof(Message);
return OK;
}
Error MessageQueue::push_callp(Object *p_object, const StringName &p_method, const Variant **p_args, int p_argcount, bool p_show_error) {
Error CallQueue::push_callp(Object *p_object, const StringName &p_method, const Variant **p_args, int p_argcount, bool p_show_error) {
return push_callp(p_object->get_instance_id(), p_method, p_args, p_argcount, p_show_error);
}
Error MessageQueue::push_notification(Object *p_object, int p_notification) {
Error CallQueue::push_notification(Object *p_object, int p_notification) {
return push_notification(p_object->get_instance_id(), p_notification);
}
Error MessageQueue::push_set(Object *p_object, const StringName &p_prop, const Variant &p_value) {
Error CallQueue::push_set(Object *p_object, const StringName &p_prop, const Variant &p_value) {
return push_set(p_object->get_instance_id(), p_prop, p_value);
}
Error MessageQueue::push_callablep(const Callable &p_callable, const Variant **p_args, int p_argcount, bool p_show_error) {
_THREAD_SAFE_METHOD_
Error CallQueue::push_callablep(const Callable &p_callable, const Variant **p_args, int p_argcount, bool p_show_error) {
mutex.lock();
uint32_t room_needed = sizeof(Message) + sizeof(Variant) * p_argcount;
int room_needed = sizeof(Message) + sizeof(Variant) * p_argcount;
ERR_FAIL_COND_V_MSG(room_needed > uint32_t(PAGE_SIZE_BYTES), ERR_INVALID_PARAMETER, "Message is too large to fit on a page (" + itos(PAGE_SIZE_BYTES) + " bytes), consider passing less arguments.");
if ((buffer_end + room_needed) >= buffer_size) {
ERR_PRINT("Failed method: " + p_callable + ". Message queue out of memory. Try increasing \"memory/limits/message_queue/max_size_kb\" in project settings.");
_ensure_first_page();
if ((page_offset + room_needed) > uint32_t(PAGE_SIZE_BYTES)) {
if (room_needed > uint32_t(PAGE_SIZE_BYTES) || pages_used == max_pages) {
ERR_PRINT("Failed method: " + p_callable + ". Message queue out of memory. " + error_text);
statistics();
mutex.unlock();
return ERR_OUT_OF_MEMORY;
}
_add_page();
}
Message *msg = memnew_placement(&buffer[buffer_end], Message);
Page *page = pages[pages_used - 1];
uint8_t *buffer_end = &page->data[page_offset];
Message *msg = memnew_placement(buffer_end, Message);
msg->args = p_argcount;
msg->callable = p_callable;
msg->type = TYPE_CALL;
@ -133,23 +94,264 @@ Error MessageQueue::push_callablep(const Callable &p_callable, const Variant **p
buffer_end += sizeof(Message);
for (int i = 0; i < p_argcount; i++) {
Variant *v = memnew_placement(&buffer[buffer_end], Variant);
Variant *v = memnew_placement(buffer_end, Variant);
buffer_end += sizeof(Variant);
*v = *p_args[i];
}
page_messages[pages_used - 1]++;
page_offset += room_needed;
mutex.unlock();
return OK;
}
void MessageQueue::statistics() {
Error CallQueue::push_set(ObjectID p_id, const StringName &p_prop, const Variant &p_value) {
mutex.lock();
uint32_t room_needed = sizeof(Message) + sizeof(Variant);
_ensure_first_page();
if ((page_offset + room_needed) > uint32_t(PAGE_SIZE_BYTES)) {
if (pages_used == max_pages) {
String type;
if (ObjectDB::get_instance(p_id)) {
type = ObjectDB::get_instance(p_id)->get_class();
}
ERR_PRINT("Failed set: " + type + ":" + p_prop + " target ID: " + itos(p_id) + ". Message queue out of memory. " + error_text);
statistics();
mutex.unlock();
return ERR_OUT_OF_MEMORY;
}
_add_page();
}
Page *page = pages[pages_used - 1];
uint8_t *buffer_end = &page->data[page_offset];
Message *msg = memnew_placement(buffer_end, Message);
msg->args = 1;
msg->callable = Callable(p_id, p_prop);
msg->type = TYPE_SET;
buffer_end += sizeof(Message);
Variant *v = memnew_placement(buffer_end, Variant);
*v = p_value;
page_messages[pages_used - 1]++;
page_offset += room_needed;
mutex.unlock();
return OK;
}
Error CallQueue::push_notification(ObjectID p_id, int p_notification) {
ERR_FAIL_COND_V(p_notification < 0, ERR_INVALID_PARAMETER);
mutex.lock();
uint32_t room_needed = sizeof(Message);
_ensure_first_page();
if ((page_offset + room_needed) > uint32_t(PAGE_SIZE_BYTES)) {
if (pages_used == max_pages) {
ERR_PRINT("Failed notification: " + itos(p_notification) + " target ID: " + itos(p_id) + ". Message queue out of memory. " + error_text);
statistics();
mutex.unlock();
return ERR_OUT_OF_MEMORY;
}
_add_page();
}
Page *page = pages[pages_used - 1];
uint8_t *buffer_end = &page->data[page_offset];
Message *msg = memnew_placement(buffer_end, Message);
msg->type = TYPE_NOTIFICATION;
msg->callable = Callable(p_id, CoreStringNames::get_singleton()->notification); //name is meaningless but callable needs it
//msg->target;
msg->notification = p_notification;
page_messages[pages_used - 1]++;
page_offset += room_needed;
mutex.unlock();
return OK;
}
void CallQueue::_call_function(const Callable &p_callable, const Variant *p_args, int p_argcount, bool p_show_error) {
const Variant **argptrs = nullptr;
if (p_argcount) {
argptrs = (const Variant **)alloca(sizeof(Variant *) * p_argcount);
for (int i = 0; i < p_argcount; i++) {
argptrs[i] = &p_args[i];
}
}
Callable::CallError ce;
Variant ret;
p_callable.callp(argptrs, p_argcount, ret, ce);
if (p_show_error && ce.error != Callable::CallError::CALL_OK) {
ERR_PRINT("Error calling deferred method: " + Variant::get_callable_error_text(p_callable, argptrs, p_argcount, ce) + ".");
}
}
Error CallQueue::flush() {
mutex.lock();
if (pages.size() == 0) {
// Never allocated
mutex.unlock();
return OK; // Do nothing.
}
if (flushing) {
mutex.unlock();
return ERR_BUSY;
}
flushing = true;
uint32_t i = 0;
uint32_t j = 0;
uint32_t offset = 0;
while (i < pages_used && j < page_messages[i]) {
Page *page = pages[i];
//lock on each iteration, so a call can re-add itself to the message queue
Message *message = (Message *)&page->data[offset];
uint32_t advance = sizeof(Message);
if ((message->type & FLAG_MASK) != TYPE_NOTIFICATION) {
advance += sizeof(Variant) * message->args;
}
//pre-advance so this function is reentrant
offset += advance;
Object *target = message->callable.get_object();
mutex.unlock();
if (target != nullptr) {
switch (message->type & FLAG_MASK) {
case TYPE_CALL: {
Variant *args = (Variant *)(message + 1);
// messages don't expect a return value
_call_function(message->callable, args, message->args, message->type & FLAG_SHOW_ERROR);
} break;
case TYPE_NOTIFICATION: {
// messages don't expect a return value
target->notification(message->notification);
} break;
case TYPE_SET: {
Variant *arg = (Variant *)(message + 1);
// messages don't expect a return value
target->set(message->callable.get_method(), *arg);
} break;
}
}
if ((message->type & FLAG_MASK) != TYPE_NOTIFICATION) {
Variant *args = (Variant *)(message + 1);
for (int k = 0; k < message->args; k++) {
args[k].~Variant();
}
}
message->~Message();
mutex.lock();
j++;
if (j == page_messages[i]) {
j = 0;
i++;
offset = 0;
}
}
page_messages[0] = 0;
page_offset = 0;
pages_used = 1;
flushing = false;
mutex.unlock();
return OK;
}
void CallQueue::clear() {
mutex.lock();
if (pages.size() == 0) {
mutex.unlock();
return; // Nothing to clear.
}
for (uint32_t i = 0; i < pages_used; i++) {
uint32_t offset = 0;
for (uint32_t j = 0; j < page_messages[i]; j++) {
Page *page = pages[i];
//lock on each iteration, so a call can re-add itself to the message queue
Message *message = (Message *)&page->data[offset];
uint32_t advance = sizeof(Message);
if ((message->type & FLAG_MASK) != TYPE_NOTIFICATION) {
advance += sizeof(Variant) * message->args;
}
//pre-advance so this function is reentrant
offset += advance;
if ((message->type & FLAG_MASK) != TYPE_NOTIFICATION) {
Variant *args = (Variant *)(message + 1);
for (int k = 0; k < message->args; k++) {
args[k].~Variant();
}
}
message->~Message();
}
}
pages_used = 1;
page_offset = 0;
page_messages[0] = 0;
mutex.unlock();
}
void CallQueue::statistics() {
mutex.lock();
HashMap<StringName, int> set_count;
HashMap<int, int> notify_count;
HashMap<Callable, int> call_count;
int null_count = 0;
uint32_t read_pos = 0;
while (read_pos < buffer_end) {
Message *message = (Message *)&buffer[read_pos];
for (uint32_t i = 0; i < pages_used; i++) {
uint32_t offset = 0;
for (uint32_t j = 0; j < page_messages[i]; j++) {
Page *page = pages[i];
//lock on each iteration, so a call can re-add itself to the message queue
Message *message = (Message *)&page->data[offset];
uint32_t advance = sizeof(Message);
if ((message->type & FLAG_MASK) != TYPE_NOTIFICATION) {
advance += sizeof(Variant) * message->args;
}
Object *target = message->callable.get_object();
@ -189,13 +391,21 @@ void MessageQueue::statistics() {
null_count++;
}
read_pos += sizeof(Message);
//pre-advance so this function is reentrant
offset += advance;
if ((message->type & FLAG_MASK) != TYPE_NOTIFICATION) {
read_pos += sizeof(Variant) * message->args;
Variant *args = (Variant *)(message + 1);
for (int k = 0; k < message->args; k++) {
args[k].~Variant();
}
}
print_line("TOTAL BYTES: " + itos(buffer_end));
message->~Message();
}
}
print_line("TOTAL PAGES: " + itos(pages_used) + " (" + itos(pages_used * PAGE_SIZE_BYTES) + " bytes).");
print_line("NULL count: " + itos(null_count));
for (const KeyValue<StringName, int> &E : set_count) {
@ -209,136 +419,53 @@ void MessageQueue::statistics() {
for (const KeyValue<int, int> &E : notify_count) {
print_line("NOTIFY " + itos(E.key) + ": " + itos(E.value));
}
mutex.unlock();
}
int MessageQueue::get_max_buffer_usage() const {
return buffer_max_used;
}
void MessageQueue::_call_function(const Callable &p_callable, const Variant *p_args, int p_argcount, bool p_show_error) {
const Variant **argptrs = nullptr;
if (p_argcount) {
argptrs = (const Variant **)alloca(sizeof(Variant *) * p_argcount);
for (int i = 0; i < p_argcount; i++) {
argptrs[i] = &p_args[i];
}
}
Callable::CallError ce;
Variant ret;
p_callable.callp(argptrs, p_argcount, ret, ce);
if (p_show_error && ce.error != Callable::CallError::CALL_OK) {
ERR_PRINT("Error calling deferred method: " + Variant::get_callable_error_text(p_callable, argptrs, p_argcount, ce) + ".");
}
}
void MessageQueue::flush() {
if (buffer_end > buffer_max_used) {
buffer_max_used = buffer_end;
}
uint32_t read_pos = 0;
//using reverse locking strategy
_THREAD_SAFE_LOCK_
if (flushing) {
_THREAD_SAFE_UNLOCK_
ERR_FAIL_COND(flushing); //already flushing, you did something odd
}
flushing = true;
while (read_pos < buffer_end) {
//lock on each iteration, so a call can re-add itself to the message queue
Message *message = (Message *)&buffer[read_pos];
uint32_t advance = sizeof(Message);
if ((message->type & FLAG_MASK) != TYPE_NOTIFICATION) {
advance += sizeof(Variant) * message->args;
}
//pre-advance so this function is reentrant
read_pos += advance;
_THREAD_SAFE_UNLOCK_
Object *target = message->callable.get_object();
if (target != nullptr) {
switch (message->type & FLAG_MASK) {
case TYPE_CALL: {
Variant *args = (Variant *)(message + 1);
// messages don't expect a return value
_call_function(message->callable, args, message->args, message->type & FLAG_SHOW_ERROR);
} break;
case TYPE_NOTIFICATION: {
// messages don't expect a return value
target->notification(message->notification);
} break;
case TYPE_SET: {
Variant *arg = (Variant *)(message + 1);
// messages don't expect a return value
target->set(message->callable.get_method(), *arg);
} break;
}
}
if ((message->type & FLAG_MASK) != TYPE_NOTIFICATION) {
Variant *args = (Variant *)(message + 1);
for (int i = 0; i < message->args; i++) {
args[i].~Variant();
}
}
message->~Message();
_THREAD_SAFE_LOCK_
}
buffer_end = 0; // reset buffer
flushing = false;
_THREAD_SAFE_UNLOCK_
}
bool MessageQueue::is_flushing() const {
bool CallQueue::is_flushing() const {
return flushing;
}
MessageQueue::MessageQueue() {
int CallQueue::get_max_buffer_usage() const {
return pages.size() * PAGE_SIZE_BYTES;
}
CallQueue::CallQueue(Allocator *p_custom_allocator, uint32_t p_max_pages, const String &p_error_text) {
if (p_custom_allocator) {
allocator = p_custom_allocator;
allocator_is_custom = true;
} else {
allocator = memnew(Allocator(16)); // 16 elements per allocator page, 64kb per allocator page. Anything small will do, though.
allocator_is_custom = false;
}
max_pages = p_max_pages;
error_text = p_error_text;
}
CallQueue::~CallQueue() {
clear();
// Let go of pages.
for (uint32_t i = 0; i < pages.size(); i++) {
allocator->free(pages[i]);
}
if (!allocator_is_custom) {
memdelete(allocator);
}
}
//////////////////////
MessageQueue *MessageQueue::singleton = nullptr;
MessageQueue::MessageQueue() :
CallQueue(nullptr,
int(GLOBAL_DEF_RST(PropertyInfo(Variant::INT, "memory/limits/message_queue/max_size_mb", PROPERTY_HINT_RANGE, "1,512,1,or_greater"), 32)) * 1024 * 1024 / PAGE_SIZE_BYTES,
"Message queue out of memory. Try increasing 'memory/limits/message_queue/max_size_mb' in project settings.") {
ERR_FAIL_COND_MSG(singleton != nullptr, "A MessageQueue singleton already exists.");
singleton = this;
buffer_size = GLOBAL_DEF_RST(PropertyInfo(Variant::INT, "memory/limits/message_queue/max_size_kb", PROPERTY_HINT_RANGE, "1024,4096,1,or_greater"), DEFAULT_QUEUE_SIZE_KB);
buffer_size *= 1024;
buffer = memnew_arr(uint8_t, buffer_size);
}
MessageQueue::~MessageQueue() {
uint32_t read_pos = 0;
while (read_pos < buffer_end) {
Message *message = (Message *)&buffer[read_pos];
Variant *args = (Variant *)(message + 1);
int argc = message->args;
if ((message->type & FLAG_MASK) != TYPE_NOTIFICATION) {
for (int i = 0; i < argc; i++) {
args[i].~Variant();
}
}
message->~Message();
read_pos += sizeof(Message);
if ((message->type & FLAG_MASK) != TYPE_NOTIFICATION) {
read_pos += sizeof(Variant) * message->args;
}
}
singleton = nullptr;
memdelete_arr(buffer);
}

View File

@ -33,26 +33,45 @@
#include "core/object/object_id.h"
#include "core/os/thread_safe.h"
#include "core/templates/local_vector.h"
#include "core/templates/paged_allocator.h"
#include "core/variant/variant.h"
class Object;
class MessageQueue {
_THREAD_SAFE_CLASS_
class CallQueue {
public:
enum {
DEFAULT_QUEUE_SIZE_KB = 4096
PAGE_SIZE_BYTES = 4096
};
private:
enum {
TYPE_CALL,
TYPE_NOTIFICATION,
TYPE_SET,
TYPE_END, // End marker.
FLAG_SHOW_ERROR = 1 << 14,
FLAG_MASK = FLAG_SHOW_ERROR - 1
FLAG_MASK = FLAG_SHOW_ERROR - 1,
};
struct Page {
uint8_t data[PAGE_SIZE_BYTES];
};
Mutex mutex;
typedef PagedAllocator<Page, true> Allocator;
Allocator *allocator = nullptr;
bool allocator_is_custom = false;
LocalVector<Page *> pages;
LocalVector<uint32_t> page_messages;
uint32_t max_pages = 0;
uint32_t pages_used = 0;
uint32_t page_offset = 0;
bool flushing = false;
struct Message {
Callable callable;
int16_t type;
@ -62,20 +81,21 @@ class MessageQueue {
};
};
uint8_t *buffer = nullptr;
uint32_t buffer_end = 0;
uint32_t buffer_max_used = 0;
uint32_t buffer_size = 0;
_FORCE_INLINE_ void _ensure_first_page() {
if (unlikely(pages.is_empty())) {
pages.push_back(allocator->alloc());
page_messages.push_back(0);
pages_used = 1;
}
}
void _add_page();
void _call_function(const Callable &p_callable, const Variant *p_args, int p_argcount, bool p_show_error);
static MessageQueue *singleton;
bool flushing = false;
String error_text;
public:
static MessageQueue *get_singleton();
Error push_callp(ObjectID p_id, const StringName &p_method, const Variant **p_args, int p_argcount, bool p_show_error = false);
template <typename... VarArgs>
Error push_call(ObjectID p_id, const StringName &p_method, VarArgs... p_args) {
@ -87,9 +107,9 @@ public:
return push_callp(p_id, p_method, sizeof...(p_args) == 0 ? nullptr : (const Variant **)argptrs, sizeof...(p_args));
}
Error push_notification(ObjectID p_id, int p_notification);
Error push_set(ObjectID p_id, const StringName &p_prop, const Variant &p_value);
Error push_callablep(const Callable &p_callable, const Variant **p_args, int p_argcount, bool p_show_error = false);
Error push_set(ObjectID p_id, const StringName &p_prop, const Variant &p_value);
Error push_notification(ObjectID p_id, int p_notification);
template <typename... VarArgs>
Error push_callable(const Callable &p_callable, VarArgs... p_args) {
@ -115,13 +135,22 @@ public:
Error push_notification(Object *p_object, int p_notification);
Error push_set(Object *p_object, const StringName &p_prop, const Variant &p_value);
Error flush();
void clear();
void statistics();
void flush();
bool is_flushing() const;
int get_max_buffer_usage() const;
CallQueue(Allocator *p_custom_allocator = 0, uint32_t p_max_pages = 8192, const String &p_error_text = String());
virtual ~CallQueue();
};
class MessageQueue : public CallQueue {
static MessageQueue *singleton;
public:
_FORCE_INLINE_ static MessageQueue *get_singleton() { return singleton; }
MessageQueue();
~MessageQueue();
};

View File

@ -1739,7 +1739,7 @@
<member name="layer_names/3d_render/layer_9" type="String" setter="" getter="" default="&quot;&quot;">
Optional name for the 3D render layer 9. If left empty, the layer will display as "Layer 9".
</member>
<member name="memory/limits/message_queue/max_size_kb" type="int" setter="" getter="" default="4096">
<member name="memory/limits/message_queue/max_size_mb" type="int" setter="" getter="" default="32">
Godot uses a message queue to defer some function calls. If you run out of space on it (you will see an error), you can increase the size here.
</member>
<member name="memory/limits/multithreaded_server/rid_pool_prealloc" type="int" setter="" getter="" default="60">